blob: f2d50c10a6a30ec245c96d76b669ec4fa65f2935 [file] [log] [blame]
/* ------------------------------------------------------------------
* Copyright (C) 1998-2009 PacketVideo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
/*
Pathname: pns_intensity_right.c
------------------------------------------------------------------------------
INPUT AND OUTPUT DEFINITIONS
Inputs:
hasmask = mask status for the frame. Enumerated.
pFrameInfo = Pointer to structure that holds information about each group.
(long block flag, number of windows, scalefactor bands
per group, etc.)
[const pFrameInfo * const]
group = Array that contains indexes of the
first window in the next group.
[const Int *, length num_win]
mask_map = Array that denotes whether M/S stereo is turned on for
each grouped scalefactor band.
[const Int *, length MAX_SFB]
codebook_map = Array that denotes which Huffman codebook was used for
the encoding of each grouped scalefactor band.
[const Int *, length MAX_SFB]
factorsL = Array of grouped scalefactors for left chan.
[const Int *, length MAX_SFB]
factorsR = Array of scalefactors for right chan.
[const Int *, length MAX_SFB]
sfb_prediction_used = Flag that denotes the activation of long term prediction
on a per-scalefactor band, non-grouped basis.
[const Int *, length MAX_SFB]
ltp_data_present = Flag that indicates whether LTP is enbaled for this frame.
[const Bool]
coefLeft = Array containing the fixed-point spectral coefficients
for the left channel.
[Int32 *, length 1024]
coefRight = Array containing the fixed-point spectral coefficients
for the right channel.
[Int32 *, length 1024]
q_formatLeft = The Q-format for the left channel's fixed-point spectral
coefficients, on a per-scalefactor band, non-grouped basis.
[Int *, length MAX_SFB]
q_formatRight = The Q-format for the right channel's fixed-point spectral
coefficients, on a per-scalefactor band, non-grouped basis.
[Int *, length MAX_SFB]
pCurrentSeed = Pointer to the current seed for the random number
generator in the function gen_rand_vector().
[Int32 * const]
Local Stores/Buffers/Pointers Needed:
None
Global Stores/Buffers/Pointers Needed:
None
Outputs:
None
Pointers and Buffers Modified:
coefLeft = Contains the new spectral information.
coefRight = Contains the new spectral information.
q_formatLeft = Q-format may be updated with changed to fixed-point
data in coefLeft.
q_formatRight = Q-format may be updated with changed to fixed-point
data in coefRight.
pCurrentSeed = Value pointed to by pCurrentSeed updated by calls
to gen_rand_vector().
Local Stores Modified:
None
Global Stores Modified:
None
------------------------------------------------------------------------------
FUNCTION DESCRIPTION
This function steps through all of the scalefactor bands, looking for
either PNS or IS to be enabled on the right channel.
If the codebook used is >= NOISE_HCB, the code then checks for the use
of Huffman codebooks NOISE_HCB, INTENSITY_HCB, or INTENSITY_HCB2.
When a SFB utilizing the codebook NOISE_HCB is detected, a check is made to
see if M/S has also been enabled for that SFB.
If M/S is not enabled, the band's spectral information is filled with
scaled random data. The scaled random data is generated by the function
gen_rand_vector. This is done across all windows in the group.
If M/S is enabled, the band's spectral information is derived from the data
residing in the same band on the left channel. The information on the right
channel has independent scaling, so this is a bit more involved than a
direct copy of the information on the left channel. This is done by calling
the inline function pns_corr().
When a SFB utilizing an intensity codebook is detected, the band's spectral
information is generated from the information on the left channel.
This is done across all windows in the group. M/S being enabled has the
effect of reversing the sign of the data on the right channel. This code
resides in the inline function intensity_right().
------------------------------------------------------------------------------
REQUIREMENTS
------------------------------------------------------------------------------
REFERENCES
(1) ISO/IEC 14496-3:1999(E)
Part 3
Subpart 4.6.7.1 M/S stereo
Subpart 4.6.7.2.3 Decoding Process (Intensity Stereo)
Subpart 4.6.12.3 Decoding Process (PNS)
Subpart 4.6.2 ScaleFactors
(2) MPEG-2 NBC Audio Decoder
"This software module was originally developed by AT&T, Dolby
Laboratories, Fraunhofer Gesellschaft IIS in the course of development
of the MPEG-2 NBC/MPEG-4 Audio standard ISO/IEC 13818-7, 14496-1,2 and
3. This software module is an implementation of a part of one or more
MPEG-2 NBC/MPEG-4 Audio tools as specified by the MPEG-2 NBC/MPEG-4
Audio standard. ISO/IEC gives users of the MPEG-2 NBC/MPEG-4 Audio
standards free license to this software module or modifications thereof
for use in hardware or software products claiming conformance to the
MPEG-2 NBC/MPEG-4 Audio standards. Those intending to use this software
module in hardware or software products are advised that this use may
infringe existing patents. The original developer of this software
module and his/her company, the subsequent editors and their companies,
and ISO/IEC have no liability for use of this software module or
modifications thereof in an implementation. Copyright is not released
for non MPEG-2 NBC/MPEG-4 Audio conforming products.The original
developer retains full right to use the code for his/her own purpose,
assign or donate the code to a third party and to inhibit third party
from using the code for non MPEG-2 NBC/MPEG-4 Audio conforming products.
This copyright notice must be included in all copies or derivative
works."
Copyright(c)1996.
------------------------------------------------------------------------------
PSEUDO-CODE
pCoefRight = coefRight;
pCoefLeft = coefLeft;
window_start = 0;
tot_sfb = 0;
start_indx = 0;
coef_per_win = pFrameInfo->coef_per_win[0];
sfb_per_win = pFrameInfo->sfb_per_win[0];
DO
pBand = pFrameInfo->win_sfb_top[window_start];
partition = *pGroup;
pGroup = pGroup + 1;
band_start = 0;
wins_in_group = (partition - window_start);
FOR (sfb = sfb_per_win; sfb > 0; sfb--)
band_stop = *(pBand);
pBand = pBand + 1;
codebook = *(pCodebookMap);
pCodebookMap = pCodebookMap + 1;
mask_enabled = *(pMaskMap);
pMaskMap = pMaskMap + 1;
band_length = band_stop - band_start;
IF (codebook == NOISE_HCB)
sfb_prediction_used[tot_sfb] &= ltp_data_present;
IF (sfb_prediction_used[tot_sfb] == FALSE)
mask_enabled = mask_enabled AND hasmask;
IF (mask_enabled == FALSE)
pWindow_CoefR = &(pCoefRight[band_start]);
start_indx = tot_sfb;
FOR (win_indx = wins_in_group;
win_indx > 0;
win_indx--)
CALL
q_formatRight[start_indx] =
gen_rand_vector(
pWindow_CoefR,
band_length,
pCurrentSeed,
*(pFactorsRight));
MODIFYING
pCoefRight[band_start]
RETURNING
q_formatRight[start_indx]
pWindow_CoefR += coef_per_win;
start_indx = start_indx + sfb_per_win;
ENDFOR
ELSE
CALL
pns_corr(
(*(pFactorsRight) -
*(pFactorsLeft) ),
coef_per_win,
sfb_per_win,
wins_in_group,
band_length,
q_formatLeft[tot_sfb],
&(q_formatRight[tot_sfb]),
&(pCoefLeft[band_start]),
&(pCoefRight[band_start]));
MODIFYING
pCoefRightt[band_start]
q_formatRight[tot_sfb]
RETURNING
NONE
ENDIF
ENDIF
ELSE IF (codebook >= INTENSITY_HCB2)
mask_enabled = mask_enabled AND hasmask;
CALL
intensity_right(
*(pFactorsRight),
coef_per_win,
sfb_per_win,
wins_in_group,
band_length,
codebook,
mask_enabled,
&(q_formatLeft[tot_sfb]),
&(q_formatRight[tot_sfb]),
&(pCoefLeft[band_start]),
&(pCoefRight[band_start]));
MODIFYING
pCoefRightt[band_start]
q_formatRight[tot_sfb]
RETURNING
NONE
ENDIF
band_start = band_stop;
tot_sfb = tot_sfb + 1;
ENDFOR
coef_per_win = coef_per_win * (wins_in_group);
wins_in_group = wins_in_group - 1;
tot_sfb = tot_sfb + sfb_per_win * wins_in_group;
pFactorsRight = pFactorsRight + sfb_per_win * wins_in_group;
pFactorsLeft = pFactorsLeft + sfb_per_win * wins_in_group;
pCoefRight = pCoefRight + coef_per_win;
pCoefLeft = pCoefLeft + coef_per_win;
window_start = partition;
WHILE (partition < pFrameInfo->num_win);
return;
------------------------------------------------------------------------------
RESOURCES USED
When the code is written for a specific target processor the
resources used should be documented below.
STACK USAGE: [stack count for this module] + [variable to represent
stack usage for each subroutine called]
where: [stack usage variable] = stack usage for [subroutine
name] (see [filename].ext)
DATA MEMORY USED: x words
PROGRAM MEMORY USED: x words
CLOCK CYCLES: [cycle count equation for this module] + [variable
used to represent cycle count for each subroutine
called]
where: [cycle count variable] = cycle count for [subroutine
name] (see [filename].ext)
------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
; INCLUDES
----------------------------------------------------------------------------*/
#include "pv_audio_type_defs.h"
#include "pns_intensity_right.h"
#include "e_huffmanconst.h"
#include "gen_rand_vector.h"
#include "intensity_right.h"
#include "pns_corr.h"
/*----------------------------------------------------------------------------
; MACROS
; Define module specific macros here
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; DEFINES
; Include all pre-processor statements here. Include conditional
; compile variables also.
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL FUNCTION DEFINITIONS
; Function Prototype declaration
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL STORE/BUFFER/POINTER DEFINITIONS
; Variable declaration - defined here and used outside this module
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL FUNCTION REFERENCES
; Declare functions defined elsewhere and referenced in this module
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES
; Declare variables used in this module but defined elsewhere
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; FUNCTION CODE
----------------------------------------------------------------------------*/
void pns_intensity_right(
const Int hasmask,
const FrameInfo * const pFrameInfo,
const Int group[],
const Bool mask_map[],
const Int codebook_map[],
const Int factorsL[],
const Int factorsR[],
Int sfb_prediction_used[],
const Bool ltp_data_present,
Int32 coefLeft[],
Int32 coefRight[],
Int q_formatLeft[MAXBANDS],
Int q_formatRight[MAXBANDS],
Int32 * const pCurrentSeed)
{
Int32 *pCoefRight;
Int32 *pWindow_CoefR;
Int32 *pCoefLeft;
Int tot_sfb;
Int start_indx;
Int sfb;
Int band_length;
Int band_start;
Int band_stop;
Int coef_per_win;
Int codebook;
Int partition;
Int window_start;
Int sfb_per_win;
Int wins_in_group;
Int win_indx;
const Int16 *pBand;
const Int *pFactorsLeft = factorsL;
const Int *pFactorsRight = factorsR;
const Int *pCodebookMap = codebook_map;
const Int *pGroup = group;
const Bool *pMaskMap = mask_map;
Bool mask_enabled;
pCoefRight = coefRight;
pCoefLeft = coefLeft;
window_start = 0;
tot_sfb = 0;
start_indx = 0;
/*
* Each window in the frame should have the same number of coef's,
* so coef_per_win is constant in all the loops
*/
coef_per_win = pFrameInfo->coef_per_win[0];
/*
* Because the number of scalefactor bands per window should be
* constant for each frame, sfb_per_win can be determined outside
* of the loop.
*
* For 44.1 kHz sampling rate sfb_per_win = 14 for short windows
* sfb_per_win = 49 for long windows
*/
sfb_per_win = pFrameInfo->sfb_per_win[0];
do
{
pBand = pFrameInfo->win_sfb_top[window_start];
/*----------------------------------------------------------
Partition is equal to the first window in the next group
{ Group 0 }{ Group 1 }{ Group 2 }{Group 3}
[win 0][win 1][win 2][win 3][win 4][win 5][win 6][win 7]
pGroup[0] = 2
pGroup[1] = 5
pGroup[2] = 7
pGroup[3] = 8
-----------------------------------------------------------*/
partition = *(pGroup++);
band_start = 0;
wins_in_group = (partition - window_start);
for (sfb = sfb_per_win; sfb > 0; sfb--)
{
/* band is offset table, band_stop is last coef in band */
band_stop = *(pBand++);
codebook = *(pCodebookMap++);
mask_enabled = *(pMaskMap++);
/*
* When a tool utilizing sfb is found, apply the correct tool
* to that sfb in each window in the group
*
* Example... sfb[3] == NOISE_HCB
*
* [ Group 1 ]
* [win 0 ][win 1 ]
* [0][1][2][X][4][5][6][7][0][1][2][X][4][5][6][7]
*
* The for(sfb) steps through the sfb's 0-7 in win 0.
*
* Finding sfb[3]'s codebook == NOISE_HCB, the code
* steps through all the windows in the group (they share
* the same scalefactors) and replaces that sfb with noise.
*/
/*
* Experimental results suggest that ms_synt is the most
* commonly used tool, so check for it first.
*
*/
band_length = band_stop - band_start;
if (codebook == NOISE_HCB)
{
sfb_prediction_used[tot_sfb] &= ltp_data_present;
if (sfb_prediction_used[tot_sfb] == FALSE)
{
/*
* The branch and the logical AND interact in the
* following manner...
*
* mask_enabled == 0 hasmask == X -- gen_rand_vector
* mask_enabled == 1 hasmask == 1 -- pns_corr
* mask_enabled == 0 hasmask == 1 -- gen_rand_vector
* mask_enabled == 1 hasmask == 2 -- gen_rand_vector
* mask_enabled == 0 hasmask == 2 -- gen_rand_vector
*/
mask_enabled &= hasmask;
if (mask_enabled == FALSE)
{
pWindow_CoefR = &(pCoefRight[band_start]);
/*
* Step through all the windows in this group,
* replacing this band in each window's
* spectrum with random noise
*/
start_indx = tot_sfb;
for (win_indx = wins_in_group;
win_indx > 0;
win_indx--)
{
/* generate random noise */
q_formatRight[start_indx] =
gen_rand_vector(
pWindow_CoefR,
band_length,
pCurrentSeed,
*(pFactorsRight));
pWindow_CoefR += coef_per_win;
start_indx += sfb_per_win;
}
}
else
{
pns_corr(
(*(pFactorsRight) -
*(pFactorsLeft)),
coef_per_win,
sfb_per_win,
wins_in_group,
band_length,
q_formatLeft[tot_sfb],
&(q_formatRight[tot_sfb]),
&(pCoefLeft[band_start]),
&(pCoefRight[band_start]));
} /* if (mask_map == FALSE) */
} /* if (sfb_prediction_used[tot_sfb] == FALSE) */
} /* if (codebook == 0) */
else if (codebook >= INTENSITY_HCB2)
{
/*
* The logical AND flags the inversion of intensity
* in the following manner.
*
* mask_enabled == X hasmask == 0 -- DO NOT INVERT
* mask_enabled == 0 hasmask == X -- DO NOT INVERT
* mask_enabled == 1 hasmask == 1 -- DO INVERT
* mask_enabled == 0 hasmask == 1 -- DO NOT INVERT
* mask_enabled == 1 hasmask == 2 -- DO NOT INVERT
* mask_enabled == 0 hasmask == 2 -- DO NOT INVERT
*/
mask_enabled &= hasmask;
intensity_right(
*(pFactorsRight),
coef_per_win,
sfb_per_win,
wins_in_group,
band_length,
codebook,
mask_enabled,
&(q_formatLeft[tot_sfb]),
&(q_formatRight[tot_sfb]),
&(pCoefLeft[band_start]),
&(pCoefRight[band_start]));
} /* END else codebook must be INTENSITY_HCB or ... */
band_start = band_stop;
tot_sfb++;
pFactorsLeft++;
pFactorsRight++;
} /* for (sfb) */
/*
* Increment pCoefRight and pCoefLeft by
* coef_per_win * the number of windows
*/
pCoefRight += coef_per_win * wins_in_group;
pCoefLeft += coef_per_win * wins_in_group--;
/*
* Increase tot_sfb by sfb_per_win times the number of windows minus 1.
* The minus 1 comes from the fact that tot_sfb is already pointing
* to the first sfb in the 2nd window of the group.
*/
tot_sfb += sfb_per_win * wins_in_group;
pFactorsRight += sfb_per_win * wins_in_group;
pFactorsLeft += sfb_per_win * wins_in_group;
window_start = partition;
}
while (partition < pFrameInfo->num_win);
/* pFrameInfo->num_win = 1 for long windows, 8 for short_windows */
return;
} /* pns_intensity_right() */