blob: ad67f2095febd70202369cf66cf76a85c894e5f6 [file] [log] [blame]
/* ------------------------------------------------------------------
* Copyright (C) 1998-2009 PacketVideo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied.
* See the License for the specific language governing permissions
* and limitations under the License.
* -------------------------------------------------------------------
*/
/*
Pathname: imdct_fxp.c
Funtions: imdct_fxp
------------------------------------------------------------------------------
INPUT AND OUTPUT DEFINITIONS
Inputs:
data_quant = Input vector, with quantized spectral lines:
type Int32
freq_2_time_buffer = Scratch memory used for in-place FFT calculation,
min size required 1024,
type Int32
n = Length of input vector "data_quant". Currently 256 or 2048
type const Int
Q_format = Q_format of the input vector "data_quant"
type Int
max = Maximum value inside input vector "data_quant"
type Int32
Local Stores/Buffers/Pointers Needed:
None
Global Stores/Buffers/Pointers Needed:
None
Outputs:
shift = shift factor to reflect scaling introduced by IFFT and imdct_fxp,
Pointers and Buffers Modified:
Results are return in "Data_Int_precision"
Local Stores Modified:
None
Global Stores Modified:
None
------------------------------------------------------------------------------
FUNCTION DESCRIPTION
The IMDCT is a linear orthogonal lapped transform, based on the idea of
time domain aliasing cancellation (TDAC).
IMDCT is critically sampled, which means that though it is 50% overlapped,
a sequence data after IMDCT has the same number of coefficients as samples
before the transform (after overlap-and-add). This means, that a single
block of IMDCT data does not correspond to the original block on which the
IMDCT was performed. When subsequent blocks of inverse transformed data
are added (still using 50% overlap), the errors introduced by the
transform cancels out.Thanks to the overlapping feature, the IMDCT is very
useful for quantization. It effectively removes the otherwise easily
detectable blocking artifact between transform blocks.
N = twice the length of input vector X
y = vector of length N, will hold fixed point IDCT
p = 0:1:N-1
2 N/2-1
y(p) = --- SUM X(m)*cos(pi/(2*N)*(2*p+1+N/2)*(2*m+1))
N m=0
The window that completes the TDAC is applied before calling this function.
The IMDCT can be calculated using an IFFT, for this, the IMDCT need be
rewritten as an odd-time odd-frequency discrete Fourier transform. Thus,
the IMDCT can be calculated using only one n/4 point FFT and some pre and
post-rotation of the sample points.
where X(k) is the input with N frequency lines
X(k) ----------------------------
|
|
Pre-rotation by exp(j(2pi/N)(k+1/8))
|
|
N/4- point IFFT
|
|
Post-rotation by exp(j(2pi/N)(n+1/8))
|
|
------------- x(n) In the time domain
------------------------------------------------------------------------------
REQUIREMENTS
This function should provide a fixed point IMDCT with an average
quantization error less than 1 % (variance and mean).
------------------------------------------------------------------------------
REFERENCES
[1] Analysis/Synthesis Filter Bank design based on time domain
aliasing cancellation
Jhon Princen, et. al.
IEEE Transactions on ASSP, vol ASSP-34, No. 5 October 1986
Pg 1153 - 1161
[2] Regular FFT-related transform kernels for DCT/DST based
polyphase filterbanks
Rolf Gluth
Proc. ICASSP 1991, pg. 2205 - 2208
------------------------------------------------------------------------------
PSEUDO-CODE
Cx, Cy are complex number
exp = log2(n)-1
FOR ( k=0; k< n/2; k +=2)
Cx = - data_quant[k] + j data_quant[n/2-1 - k]
freq_2_time_buffer = Cx * exp(j(2pi/n)(k+1/8))
ENDFOR
CALL IFFT( freq_2_time_buffer, n/4)
MODIFYING( freq_2_time_buffer )
RETURNING( shift )
FOR ( k=0; k< n/4; k +=2)
Cx = freq_2_time_buffer[ k] + j freq_2_time_buffer[ k+1]
Cy = Cx * exp(j(2pi/n)(k+1/8))
data_quant[3n/4-1 - k ] = Real(Cy)
data_quant[ n/4-1 - k ] = - Imag(Cy)
data_quant[3n/4 + k ] = Real(Cy)
data_quant[ n/4 + k ] = Imag(Cy)
ENDFOR
FOR ( k=n/4; k< n/2; k +=2)
Cx = freq_2_time_buffer[ k] + j freq_2_time_buffer[ k+1]
Cy = Cx * exp(j(2pi/n)(k+1/8))
data_quant[3n/4-1 - k ] = Real(Cy)
data_quant[ n/4 + k ] = - Real(Cy)
data_quant[5n/4 - k ] = Imag(Cy)
data_quant[ n/4 + k ] = Imag(Cy)
ENDFOR
MODIFIED data_quant[]
RETURN (exp - shift)
------------------------------------------------------------------------------
RESOURCES USED
When the code is written for a specific target processor the
the resources used should be documented below.
STACK USAGE: [stack count for this module] + [variable to represent
stack usage for each subroutine called]
where: [stack usage variable] = stack usage for [subroutine
name] (see [filename].ext)
DATA MEMORY USED: x words
PROGRAM MEMORY USED: x words
CLOCK CYCLES: [cycle count equation for this module] + [variable
used to represent cycle count for each subroutine
called]
where: [cycle count variable] = cycle count for [subroutine
name] (see [filename].ext)
------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
; INCLUDES
----------------------------------------------------------------------------*/
#include "pv_audio_type_defs.h"
#include "imdct_fxp.h"
#include "mix_radix_fft.h"
#include "digit_reversal_tables.h"
#include "fft_rx4.h"
#include "inv_short_complex_rot.h"
#include "inv_long_complex_rot.h"
#include "pv_normalize.h"
#include "fxp_mul32.h"
#include "aac_mem_funcs.h"
#include "window_block_fxp.h"
/*----------------------------------------------------------------------------
; MACROS
; Define module specific macros here
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; DEFINES
; Include all pre-processor statements here. Include conditional
; compile variables also.
----------------------------------------------------------------------------*/
#define ERROR_IN_FRAME_SIZE 10
/*----------------------------------------------------------------------------
; LOCAL FUNCTION DEFINITIONS
; Function Prototype declaration
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; LOCAL VARIABLE DEFINITIONS
; Variable declaration - defined here and used outside this module
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL FUNCTION REFERENCES
; Declare functions defined elsewhere and referenced in this module
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL VARIABLES REFERENCES
; Declare variables used in this module but defined elsewhere
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES
; Declare variables used in this module but defined elsewhere
----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
; FUNCTION CODE
----------------------------------------------------------------------------*/
Int imdct_fxp(Int32 data_quant[],
Int32 freq_2_time_buffer[],
const Int n,
Int Q_format,
Int32 max)
{
Int32 exp_jw;
Int shift = 0;
const Int32 *p_rotate;
const Int32 *p_rotate_2;
Int32 *p_data_1;
Int32 *p_data_2;
Int32 temp_re32;
Int32 temp_im32;
Int shift1 = 0;
Int32 temp1;
Int32 temp2;
Int k;
Int n_2 = n >> 1;
Int n_4 = n >> 2;
if (max != 0)
{
switch (n)
{
case SHORT_WINDOW_TYPE:
p_rotate = exp_rotation_N_256;
shift = 21; /* log2(n)-1 + 14 acomodates 2/N factor */
break;
case LONG_WINDOW_TYPE:
p_rotate = exp_rotation_N_2048;
shift = 24; /* log2(n)-1 +14 acomodates 2/N factor */
break;
default:
/*
* There is no defined behavior for a non supported frame
* size. By returning a fixed scaling factor, the input will
* scaled down and the will be heard as a low level noise
*/
return(ERROR_IN_FRAME_SIZE);
}
/*
* p_data_1 p_data_2
* | |
* RIRIRIRIRIRIRIRIRIRIRIRIRIRIRI....RIRIRIRIRIRI
* | |
*
*/
p_data_1 = data_quant; /* uses first half of buffer */
p_data_2 = &data_quant[n_2 - 1]; /* uses second half of buffer */
p_rotate_2 = &p_rotate[n_4-1];
shift1 = pv_normalize(max) - 1; /* -1 to leave room for addition */
Q_format -= (16 - shift1);
max = 0;
if (shift1 >= 0)
{
temp_re32 = *(p_data_1++) << shift1;
temp_im32 = *(p_data_2--) << shift1;
for (k = n_4 >> 1; k != 0; k--)
{
/*
* Real and Imag parts have been swaped to use FFT as IFFT
*/
/*
* cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
*/
exp_jw = *p_rotate++;
temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
temp_im32 = *(p_data_1--) << shift1;
temp_re32 = *(p_data_2--) << shift1;
*(p_data_1++) = temp1;
*(p_data_1++) = temp2;
max |= (temp1 >> 31) ^ temp1;
max |= (temp2 >> 31) ^ temp2;
/*
* Real and Imag parts have been swaped to use FFT as IFFT
*/
/*
* cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
*/
exp_jw = *p_rotate_2--;
temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
temp_re32 = *(p_data_1++) << shift1;
temp_im32 = *(p_data_2--) << shift1;
*(p_data_2 + 2) = temp1;
*(p_data_2 + 3) = temp2;
max |= (temp1 >> 31) ^ temp1;
max |= (temp2 >> 31) ^ temp2;
}
}
else
{
temp_re32 = *(p_data_1++) >> 1;
temp_im32 = *(p_data_2--) >> 1;
for (k = n_4 >> 1; k != 0; k--)
{
/*
* Real and Imag parts have been swaped to use FFT as IFFT
*/
/*
* cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
*/
exp_jw = *p_rotate++;
temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
temp_im32 = *(p_data_1--) >> 1;
temp_re32 = *(p_data_2--) >> 1;
*(p_data_1++) = temp1;
*(p_data_1++) = temp2;
max |= (temp1 >> 31) ^ temp1;
max |= (temp2 >> 31) ^ temp2;
/*
* Real and Imag parts have been swaped to use FFT as IFFT
*/
/*
* cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
*/
exp_jw = *p_rotate_2--;
temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
temp_re32 = *(p_data_1++) >> 1;
temp_im32 = *(p_data_2--) >> 1;
*(p_data_2 + 3) = temp2;
*(p_data_2 + 2) = temp1;
max |= (temp1 >> 31) ^ temp1;
max |= (temp2 >> 31) ^ temp2;
}
}
if (n != SHORT_WINDOW_TYPE)
{
shift -= mix_radix_fft(data_quant,
&max);
shift -= inv_long_complex_rot(data_quant,
max);
}
else /* n_4 is 64 */
{
shift -= fft_rx4_short(data_quant, &max);
shift -= inv_short_complex_rot(data_quant,
freq_2_time_buffer,
max);
pv_memcpy(data_quant,
freq_2_time_buffer,
SHORT_WINDOW*sizeof(*data_quant));
}
}
else
{
Q_format = ALL_ZEROS_BUFFER;
}
return(shift + Q_format);
} /* imdct_fxp */