blob: b269b467ded8380819fe5521ae28a9c3db3a8d35 [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#![allow(
deprecated, // FIDL Impl struct pattern is referenced internally
unused_parens, // one-element-tuple-case is not a tuple
unused_mut, // not all args require mutation, but many do
nonstandard_style, // auto-caps does its best, but is not always successful
)]
#[allow(unused_imports)]
use fidl::{fidl_bits, fidl_empty_struct, fidl_enum, fidl_struct, fidl_table, fidl_xunion};
#[cfg(target_os = "fuchsia")]
#[allow(unused_imports)]
use fuchsia_zircon as zx;
#[allow(unused_imports)]
use fuchsia_zircon_status as zx_status;
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: PizzaOrPasta,
members: [
Pizza {
ty: Pizza,
ordinal: 1,
},
Pasta {
ty: Pasta,
ordinal: 2,
},
],
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: ExplicitPizzaOrPasta,
members: [
Pizza {
ty: Pizza,
ordinal: 1,
},
Pasta {
ty: Pasta,
ordinal: 4,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: FlexiblePizzaOrPasta,
members: [
Pizza {
ty: Pizza,
ordinal: 1,
},
Pasta {
ty: Pasta,
ordinal: 2,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: StrictPizzaOrPasta,
members: [
Pizza {
ty: Pizza,
ordinal: 1,
},
Pasta {
ty: Pasta,
ordinal: 2,
},
],
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: Union,
members: [
Primitive {
ty: i32,
ordinal: 1,
},
StringNeedsConstructor {
ty: String,
ordinal: 2,
},
VectorStringAlsoNeedsConstructor {
ty: Vec<String>,
ordinal: 3,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: FlexibleUnion,
members: [
Primitive {
ty: i32,
ordinal: 1,
},
StringNeedsConstructor {
ty: String,
ordinal: 2,
},
VectorStringAlsoNeedsConstructor {
ty: Vec<String>,
ordinal: 3,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: StrictUnion,
members: [
Primitive {
ty: i32,
ordinal: 1,
},
StringNeedsConstructor {
ty: String,
ordinal: 2,
},
VectorStringAlsoNeedsConstructor {
ty: Vec<String>,
ordinal: 3,
},
],
}
fidl_xunion! {
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: FieldCollision,
members: [
FieldCollisionTag {
ty: i32,
ordinal: 1,
},
],
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: ExplicitUnion,
members: [
Primitive {
ty: i32,
ordinal: 1,
},
StringNeedsConstructor {
ty: String,
ordinal: 3,
},
],
}
fidl_xunion! {
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: ReverseOrdinalUnion,
members: [
Second {
ty: u32,
ordinal: 2,
},
First {
ty: u32,
ordinal: 1,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: FlexibleFoo,
members: [
S {
ty: String,
ordinal: 1,
},
I {
ty: i32,
ordinal: 2,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: StrictFoo,
members: [
S {
ty: String,
ordinal: 1,
},
I {
ty: i32,
ordinal: 2,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: ExplicitFoo,
members: [
S {
ty: String,
ordinal: 2,
},
I {
ty: i32,
ordinal: 1,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: ExplicitStrictFoo,
members: [
S {
ty: String,
ordinal: 3,
},
I {
ty: i32,
ordinal: 2,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: OlderSimpleUnion,
members: [
I {
ty: i64,
ordinal: 1,
},
F {
ty: f32,
ordinal: 2,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: NewerSimpleUnion,
members: [
I {
ty: i64,
ordinal: 1,
},
S {
ty: String,
ordinal: 2,
},
V {
ty: Vec<String>,
ordinal: 3,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, Clone, PartialEq, PartialOrd)]
name: StrictSimpleXUnion,
members: [
I {
ty: i32,
ordinal: 1,
},
F {
ty: f32,
ordinal: 2,
},
S {
ty: String,
ordinal: 3,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: XUnionContainingEmptyStruct,
members: [
Empty {
ty: Empty,
ordinal: 1,
},
],
unknown_member: __UnknownVariant,
}
fidl_xunion! {
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
name: StrictBoundedXUnion,
members: [
V {
ty: Vec<u8>,
ordinal: 1,
},
],
}
fidl_xunion! {
#[derive(Debug, PartialEq)]
name: ExplicitXUnion,
members: [
I {
ty: i64,
ordinal: 1,
},
F {
ty: f32,
ordinal: 4,
},
],
unknown_member: __UnknownVariant,
}
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Pizza {
pub toppings: Vec<String>,
}
fidl_struct! {
name: Pizza,
members: [
toppings {
ty: Vec<String>,
offset_v1: 0,
},
],
size_v1: 16,
align_v1: 8,
}
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Pasta {
pub sauce: String,
}
fidl_struct! {
name: Pasta,
members: [
sauce {
ty: String,
offset_v1: 0,
},
],
size_v1: 16,
align_v1: 8,
}
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct NullableUnionStruct {
pub the_union: Option<Box<Union>>,
}
fidl_struct! {
name: NullableUnionStruct,
members: [
the_union {
ty: Option<Box<Union>>,
offset_v1: 0,
},
],
size_v1: 24,
align_v1: 8,
}
fidl_empty_struct!(Empty);
#[derive(Debug, PartialEq)]
pub struct StructWithNullableXUnion {
pub x1: Option<Box<OlderSimpleUnion>>,
}
fidl_struct! {
name: StructWithNullableXUnion,
members: [
x1 {
ty: Option<Box<OlderSimpleUnion>>,
offset_v1: 0,
},
],
size_v1: 24,
align_v1: 8,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct TestProtocolMarker;
impl fidl::endpoints::ServiceMarker for TestProtocolMarker {
type Proxy = TestProtocolProxy;
type RequestStream = TestProtocolRequestStream;
const DEBUG_NAME: &'static str = "(anonymous) TestProtocol";
}
pub trait TestProtocolProxyInterface: Send + Sync {
type StrictXUnionHenceResponseMayBeStackAllocatedResponseFut: std::future::Future<Output = Result<(StrictBoundedXUnion), fidl::Error>>
+ Send;
fn strict_x_union_hence_response_may_be_stack_allocated(
&self,
) -> Self::StrictXUnionHenceResponseMayBeStackAllocatedResponseFut;
type FlexibleXUnionHenceResponseMustBeHeapAllocatedResponseFut: std::future::Future<Output = Result<(OlderSimpleUnion), fidl::Error>>
+ Send;
fn flexible_x_union_hence_response_must_be_heap_allocated(
&self,
) -> Self::FlexibleXUnionHenceResponseMustBeHeapAllocatedResponseFut;
}
#[derive(Debug)]
#[cfg(target_os = "fuchsia")]
pub struct TestProtocolSynchronousProxy {
client: fidl::client::sync::Client,
}
#[cfg(target_os = "fuchsia")]
impl TestProtocolSynchronousProxy {
pub fn new(channel: ::fidl::Channel) -> Self {
Self { client: fidl::client::sync::Client::new(channel) }
}
pub fn into_channel(self) -> ::fidl::Channel {
self.client.into_channel()
}
pub fn strict_x_union_hence_response_may_be_stack_allocated(
&mut self,
___deadline: zx::Time,
) -> Result<(StrictBoundedXUnion), fidl::Error> {
self.client.send_query(&mut (), 0x728fedeed6ef99da, ___deadline)
}
pub fn flexible_x_union_hence_response_must_be_heap_allocated(
&mut self,
___deadline: zx::Time,
) -> Result<(OlderSimpleUnion), fidl::Error> {
self.client.send_query(&mut (), 0xfd2ba0109faffe3, ___deadline)
}
}
#[derive(Debug, Clone)]
pub struct TestProtocolProxy {
client: fidl::client::Client,
}
impl fidl::endpoints::Proxy for TestProtocolProxy {
type Service = TestProtocolMarker;
fn from_channel(inner: ::fidl::AsyncChannel) -> Self {
Self::new(inner)
}
}
impl ::std::ops::Deref for TestProtocolProxy {
type Target = fidl::client::Client;
fn deref(&self) -> &Self::Target {
&self.client
}
}
impl TestProtocolProxy {
/// Create a new Proxy for TestProtocol
pub fn new(channel: ::fidl::AsyncChannel) -> Self {
Self { client: fidl::client::Client::new(channel) }
}
/// Attempt to convert the Proxy back into a channel.
///
/// This will only succeed if there are no active clones of this Proxy
/// and no currently-alive EventStream or response futures that came from
/// this Proxy.
pub fn into_channel(self) -> Result<::fidl::AsyncChannel, Self> {
self.client.into_channel().map_err(|client| Self { client })
}
/// Get a Stream of events from the remote end of the TestProtocol protocol
pub fn take_event_stream(&self) -> TestProtocolEventStream {
TestProtocolEventStream { event_receiver: self.client.take_event_receiver() }
}
pub fn strict_x_union_hence_response_may_be_stack_allocated(
&self,
) -> fidl::client::QueryResponseFut<(StrictBoundedXUnion)> {
TestProtocolProxyInterface::strict_x_union_hence_response_may_be_stack_allocated(self)
}
pub fn flexible_x_union_hence_response_must_be_heap_allocated(
&self,
) -> fidl::client::QueryResponseFut<(OlderSimpleUnion)> {
TestProtocolProxyInterface::flexible_x_union_hence_response_must_be_heap_allocated(self)
}
}
impl TestProtocolProxyInterface for TestProtocolProxy {
type StrictXUnionHenceResponseMayBeStackAllocatedResponseFut =
fidl::client::QueryResponseFut<(StrictBoundedXUnion)>;
fn strict_x_union_hence_response_may_be_stack_allocated(
&self,
) -> Self::StrictXUnionHenceResponseMayBeStackAllocatedResponseFut {
self.client.send_query(&mut (), 0x728fedeed6ef99da)
}
type FlexibleXUnionHenceResponseMustBeHeapAllocatedResponseFut =
fidl::client::QueryResponseFut<(OlderSimpleUnion)>;
fn flexible_x_union_hence_response_must_be_heap_allocated(
&self,
) -> Self::FlexibleXUnionHenceResponseMustBeHeapAllocatedResponseFut {
self.client.send_query(&mut (), 0xfd2ba0109faffe3)
}
}
pub struct TestProtocolEventStream {
event_receiver: fidl::client::EventReceiver,
}
impl ::std::marker::Unpin for TestProtocolEventStream {}
impl futures::stream::FusedStream for TestProtocolEventStream {
fn is_terminated(&self) -> bool {
self.event_receiver.is_terminated()
}
}
impl futures::Stream for TestProtocolEventStream {
type Item = Result<TestProtocolEvent, fidl::Error>;
fn poll_next(
mut self: ::std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
let mut buf = match futures::ready!(futures::stream::StreamExt::poll_next_unpin(
&mut self.event_receiver,
cx
)?) {
Some(buf) => buf,
None => return std::task::Poll::Ready(None),
};
let (bytes, _handles) = buf.split_mut();
let (tx_header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
#[allow(unreachable_patterns)] // GenOrdinal and Ordinal can overlap
std::task::Poll::Ready(Some(match tx_header.ordinal() {
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: tx_header.ordinal(),
service_name: <TestProtocolMarker as fidl::endpoints::ServiceMarker>::DEBUG_NAME,
}),
}))
}
}
#[derive(Debug)]
pub enum TestProtocolEvent {}
impl TestProtocolEvent {}
/// A type which can be used to send responses and events into a borrowed channel.
///
/// Note: this should only be used when the channel must be temporarily
/// borrowed. For a typical sending of events, use the send_ methods
/// on the ControlHandle types, which can be acquired through a
/// RequestStream or Responder type.
#[deprecated(note = "Use TestProtocolRequestStream / Responder instead")]
pub struct TestProtocolServerSender<'a> {
// Some protocols don't define events which would render this channel unused.
#[allow(unused)]
channel: &'a ::fidl::Channel,
}
impl<'a> TestProtocolServerSender<'a> {
pub fn new(channel: &'a ::fidl::Channel) -> Self {
Self { channel }
}
pub fn send_strict_x_union_hence_response_may_be_stack_allocated_response(
&self,
txid: fidl::client::Txid,
mut xu: &mut StrictBoundedXUnion,
) -> Result<(), fidl::Error> {
::fidl::encoding::with_tls_coding_bufs(|bytes, handles| {
TestProtocolEncoder::encode_strict_x_union_hence_response_may_be_stack_allocated_response(
bytes, handles,
txid.as_raw_id(),xu,)?;
self.channel.write(&*bytes, &mut *handles).map_err(fidl::Error::ServerResponseWrite)?;
Ok(())
})
}
pub fn send_flexible_x_union_hence_response_must_be_heap_allocated_response(
&self,
txid: fidl::client::Txid,
mut xu: &mut OlderSimpleUnion,
) -> Result<(), fidl::Error> {
::fidl::encoding::with_tls_coding_bufs(|bytes, handles| {
TestProtocolEncoder::encode_flexible_x_union_hence_response_must_be_heap_allocated_response(
bytes, handles,
txid.as_raw_id(),xu,)?;
self.channel.write(&*bytes, &mut *handles).map_err(fidl::Error::ServerResponseWrite)?;
Ok(())
})
}
}
/// A Stream of incoming requests for TestProtocol
pub struct TestProtocolRequestStream {
inner: ::std::sync::Arc<fidl::ServeInner>,
is_terminated: bool,
}
impl ::std::marker::Unpin for TestProtocolRequestStream {}
impl futures::stream::FusedStream for TestProtocolRequestStream {
fn is_terminated(&self) -> bool {
self.is_terminated
}
}
impl fidl::endpoints::RequestStream for TestProtocolRequestStream {
type Service = TestProtocolMarker;
/// Consume a channel to make a TestProtocolRequestStream
fn from_channel(channel: ::fidl::AsyncChannel) -> Self {
Self { inner: ::std::sync::Arc::new(fidl::ServeInner::new(channel)), is_terminated: false }
}
/// ControlHandle for the remote connection
type ControlHandle = TestProtocolControlHandle;
/// ControlHandle for the remote connection
fn control_handle(&self) -> Self::ControlHandle {
TestProtocolControlHandle { inner: self.inner.clone() }
}
fn into_inner(self) -> (::std::sync::Arc<fidl::ServeInner>, bool) {
(self.inner, self.is_terminated)
}
fn from_inner(inner: ::std::sync::Arc<fidl::ServeInner>, is_terminated: bool) -> Self {
Self { inner, is_terminated }
}
}
impl futures::Stream for TestProtocolRequestStream {
type Item = Result<TestProtocolRequest, fidl::Error>;
fn poll_next(
mut self: ::std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
let this = &mut *self;
if this.inner.poll_shutdown(cx) {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
if this.is_terminated {
panic!("polled TestProtocolRequestStream after completion");
}
::fidl::encoding::with_tls_coding_bufs(|bytes, handles| {
match this.inner.channel().read(cx, bytes, handles) {
std::task::Poll::Ready(Ok(())) => {}
std::task::Poll::Pending => return std::task::Poll::Pending,
std::task::Poll::Ready(Err(zx_status::Status::PEER_CLOSED)) => {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
std::task::Poll::Ready(Err(e)) => {
return std::task::Poll::Ready(Some(Err(fidl::Error::ServerRequestRead(e))))
}
}
// A message has been received from the channel
let (header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
if !header.is_compatible() {
return std::task::Poll::Ready(Some(Err(fidl::Error::IncompatibleMagicNumber(
header.magic_number(),
))));
}
#[allow(unreachable_patterns)] // GenOrdinal and Ordinal can overlap
std::task::Poll::Ready(Some(match header.ordinal() {
0x68bfe80f00000000 | 0x728fedeed6ef99da => {
let mut req: () = fidl::encoding::Decodable::new_empty();
fidl::encoding::Decoder::decode_into(&header, _body_bytes, handles, &mut req)?;
let control_handle = TestProtocolControlHandle { inner: this.inner.clone() };
Ok(TestProtocolRequest::StrictXUnionHenceResponseMayBeStackAllocated {
responder:
TestProtocolStrictXUnionHenceResponseMayBeStackAllocatedResponder {
control_handle: ::std::mem::ManuallyDrop::new(control_handle),
tx_id: header.tx_id(),
ordinal: header.ordinal(),
},
})
}
0x176e085800000000 | 0xfd2ba0109faffe3 => {
let mut req: () = fidl::encoding::Decodable::new_empty();
fidl::encoding::Decoder::decode_into(&header, _body_bytes, handles, &mut req)?;
let control_handle = TestProtocolControlHandle { inner: this.inner.clone() };
Ok(TestProtocolRequest::FlexibleXUnionHenceResponseMustBeHeapAllocated {
responder:
TestProtocolFlexibleXUnionHenceResponseMustBeHeapAllocatedResponder {
control_handle: ::std::mem::ManuallyDrop::new(control_handle),
tx_id: header.tx_id(),
ordinal: header.ordinal(),
},
})
}
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: header.ordinal(),
service_name:
<TestProtocolMarker as fidl::endpoints::ServiceMarker>::DEBUG_NAME,
}),
}))
})
}
}
/// Represents a single request.
/// RequestMessages should only be used for manual deserialization when higher level
/// structs such as RequestStream cannot be used. One usually would only encounter
/// such scenarios when working with legacy FIDL code (prior to FIDL generated client/server bindings).
#[derive(Debug)]
#[deprecated(note = "Use TestProtocolRequest instead")]
pub enum TestProtocolRequestMessage {
StrictXUnionHenceResponseMayBeStackAllocated { tx_id: fidl::client::Txid },
FlexibleXUnionHenceResponseMustBeHeapAllocated { tx_id: fidl::client::Txid },
}
impl TestProtocolRequestMessage {
pub fn decode(
bytes: &[u8],
_handles: &mut [fidl::Handle],
) -> Result<TestProtocolRequestMessage, fidl::Error> {
let (header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
#[allow(unreachable_patterns)] // GenOrdinal and Ordinal can overlap
match header.ordinal() {
0x68bfe80f00000000 | 0x728fedeed6ef99da => {
let mut out_tuple: () = fidl::encoding::Decodable::new_empty();
fidl::encoding::Decoder::decode_into(
&header,
_body_bytes,
_handles,
&mut out_tuple,
)?;
Ok(TestProtocolRequestMessage::StrictXUnionHenceResponseMayBeStackAllocated {
tx_id: header.tx_id().into(),
})
}
0x176e085800000000 | 0xfd2ba0109faffe3 => {
let mut out_tuple: () = fidl::encoding::Decodable::new_empty();
fidl::encoding::Decoder::decode_into(
&header,
_body_bytes,
_handles,
&mut out_tuple,
)?;
Ok(TestProtocolRequestMessage::FlexibleXUnionHenceResponseMustBeHeapAllocated {
tx_id: header.tx_id().into(),
})
}
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: header.ordinal(),
service_name: <TestProtocolMarker as fidl::endpoints::ServiceMarker>::DEBUG_NAME,
}),
}
}
}
#[derive(Debug)]
pub enum TestProtocolRequest {
StrictXUnionHenceResponseMayBeStackAllocated {
responder: TestProtocolStrictXUnionHenceResponseMayBeStackAllocatedResponder,
},
FlexibleXUnionHenceResponseMustBeHeapAllocated {
responder: TestProtocolFlexibleXUnionHenceResponseMustBeHeapAllocatedResponder,
},
}
impl TestProtocolRequest {
#[allow(irrefutable_let_patterns)]
pub fn into_strict_x_union_hence_response_may_be_stack_allocated(
self,
) -> Option<(TestProtocolStrictXUnionHenceResponseMayBeStackAllocatedResponder)> {
if let TestProtocolRequest::StrictXUnionHenceResponseMayBeStackAllocated { responder } =
self
{
Some((responder))
} else {
None
}
}
#[allow(irrefutable_let_patterns)]
pub fn into_flexible_x_union_hence_response_must_be_heap_allocated(
self,
) -> Option<(TestProtocolFlexibleXUnionHenceResponseMustBeHeapAllocatedResponder)> {
if let TestProtocolRequest::FlexibleXUnionHenceResponseMustBeHeapAllocated { responder } =
self
{
Some((responder))
} else {
None
}
}
/// Name of the method defined in FIDL
pub fn method_name(&self) -> &'static str {
match *self {
TestProtocolRequest::StrictXUnionHenceResponseMayBeStackAllocated { .. } => {
"strict_x_union_hence_response_may_be_stack_allocated"
}
TestProtocolRequest::FlexibleXUnionHenceResponseMustBeHeapAllocated { .. } => {
"flexible_x_union_hence_response_must_be_heap_allocated"
}
}
}
}
pub struct TestProtocolEncoder;
impl TestProtocolEncoder {
pub fn encode_strict_x_union_hence_response_may_be_stack_allocated_request<'a>(
out_bytes: &'a mut Vec<u8>,
out_handles: &'a mut Vec<fidl::Handle>,
tx_id: u32,
) -> Result<(), fidl::Error> {
let header = fidl::encoding::TransactionHeader::new(tx_id, 0x728fedeed6ef99da);
let mut body = ();
let mut msg = fidl::encoding::TransactionMessage { header, body: &mut body };
fidl::encoding::Encoder::encode(out_bytes, out_handles, &mut msg)?;
Ok(())
}
pub fn encode_strict_x_union_hence_response_may_be_stack_allocated_response<'a>(
out_bytes: &'a mut Vec<u8>,
out_handles: &'a mut Vec<fidl::Handle>,
tx_id: u32,
mut in_xu: &mut StrictBoundedXUnion,
) -> Result<(), fidl::Error> {
let header = fidl::encoding::TransactionHeader::new(tx_id, 0x728fedeed6ef99da);
let mut body = (in_xu,);
let mut msg = fidl::encoding::TransactionMessage { header, body: &mut body };
fidl::encoding::Encoder::encode(out_bytes, out_handles, &mut msg)?;
Ok(())
}
pub fn encode_flexible_x_union_hence_response_must_be_heap_allocated_request<'a>(
out_bytes: &'a mut Vec<u8>,
out_handles: &'a mut Vec<fidl::Handle>,
tx_id: u32,
) -> Result<(), fidl::Error> {
let header = fidl::encoding::TransactionHeader::new(tx_id, 0xfd2ba0109faffe3);
let mut body = ();
let mut msg = fidl::encoding::TransactionMessage { header, body: &mut body };
fidl::encoding::Encoder::encode(out_bytes, out_handles, &mut msg)?;
Ok(())
}
pub fn encode_flexible_x_union_hence_response_must_be_heap_allocated_response<'a>(
out_bytes: &'a mut Vec<u8>,
out_handles: &'a mut Vec<fidl::Handle>,
tx_id: u32,
mut in_xu: &mut OlderSimpleUnion,
) -> Result<(), fidl::Error> {
let header = fidl::encoding::TransactionHeader::new(tx_id, 0xfd2ba0109faffe3);
let mut body = (in_xu,);
let mut msg = fidl::encoding::TransactionMessage { header, body: &mut body };
fidl::encoding::Encoder::encode(out_bytes, out_handles, &mut msg)?;
Ok(())
}
}
#[derive(Debug, Clone)]
pub struct TestProtocolControlHandle {
inner: ::std::sync::Arc<fidl::ServeInner>,
}
impl ::std::ops::Deref for TestProtocolControlHandle {
type Target = ::std::sync::Arc<fidl::ServeInner>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl TestProtocolControlHandle {
pub fn shutdown(&self) {
self.inner.shutdown()
}
pub fn shutdown_with_epitaph(&self, status: zx_status::Status) {
self.inner.shutdown_with_epitaph(status)
}
}
/* beginning of response types */
#[must_use = "FIDL methods require a response to be sent"]
#[derive(Debug)]
pub struct TestProtocolStrictXUnionHenceResponseMayBeStackAllocatedResponder {
control_handle: ::std::mem::ManuallyDrop<TestProtocolControlHandle>,
tx_id: u32,
ordinal: u64,
}
impl ::std::ops::Drop for TestProtocolStrictXUnionHenceResponseMayBeStackAllocatedResponder {
fn drop(&mut self) {
// Shutdown the channel if the responder is dropped without sending a response
// so that the client doesn't hang. To prevent this behavior, some methods
// call "drop_without_shutdown"
self.control_handle.shutdown();
// Safety: drops once, never accessed again
unsafe { ::std::mem::ManuallyDrop::drop(&mut self.control_handle) };
}
}
impl TestProtocolStrictXUnionHenceResponseMayBeStackAllocatedResponder {
pub fn control_handle(&self) -> &TestProtocolControlHandle {
&self.control_handle
}
/// Drop the Responder without setting the channel to shutdown.
///
/// This method shouldn't normally be used-- instead, send a response
/// to prevent the channel from shutting down.
pub fn drop_without_shutdown(mut self) {
// Safety: drops once, never accessed again due to mem::forget
unsafe { ::std::mem::ManuallyDrop::drop(&mut self.control_handle) };
// Prevent Drop from running (which would shut down the channel)
::std::mem::forget(self);
}
/// Sends a response to the FIDL transaction.
///
/// Sets the channel to shutdown if an error occurs.
pub fn send(self, mut xu: &mut StrictBoundedXUnion) -> Result<(), fidl::Error> {
let r = self.send_raw(xu);
if r.is_err() {
self.control_handle.shutdown();
}
self.drop_without_shutdown();
r
}
/// Similar to "send" but does not shutdown the channel if
/// an error occurs.
pub fn send_no_shutdown_on_err(
self,
mut xu: &mut StrictBoundedXUnion,
) -> Result<(), fidl::Error> {
let r = self.send_raw(xu);
self.drop_without_shutdown();
r
}
fn send_raw(&self, mut xu: &mut StrictBoundedXUnion) -> Result<(), fidl::Error> {
let header = fidl::encoding::TransactionHeader::new(self.tx_id, self.ordinal);
let mut response = (xu);
let mut msg = fidl::encoding::TransactionMessage { header, body: &mut response };
::fidl::encoding::with_tls_coding_bufs(|bytes, handles| {
::fidl::encoding::Encoder::encode(bytes, handles, &mut msg)?;
self.control_handle
.inner
.channel()
.write(&*bytes, &mut *handles)
.map_err(fidl::Error::ServerResponseWrite)?;
Ok(())
})
}
}
#[must_use = "FIDL methods require a response to be sent"]
#[derive(Debug)]
pub struct TestProtocolFlexibleXUnionHenceResponseMustBeHeapAllocatedResponder {
control_handle: ::std::mem::ManuallyDrop<TestProtocolControlHandle>,
tx_id: u32,
ordinal: u64,
}
impl ::std::ops::Drop for TestProtocolFlexibleXUnionHenceResponseMustBeHeapAllocatedResponder {
fn drop(&mut self) {
// Shutdown the channel if the responder is dropped without sending a response
// so that the client doesn't hang. To prevent this behavior, some methods
// call "drop_without_shutdown"
self.control_handle.shutdown();
// Safety: drops once, never accessed again
unsafe { ::std::mem::ManuallyDrop::drop(&mut self.control_handle) };
}
}
impl TestProtocolFlexibleXUnionHenceResponseMustBeHeapAllocatedResponder {
pub fn control_handle(&self) -> &TestProtocolControlHandle {
&self.control_handle
}
/// Drop the Responder without setting the channel to shutdown.
///
/// This method shouldn't normally be used-- instead, send a response
/// to prevent the channel from shutting down.
pub fn drop_without_shutdown(mut self) {
// Safety: drops once, never accessed again due to mem::forget
unsafe { ::std::mem::ManuallyDrop::drop(&mut self.control_handle) };
// Prevent Drop from running (which would shut down the channel)
::std::mem::forget(self);
}
/// Sends a response to the FIDL transaction.
///
/// Sets the channel to shutdown if an error occurs.
pub fn send(self, mut xu: &mut OlderSimpleUnion) -> Result<(), fidl::Error> {
let r = self.send_raw(xu);
if r.is_err() {
self.control_handle.shutdown();
}
self.drop_without_shutdown();
r
}
/// Similar to "send" but does not shutdown the channel if
/// an error occurs.
pub fn send_no_shutdown_on_err(self, mut xu: &mut OlderSimpleUnion) -> Result<(), fidl::Error> {
let r = self.send_raw(xu);
self.drop_without_shutdown();
r
}
fn send_raw(&self, mut xu: &mut OlderSimpleUnion) -> Result<(), fidl::Error> {
let header = fidl::encoding::TransactionHeader::new(self.tx_id, self.ordinal);
let mut response = (xu);
let mut msg = fidl::encoding::TransactionMessage { header, body: &mut response };
::fidl::encoding::with_tls_coding_bufs(|bytes, handles| {
::fidl::encoding::Encoder::encode(bytes, handles, &mut msg)?;
self.control_handle
.inner
.channel()
.write(&*bytes, &mut *handles)
.map_err(fidl::Error::ServerResponseWrite)?;
Ok(())
})
}
}