blob: 812ad6f7fdb1a90f6c554a97a45766861337f8e7 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <fuchsia/device/llcpp/fidl.h>
#include <fuchsia/device/manager/c/fidl.h>
#include <fuchsia/device/manager/llcpp/fidl.h>
#include <fuchsia/device/power/test/llcpp/fidl.h>
#include <lib/driver-integration-test/fixture.h>
#include <lib/fdio/directory.h>
#include <zircon/processargs.h>
#include <zircon/syscalls.h>
#include <ddk/device.h>
#include <ddk/platform-defs.h>
#include <zxtest/zxtest.h>
using driver_integration_test::IsolatedDevmgr;
using llcpp::fuchsia::device::Controller;
using llcpp::fuchsia::device::DEVICE_PERFORMANCE_STATE_P0;
using llcpp::fuchsia::device::DevicePerformanceStateInfo;
using llcpp::fuchsia::device::DevicePowerState;
using llcpp::fuchsia::device::DevicePowerStateInfo;
using llcpp::fuchsia::device::MAX_DEVICE_PERFORMANCE_STATES;
using llcpp::fuchsia::device::MAX_DEVICE_POWER_STATES;
using llcpp::fuchsia::device::SystemPowerStateInfo;
using llcpp::fuchsia::device::manager::Administrator;
using llcpp::fuchsia::device::manager::MAX_SYSTEM_POWER_STATES;
using llcpp::fuchsia::device::manager::SystemPowerState;
using llcpp::fuchsia::device::power::test::TestDevice;
class PowerTestCase : public zxtest::Test {
public:
~PowerTestCase() override = default;
void SetUp() override {
IsolatedDevmgr::Args args;
args.load_drivers.push_back("/boot/driver/ddk-power-test.so");
args.load_drivers.push_back("/boot/driver/ddk-power-test-child.so");
board_test::DeviceEntry dev = {};
dev.vid = PDEV_VID_TEST;
dev.pid = PDEV_PID_POWER_TEST;
dev.did = 0;
args.device_list.push_back(dev);
zx_status_t status = IsolatedDevmgr::Create(&args, &devmgr);
ASSERT_OK(status);
fbl::unique_fd parent_fd, child_fd;
ASSERT_OK(devmgr_integration_test::RecursiveWaitForFile(
devmgr.devfs_root(), "sys/platform/11:0b:0/power-test", &parent_fd));
ASSERT_GT(parent_fd.get(), 0);
ASSERT_OK(
fdio_get_service_handle(parent_fd.release(), parent_device_handle.reset_and_get_address()));
ASSERT_NE(parent_device_handle.get(), ZX_HANDLE_INVALID);
ASSERT_OK(devmgr_integration_test::RecursiveWaitForFile(
devmgr.devfs_root(), "sys/platform/11:0b:0/power-test/power-test-child", &child_fd));
ASSERT_GT(child_fd.get(), 0);
ASSERT_OK(
fdio_get_service_handle(child_fd.release(), child_device_handle.reset_and_get_address()));
ASSERT_NE(child_device_handle.get(), ZX_HANDLE_INVALID);
}
void AddChildWithPowerArgs(DevicePowerStateInfo *states, uint8_t sleep_state_count,
DevicePerformanceStateInfo *perf_states, uint8_t perf_state_count,
bool add_invisible = false) {
auto power_states = ::fidl::VectorView(fidl::unowned_ptr(states), sleep_state_count);
auto perf_power_states = ::fidl::VectorView(fidl::unowned_ptr(perf_states), perf_state_count);
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), std::move(power_states), std::move(perf_power_states),
add_invisible);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_OK(call_status);
fbl::unique_fd child2_fd;
ASSERT_OK(devmgr_integration_test::RecursiveWaitForFile(
devmgr.devfs_root(), "sys/platform/11:0b:0/power-test/power-test-child-2", &child2_fd));
ASSERT_GT(child2_fd.get(), 0);
ASSERT_OK(
fdio_get_service_handle(child2_fd.release(), child2_device_handle.reset_and_get_address()));
ASSERT_NE(child2_device_handle.get(), ZX_HANDLE_INVALID);
}
zx::channel child_device_handle;
zx::channel parent_device_handle;
zx::channel child2_device_handle;
IsolatedDevmgr devmgr;
};
TEST_F(PowerTestCase, InvalidDevicePowerCaps_Less) {
fidl::Array<DevicePowerStateInfo, 1> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[0].is_supported = true;
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), fidl::unowned_vec(states),
::fidl::VectorView<DevicePerformanceStateInfo>(), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, InvalidDevicePowerCaps_More) {
fidl::Array<DevicePowerStateInfo, MAX_DEVICE_POWER_STATES + 1> states;
for (uint8_t i = 0; i < MAX_DEVICE_POWER_STATES + 1; i++) {
states[i].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[i].is_supported = true;
}
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), fidl::unowned_vec(states),
::fidl::VectorView<DevicePerformanceStateInfo>(), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, InvalidDevicePowerCaps_MissingRequired) {
fidl::Array<DevicePowerStateInfo, MAX_DEVICE_POWER_STATES> states;
for (uint8_t i = 0; i < MAX_DEVICE_POWER_STATES; i++) {
// Missing D0 and D3COLD
states[i].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[i].is_supported = true;
}
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), fidl::unowned_vec(states),
::fidl::VectorView<DevicePerformanceStateInfo>(), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, InvalidDevicePowerCaps_DuplicateCaps) {
fidl::Array<DevicePowerStateInfo, MAX_DEVICE_POWER_STATES> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
// Repeat
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), fidl::unowned_vec(states),
::fidl::VectorView<DevicePerformanceStateInfo>(), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, AddDevicePowerCaps_Success) {
fidl::Array<DevicePowerStateInfo, 2> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), fidl::unowned_vec(states),
::fidl::VectorView<DevicePerformanceStateInfo>(), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
}
TEST_F(PowerTestCase, AddDevicePowerCaps_MakeVisible_Success) {
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
DevicePerformanceStateInfo perf_states[3];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
perf_states[2].state_id = 2;
perf_states[2].is_supported = true;
perf_states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states),
true);
const DevicePowerStateInfo *out_dpstates;
auto response2 = Controller::Call::GetDevicePowerCaps(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
out_dpstates = &response2->result.response().dpstates[0];
ASSERT_TRUE(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D0)].is_supported);
ASSERT_TRUE(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D1)].is_supported);
ASSERT_EQ(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D1)].restore_latency,
100);
ASSERT_TRUE(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D3COLD)].is_supported);
ASSERT_EQ(out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D3COLD)]
.restore_latency,
1000);
const DevicePerformanceStateInfo *out_perf_states;
auto response = Controller::Call::GetDevicePerformanceStates(zx::unowned(child2_device_handle));
ASSERT_OK(response.status());
out_perf_states = &response->states[0];
ASSERT_TRUE(out_perf_states[DEVICE_PERFORMANCE_STATE_P0].is_supported);
ASSERT_TRUE(out_perf_states[1].is_supported);
ASSERT_EQ(out_perf_states[1].restore_latency, 100);
ASSERT_TRUE(out_perf_states[2].is_supported);
ASSERT_EQ(out_perf_states[2].restore_latency, 1000);
}
TEST_F(PowerTestCase, InvalidDevicePerformanceCaps_MissingRequired) {
fidl::Array<DevicePowerStateInfo, 2> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
fidl::Array<DevicePerformanceStateInfo, 10> perf_states;
perf_states[0].state_id = 1;
perf_states[0].is_supported = true;
perf_states[1].state_id = 2;
perf_states[1].is_supported = true;
auto response = TestDevice::Call::AddDeviceWithPowerArgs(zx::unowned(child_device_handle),
fidl::unowned_vec(states),
fidl::unowned_vec(perf_states), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, InvalidDevicePerformanceCaps_Duplicate) {
fidl::Array<DevicePowerStateInfo, 2> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
fidl::Array<DevicePerformanceStateInfo, 10> perf_states;
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[1].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[1].is_supported = true;
perf_states[2].state_id = 1;
perf_states[2].is_supported = true;
auto response = TestDevice::Call::AddDeviceWithPowerArgs(zx::unowned(child_device_handle),
fidl::unowned_vec(states),
fidl::unowned_vec(perf_states), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, InvalidDevicePerformanceCaps_More) {
fidl::Array<DevicePowerStateInfo, 2> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
fidl::Array<DevicePerformanceStateInfo, MAX_DEVICE_PERFORMANCE_STATES + 1> perf_states;
for (size_t i = 0; i < (MAX_DEVICE_PERFORMANCE_STATES + 1); i++) {
perf_states[i].state_id = static_cast<int32_t>(i);
perf_states[i].is_supported = true;
}
auto response = TestDevice::Call::AddDeviceWithPowerArgs(zx::unowned(child_device_handle),
fidl::unowned_vec(states),
fidl::unowned_vec(perf_states), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, AddDevicePerformanceCaps_NoCaps) {
fidl::Array<DevicePowerStateInfo, 2> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
auto power_states = ::fidl::unowned_vec(states);
// This is the default case. By default, the devhost fills in the fully performance state.
auto response = TestDevice::Call::AddDeviceWithPowerArgs(
zx::unowned(child_device_handle), std::move(power_states),
::fidl::VectorView<DevicePerformanceStateInfo>(), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
}
TEST_F(PowerTestCase, AddDevicePerformanceCaps_Success) {
fidl::Array<DevicePowerStateInfo, 2> states;
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
auto power_states = ::fidl::unowned_vec(states);
fidl::Array<DevicePerformanceStateInfo, 2> perf_states;
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
auto performance_states = ::fidl::unowned_vec(perf_states);
auto response = TestDevice::Call::AddDeviceWithPowerArgs(zx::unowned(child_device_handle),
std::move(power_states),
std::move(performance_states), false);
ASSERT_OK(response.status());
zx_status_t call_status = ZX_OK;
if (response->result.is_err()) {
call_status = response->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
}
TEST_F(PowerTestCase, GetDevicePowerCaps_Success) {
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
const DevicePowerStateInfo *out_dpstates;
auto response2 = Controller::Call::GetDevicePowerCaps(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
out_dpstates = &response2->result.response().dpstates[0];
ASSERT_TRUE(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D0)].is_supported);
ASSERT_TRUE(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D1)].is_supported);
ASSERT_EQ(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D1)].restore_latency,
100);
ASSERT_TRUE(
out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D3COLD)].is_supported);
ASSERT_EQ(out_dpstates[static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D3COLD)]
.restore_latency,
1000);
}
TEST_F(PowerTestCase, GetDevicePerformanceStates_Success) {
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
DevicePerformanceStateInfo perf_states[3];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
perf_states[2].state_id = 2;
perf_states[2].is_supported = true;
perf_states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states));
const DevicePerformanceStateInfo *out_dpstates;
auto response = Controller::Call::GetDevicePerformanceStates(zx::unowned(child2_device_handle));
ASSERT_OK(response.status());
out_dpstates = &response->states[0];
ASSERT_TRUE(out_dpstates[DEVICE_PERFORMANCE_STATE_P0].is_supported);
ASSERT_TRUE(out_dpstates[1].is_supported);
ASSERT_EQ(out_dpstates[1].restore_latency, 100);
ASSERT_TRUE(out_dpstates[2].is_supported);
ASSERT_EQ(out_dpstates[2].restore_latency, 1000);
}
TEST_F(PowerTestCase, SetPerformanceState_Success) {
// Add Capabilities
DevicePowerStateInfo states[2];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
DevicePerformanceStateInfo perf_states[3];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
perf_states[2].state_id = 2;
perf_states[2].is_supported = true;
perf_states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states));
auto perf_change_result =
Controller::Call::SetPerformanceState(zx::unowned(child2_device_handle), 1);
ASSERT_OK(perf_change_result.status());
const auto &perf_change_response = perf_change_result.value();
ASSERT_OK(perf_change_response.status);
ASSERT_EQ(perf_change_response.out_state, 1);
auto response2 = Controller::Call::GetCurrentPerformanceState(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
ASSERT_EQ(response2->out_state, 1);
}
TEST_F(PowerTestCase, SetPerformanceStateFail_HookNotPresent) {
// Parent does not support SetPerformanceState hook.
auto perf_change_result =
Controller::Call::SetPerformanceState(zx::unowned(parent_device_handle), 0);
ASSERT_OK(perf_change_result.status());
const auto &perf_change_response = perf_change_result.value();
ASSERT_EQ(perf_change_response.status, ZX_ERR_NOT_SUPPORTED);
}
TEST_F(PowerTestCase, SetPerformanceStateFail_UnsupportedState) {
// Add Capabilities
DevicePowerStateInfo states[2];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
DevicePerformanceStateInfo perf_states[2];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states));
auto perf_change_result =
Controller::Call::SetPerformanceState(zx::unowned(child2_device_handle), 2);
ASSERT_OK(perf_change_result.status());
const auto &perf_change_response = perf_change_result.value();
ASSERT_EQ(perf_change_response.status, ZX_ERR_INVALID_ARGS);
}
TEST_F(PowerTestCase, Suspend_Success) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
ASSERT_EQ(suspend_response.out_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
auto response2 = TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().cur_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
}
TEST_F(PowerTestCase, AutoSuspend_Enable) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), true, DevicePowerState::DEVICE_POWER_STATE_D1);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
auto response2 =
TestDevice::Call::GetCurrentDeviceAutoSuspendConfig(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().enabled, true);
ASSERT_EQ(response2->result.response().deepest_sleep_state,
DevicePowerState::DEVICE_POWER_STATE_D1);
}
TEST_F(PowerTestCase, AutoSuspend_Disable) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), true, DevicePowerState::DEVICE_POWER_STATE_D1);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
auto response2 =
TestDevice::Call::GetCurrentDeviceAutoSuspendConfig(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().enabled, true);
ASSERT_EQ(response2->result.response().deepest_sleep_state,
DevicePowerState::DEVICE_POWER_STATE_D1);
suspend_result = Controller::Call::ConfigureAutoSuspend(zx::unowned(child2_device_handle), false,
DevicePowerState::DEVICE_POWER_STATE_D0);
ASSERT_OK(suspend_result.status());
auto &suspend_response_2 = suspend_result.value();
ASSERT_OK(suspend_response_2.status);
response2 =
TestDevice::Call::GetCurrentDeviceAutoSuspendConfig(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().enabled, false);
}
TEST_F(PowerTestCase, AutoSuspend_DefaultDisabled) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto response2 =
TestDevice::Call::GetCurrentDeviceAutoSuspendConfig(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().enabled, false);
ASSERT_EQ(response2->result.response().deepest_sleep_state,
DevicePowerState::DEVICE_POWER_STATE_D0);
}
TEST_F(PowerTestCase, DeviceSuspend_AutoSuspendEnabled) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto auto_suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), true, DevicePowerState::DEVICE_POWER_STATE_D1);
ASSERT_OK(auto_suspend_result.status());
const auto &auto_suspend_response = auto_suspend_result.value();
ASSERT_OK(auto_suspend_response.status);
auto response2 =
TestDevice::Call::GetCurrentDeviceAutoSuspendConfig(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().enabled, true);
ASSERT_EQ(response2->result.response().deepest_sleep_state,
DevicePowerState::DEVICE_POWER_STATE_D1);
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
// Device suspend is not supported when auto suspend is configured.
ASSERT_EQ(suspend_response.status, ZX_ERR_NOT_SUPPORTED);
// Disable autosuspend and try again
auto_suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), false, DevicePowerState::DEVICE_POWER_STATE_D0);
ASSERT_OK(auto_suspend_result.status());
auto &auto_suspend_response_2 = auto_suspend_result.value();
ASSERT_OK(auto_suspend_response_2.status);
suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
ASSERT_OK(suspend_result.value().status);
}
TEST_F(PowerTestCase, SystemSuspend_AutoSuspendEnabled) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D2;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
::fidl::Array<SystemPowerStateInfo, MAX_SYSTEM_POWER_STATES> mapping{};
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
mapping[i].dev_state = DevicePowerState::DEVICE_POWER_STATE_D2;
mapping[i].wakeup_enable = false;
}
auto update_result =
Controller::Call::UpdatePowerStateMapping(zx::unowned(child2_device_handle), mapping);
ASSERT_OK(update_result.status());
zx_status_t call_status = ZX_OK;
if (update_result->result.is_err()) {
call_status = update_result->result.err();
}
ASSERT_OK(call_status);
zx::channel local, remote;
ASSERT_OK(zx::channel::create(0, &local, &remote));
auto auto_suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), true, DevicePowerState::DEVICE_POWER_STATE_D2);
ASSERT_OK(auto_suspend_result.status());
const auto &auto_suspend_response = auto_suspend_result.value();
ASSERT_OK(auto_suspend_response.status);
// Verify systemsuspend overrides autosuspend
char service_name[100];
snprintf(service_name, sizeof(service_name), "svc/%s",
::llcpp::fuchsia::device::manager::Administrator::Name);
ASSERT_OK(fdio_service_connect_at(devmgr.svc_root_dir().get(), service_name, remote.release()));
ASSERT_NE(devmgr.svc_root_dir().get(), ZX_HANDLE_INVALID);
auto suspend_result = Administrator::Call::Suspend(
zx::unowned(local), ::llcpp::fuchsia::device::manager::SUSPEND_FLAG_REBOOT);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
// Verify the child's DdkSuspend routine gets called.
auto child_dev_suspend_response =
TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(child_dev_suspend_response.status());
call_status = ZX_OK;
if (child_dev_suspend_response->result.is_err()) {
call_status = child_dev_suspend_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(child_dev_suspend_response->result.response().cur_state,
DevicePowerState::DEVICE_POWER_STATE_D2);
// Verify the parent'd DdkSuspend routine gets called.
auto parent_dev_suspend_response =
TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(parent_device_handle));
ASSERT_OK(parent_dev_suspend_response.status());
call_status = ZX_OK;
if (parent_dev_suspend_response->result.is_err()) {
call_status = parent_dev_suspend_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(parent_dev_suspend_response->result.response().cur_state,
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
}
TEST_F(PowerTestCase, SelectiveResume_Success) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
ASSERT_EQ(suspend_response.out_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
auto response2 = TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().cur_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
auto resume_result = Controller::Call::Resume(zx::unowned(child2_device_handle));
ASSERT_OK(resume_result.status());
const auto &resume_response = resume_result.value();
ASSERT_OK(resume_response.status);
ASSERT_EQ(resume_response.out_power_state, DevicePowerState::DEVICE_POWER_STATE_D0);
ASSERT_EQ(resume_response.out_perf_state, DEVICE_PERFORMANCE_STATE_P0);
auto response3 = TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(response3.status());
call_status = ZX_OK;
if (response3->result.is_err()) {
call_status = response3->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response3->result.response().cur_state, DevicePowerState::DEVICE_POWER_STATE_D0);
}
TEST_F(PowerTestCase, DefaultSystemPowerStatesMapping) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
const SystemPowerStateInfo *states_mapping;
auto response2 = Controller::Call::GetPowerStateMapping(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
states_mapping = &response2->result.response().mapping[0];
// Test Default mapping. For now, the default device power state is D3COLD and
// wakeup_enable is false.
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
ASSERT_EQ(states_mapping[i].dev_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_FALSE(states_mapping[i].wakeup_enable);
}
}
TEST_F(PowerTestCase, UpdatePowerStatesMapping_UnsupportedDeviceState) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
::fidl::Array<SystemPowerStateInfo, MAX_SYSTEM_POWER_STATES> mapping{};
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
mapping[i].dev_state = DevicePowerState::DEVICE_POWER_STATE_D2;
mapping[i].wakeup_enable = false;
}
auto update_result =
Controller::Call::UpdatePowerStateMapping(zx::unowned(child2_device_handle), mapping);
ASSERT_OK(update_result.status());
zx_status_t call_status = ZX_OK;
if (update_result->result.is_err()) {
call_status = update_result->result.err();
}
ASSERT_EQ(call_status, ZX_ERR_INVALID_ARGS);
const SystemPowerStateInfo *states_mapping;
auto response2 = Controller::Call::GetPowerStateMapping(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
states_mapping = &response2->result.response().mapping[0];
ASSERT_EQ(
states_mapping[static_cast<uint8_t>(SystemPowerState::SYSTEM_POWER_STATE_REBOOT)].dev_state,
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_FALSE(states_mapping[static_cast<uint8_t>(SystemPowerState::SYSTEM_POWER_STATE_REBOOT)]
.wakeup_enable);
}
TEST_F(PowerTestCase, UpdatePowerStatesMapping_UnsupportedWakeConfig) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[1].wakeup_capable = false;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
::fidl::Array<SystemPowerStateInfo, MAX_SYSTEM_POWER_STATES> mapping{};
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
mapping[i].dev_state = DevicePowerState::DEVICE_POWER_STATE_D1;
mapping[i].wakeup_enable = true;
}
auto update_result =
Controller::Call::UpdatePowerStateMapping(zx::unowned(child2_device_handle), mapping);
ASSERT_OK(update_result.status());
zx_status_t call_status = ZX_OK;
if (update_result->result.is_err()) {
call_status = update_result->result.err();
}
ASSERT_EQ(call_status, ZX_ERR_INVALID_ARGS);
const SystemPowerStateInfo *states_mapping;
auto response2 = Controller::Call::GetPowerStateMapping(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
states_mapping = &response2->result.response().mapping[0];
ASSERT_EQ(
states_mapping[static_cast<uint8_t>(SystemPowerState::SYSTEM_POWER_STATE_REBOOT)].dev_state,
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_FALSE(states_mapping[static_cast<uint8_t>(SystemPowerState::SYSTEM_POWER_STATE_REBOOT)]
.wakeup_enable);
}
TEST_F(PowerTestCase, UpdatePowerStatesMapping_Success) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
::fidl::Array<SystemPowerStateInfo, MAX_SYSTEM_POWER_STATES> mapping{};
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
mapping[i].dev_state = DevicePowerState::DEVICE_POWER_STATE_D1;
mapping[i].wakeup_enable = false;
}
auto update_result =
Controller::Call::UpdatePowerStateMapping(zx::unowned(child2_device_handle), mapping);
ASSERT_OK(update_result.status());
zx_status_t call_status = ZX_OK;
if (update_result->result.is_err()) {
call_status = update_result->result.err();
}
ASSERT_OK(call_status);
const SystemPowerStateInfo *states_mapping;
auto response2 = Controller::Call::GetPowerStateMapping(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_STATUS(call_status, ZX_OK);
states_mapping = &response2->result.response().mapping[0];
ASSERT_EQ(
states_mapping[static_cast<uint8_t>(SystemPowerState::SYSTEM_POWER_STATE_REBOOT)].dev_state,
DevicePowerState::DEVICE_POWER_STATE_D1);
ASSERT_FALSE(states_mapping[static_cast<uint8_t>(SystemPowerState::SYSTEM_POWER_STATE_REBOOT)]
.wakeup_enable);
}
TEST_F(PowerTestCase, SystemSuspend_SuspendReasonReboot) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D2;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
::fidl::Array<SystemPowerStateInfo, MAX_SYSTEM_POWER_STATES> mapping{};
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
mapping[i].dev_state = DevicePowerState::DEVICE_POWER_STATE_D2;
mapping[i].wakeup_enable = false;
}
auto update_result =
Controller::Call::UpdatePowerStateMapping(zx::unowned(child2_device_handle), mapping);
ASSERT_OK(update_result.status());
zx_status_t call_status = ZX_OK;
if (update_result->result.is_err()) {
call_status = update_result->result.err();
}
ASSERT_OK(call_status);
zx::channel local, remote;
ASSERT_OK(zx::channel::create(0, &local, &remote));
char service_name[100];
snprintf(service_name, sizeof(service_name), "svc/%s",
::llcpp::fuchsia::device::manager::Administrator::Name);
ASSERT_OK(fdio_service_connect_at(devmgr.svc_root_dir().get(), service_name, remote.release()));
ASSERT_NE(devmgr.svc_root_dir().get(), ZX_HANDLE_INVALID);
auto suspend_result = Administrator::Call::Suspend(
zx::unowned(local), ::llcpp::fuchsia::device::manager::SUSPEND_FLAG_REBOOT);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
// Verify the child's DdkSuspend routine gets called.
auto child_dev_suspend_response =
TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(child_dev_suspend_response.status());
call_status = ZX_OK;
if (child_dev_suspend_response->result.is_err()) {
call_status = child_dev_suspend_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(child_dev_suspend_response->result.response().cur_state,
DevicePowerState::DEVICE_POWER_STATE_D2);
// Verify that the suspend reason is received correctly
auto suspend_reason_response =
TestDevice::Call::GetCurrentSuspendReason(zx::unowned(child2_device_handle));
ASSERT_OK(suspend_reason_response.status());
call_status = ZX_OK;
if (suspend_reason_response->result.is_err()) {
call_status = suspend_reason_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(suspend_reason_response->result.response().cur_suspend_reason,
DEVICE_SUSPEND_REASON_REBOOT);
// Verify the parent'd DdkSuspend routine gets called.
auto parent_dev_suspend_response =
TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(parent_device_handle));
ASSERT_OK(parent_dev_suspend_response.status());
call_status = ZX_OK;
if (parent_dev_suspend_response->result.is_err()) {
call_status = parent_dev_suspend_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(parent_dev_suspend_response->result.response().cur_state,
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
}
TEST_F(PowerTestCase, SystemSuspend_SuspendReasonRebootRecovery) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D2;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
::fidl::Array<SystemPowerStateInfo, MAX_SYSTEM_POWER_STATES> mapping{};
for (size_t i = 0; i < MAX_SYSTEM_POWER_STATES; i++) {
mapping[i].dev_state = DevicePowerState::DEVICE_POWER_STATE_D2;
mapping[i].wakeup_enable = false;
}
auto update_result =
Controller::Call::UpdatePowerStateMapping(zx::unowned(child2_device_handle), mapping);
ASSERT_OK(update_result.status());
zx_status_t call_status = ZX_OK;
if (update_result->result.is_err()) {
call_status = update_result->result.err();
}
ASSERT_OK(call_status);
zx::channel local, remote;
ASSERT_OK(zx::channel::create(0, &local, &remote));
char service_name[100];
snprintf(service_name, sizeof(service_name), "svc/%s",
::llcpp::fuchsia::device::manager::Administrator::Name);
ASSERT_OK(fdio_service_connect_at(devmgr.svc_root_dir().get(), service_name, remote.release()));
ASSERT_NE(devmgr.svc_root_dir().get(), ZX_HANDLE_INVALID);
auto suspend_result = Administrator::Call::Suspend(
zx::unowned(local), ::llcpp::fuchsia::device::manager::SUSPEND_FLAG_REBOOT_RECOVERY);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
// Verify the child's DdkSuspend routine gets called.
auto child_dev_suspend_response =
TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(child_dev_suspend_response.status());
call_status = ZX_OK;
if (child_dev_suspend_response->result.is_err()) {
call_status = child_dev_suspend_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(child_dev_suspend_response->result.response().cur_state,
DevicePowerState::DEVICE_POWER_STATE_D2);
// Verify that the suspend reason is received correctly
auto suspend_reason_response =
TestDevice::Call::GetCurrentSuspendReason(zx::unowned(child2_device_handle));
ASSERT_OK(suspend_reason_response.status());
call_status = ZX_OK;
if (suspend_reason_response->result.is_err()) {
call_status = suspend_reason_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(suspend_reason_response->result.response().cur_suspend_reason,
DEVICE_SUSPEND_REASON_REBOOT_RECOVERY);
// Verify the parent'd DdkSuspend routine gets called.
auto parent_dev_suspend_response =
TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(parent_device_handle));
ASSERT_OK(parent_dev_suspend_response.status());
call_status = ZX_OK;
if (parent_dev_suspend_response->result.is_err()) {
call_status = parent_dev_suspend_response->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(parent_dev_suspend_response->result.response().cur_state,
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
}
TEST_F(PowerTestCase, SelectiveResume_AfterSetPerformanceState) {
// Add Capabilities
DevicePowerStateInfo states[2];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
DevicePerformanceStateInfo perf_states[3];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
perf_states[2].state_id = 2;
perf_states[2].is_supported = true;
perf_states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states));
auto perf_change_result =
Controller::Call::SetPerformanceState(zx::unowned(child2_device_handle), 1);
ASSERT_OK(perf_change_result.status());
const auto &perf_change_response = perf_change_result.value();
ASSERT_OK(perf_change_response.status);
ASSERT_EQ(perf_change_response.out_state, 1);
auto response2 = Controller::Call::GetCurrentPerformanceState(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
ASSERT_EQ(response2->out_state, 1);
// Suspend and resume the device. Test if device resumes to saved performance state.
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
ASSERT_EQ(suspend_response.out_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
auto response3 = TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(response3.status());
zx_status_t call_status = ZX_OK;
if (response3->result.is_err()) {
call_status = response3->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response3->result.response().cur_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
// Resume
auto resume_result = Controller::Call::Resume(zx::unowned(child2_device_handle));
ASSERT_OK(resume_result.status());
const auto &resume_response = resume_result.value();
ASSERT_OK(resume_response.status);
ASSERT_EQ(resume_response.out_power_state, DevicePowerState::DEVICE_POWER_STATE_D0);
ASSERT_EQ(resume_response.out_perf_state, 1);
}
TEST_F(PowerTestCase, SelectiveResume_FailedToResumeToWorking) {
// Add Capabilities
DevicePowerStateInfo states[2];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
DevicePerformanceStateInfo perf_states[3];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
perf_states[2].state_id = 2;
perf_states[2].is_supported = true;
perf_states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states));
auto perf_change_result =
Controller::Call::SetPerformanceState(zx::unowned(child2_device_handle), 1);
ASSERT_OK(perf_change_result.status());
const auto &perf_change_response = perf_change_result.value();
ASSERT_OK(perf_change_response.status);
ASSERT_EQ(perf_change_response.out_state, 1);
auto response2 = Controller::Call::GetCurrentPerformanceState(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
ASSERT_EQ(response2->out_state, 1);
// Suspend
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
ASSERT_EQ(suspend_response.out_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
auto response3 = TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(response3.status());
zx_status_t call_status = ZX_OK;
if (response3->result.is_err()) {
call_status = response3->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response3->result.response().cur_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
::llcpp::fuchsia::device::power::test::TestStatusInfo info;
info.resume_status = ZX_ERR_IO;
info.out_power_state = static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D3COLD);
info.out_performance_state = 1;
auto response4 = TestDevice::Call::SetTestStatusInfo(zx::unowned(child2_device_handle), info);
call_status = ZX_OK;
ASSERT_OK(response4.status());
if (response4->result.is_err()) {
call_status = response4->result.err();
}
ASSERT_OK(call_status);
// Resume
auto resume_result = Controller::Call::Resume(zx::unowned(child2_device_handle));
ASSERT_OK(resume_result.status());
const auto &resume_response = resume_result.value();
ASSERT_EQ(resume_response.status, info.resume_status);
ASSERT_EQ(static_cast<uint8_t>(resume_response.out_power_state), info.out_power_state);
}
TEST_F(PowerTestCase, SelectiveResume_FailedToResumeToPerformanceState) {
// Add Capabilities
DevicePowerStateInfo states[2];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[1].is_supported = true;
DevicePerformanceStateInfo perf_states[3];
perf_states[0].state_id = DEVICE_PERFORMANCE_STATE_P0;
perf_states[0].is_supported = true;
perf_states[0].restore_latency = 0;
perf_states[1].state_id = 1;
perf_states[1].is_supported = true;
perf_states[1].restore_latency = 100;
perf_states[2].state_id = 2;
perf_states[2].is_supported = true;
perf_states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), perf_states, fbl::count_of(perf_states));
auto perf_change_result =
Controller::Call::SetPerformanceState(zx::unowned(child2_device_handle), 1);
ASSERT_OK(perf_change_result.status());
const auto &perf_change_response = perf_change_result.value();
ASSERT_OK(perf_change_response.status);
ASSERT_EQ(perf_change_response.out_state, 1);
auto response2 = Controller::Call::GetCurrentPerformanceState(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
ASSERT_EQ(response2->out_state, 1);
// Suspend
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
const auto &suspend_response = suspend_result.value();
ASSERT_OK(suspend_response.status);
ASSERT_EQ(suspend_response.out_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
auto response3 = TestDevice::Call::GetCurrentDevicePowerState(zx::unowned(child2_device_handle));
ASSERT_OK(response3.status());
zx_status_t call_status = ZX_OK;
if (response3->result.is_err()) {
call_status = response3->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response3->result.response().cur_state, DevicePowerState::DEVICE_POWER_STATE_D3COLD);
::llcpp::fuchsia::device::power::test::TestStatusInfo info;
info.resume_status = ZX_ERR_IO;
info.out_power_state = static_cast<uint8_t>(DevicePowerState::DEVICE_POWER_STATE_D0);
// The previous performance_state set was 1.
info.out_performance_state = 2;
auto response4 = TestDevice::Call::SetTestStatusInfo(zx::unowned(child2_device_handle), info);
call_status = ZX_OK;
ASSERT_OK(response4.status());
if (response4->result.is_err()) {
call_status = response4->result.err();
}
ASSERT_OK(call_status);
// Resume
auto resume_result = Controller::Call::Resume(zx::unowned(child2_device_handle));
ASSERT_OK(resume_result.status());
const auto &resume_response = resume_result.value();
ASSERT_EQ(resume_response.status, info.resume_status);
ASSERT_EQ(static_cast<uint8_t>(resume_response.out_power_state), info.out_power_state);
ASSERT_EQ(resume_response.out_perf_state, info.out_performance_state);
// The performance state has to be updated to the state that the device resumed to.
auto response5 = Controller::Call::GetCurrentPerformanceState(zx::unowned(child2_device_handle));
ASSERT_OK(response5.status());
ASSERT_EQ(response5->out_state, info.out_performance_state);
}
TEST_F(PowerTestCase, DeviceResume_AutoSuspendEnabled) {
// Add Capabilities
DevicePowerStateInfo states[3];
states[0].state_id = DevicePowerState::DEVICE_POWER_STATE_D0;
states[0].is_supported = true;
states[0].restore_latency = 0;
states[1].state_id = DevicePowerState::DEVICE_POWER_STATE_D1;
states[1].is_supported = true;
states[1].restore_latency = 100;
states[2].state_id = DevicePowerState::DEVICE_POWER_STATE_D3COLD;
states[2].is_supported = true;
states[2].restore_latency = 1000;
AddChildWithPowerArgs(states, fbl::count_of(states), nullptr, 0);
auto auto_suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), true, DevicePowerState::DEVICE_POWER_STATE_D1);
ASSERT_OK(auto_suspend_result.status());
const auto &auto_suspend_response = auto_suspend_result.value();
ASSERT_OK(auto_suspend_response.status);
auto response2 =
TestDevice::Call::GetCurrentDeviceAutoSuspendConfig(zx::unowned(child2_device_handle));
ASSERT_OK(response2.status());
zx_status_t call_status = ZX_OK;
if (response2->result.is_err()) {
call_status = response2->result.err();
}
ASSERT_OK(call_status);
ASSERT_EQ(response2->result.response().enabled, true);
ASSERT_EQ(response2->result.response().deepest_sleep_state,
DevicePowerState::DEVICE_POWER_STATE_D1);
auto resume_result = Controller::Call::Resume(zx::unowned(child2_device_handle));
ASSERT_OK(resume_result.status());
// Device resume is not supported when auto suspend is configured.
ASSERT_EQ(resume_result.value().status, ZX_ERR_NOT_SUPPORTED);
// Disable autosuspend and try again
auto_suspend_result = Controller::Call::ConfigureAutoSuspend(
zx::unowned(child2_device_handle), false, DevicePowerState::DEVICE_POWER_STATE_D0);
ASSERT_OK(auto_suspend_result.status());
auto &auto_suspend_response_2 = auto_suspend_result.value();
ASSERT_OK(auto_suspend_response_2.status);
auto suspend_result = Controller::Call::Suspend(zx::unowned(child2_device_handle),
DevicePowerState::DEVICE_POWER_STATE_D3COLD);
ASSERT_OK(suspend_result.status());
ASSERT_OK(suspend_result.value().status);
resume_result = Controller::Call::Resume(zx::unowned(child2_device_handle));
ASSERT_OK(resume_result.status());
ASSERT_OK(resume_result.value().status);
}