blob: d3c1598e2536a090eaa25fc40bece7db2ff95404 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <zircon/device/block.h>
#include <zircon/errors.h>
#include <zircon/types.h>
#include <crypto/bytes.h>
#include <crypto/digest.h>
#include <crypto/hkdf.h>
#include <zxtest/zxtest.h>
#include "utils.h"
namespace crypto {
namespace testing {
namespace {
TEST(HKDF, Init) {
size_t md_size;
ASSERT_OK(digest::GetDigestLen(digest::kSHA256, &md_size));
Secret ikm;
Bytes salt;
ASSERT_OK(ikm.Generate(md_size));
ASSERT_OK(salt.Randomize(BLOCK_GUID_LEN));
// Bad version
HKDF hkdf;
EXPECT_STATUS(hkdf.Init(digest::kUninitialized, ikm, salt), ZX_ERR_INVALID_ARGS);
// Bad input key material
ASSERT_OK(ikm.Generate(md_size - 1));
EXPECT_STATUS(hkdf.Init(digest::kSHA256, ikm, salt), ZX_ERR_INVALID_ARGS);
ASSERT_OK(ikm.Generate(md_size));
// Salt is optional
ASSERT_OK(salt.Resize(0));
EXPECT_OK(hkdf.Init(digest::kSHA256, ikm, salt));
ASSERT_OK(salt.Randomize(BLOCK_GUID_LEN));
// Invalid flags
EXPECT_STATUS(hkdf.Init(digest::kSHA256, ikm, salt, 0x8000), ZX_ERR_INVALID_ARGS);
// Valid
EXPECT_OK(hkdf.Init(digest::kSHA256, ikm, salt));
}
TEST(HKDF, Derive) {
size_t md_size;
ASSERT_OK(digest::GetDigestLen(digest::kSHA256, &md_size));
HKDF hkdf;
Secret ikm, key1, key2, key3;
Bytes salt;
ASSERT_OK(ikm.Generate(md_size));
ASSERT_OK(salt.Randomize(BLOCK_GUID_LEN));
// Uninitialized
EXPECT_STATUS(hkdf.Derive("init", md_size, &key1), ZX_ERR_INVALID_ARGS);
ASSERT_OK(hkdf.Init(digest::kSHA256, ikm, salt));
// Label is optional
EXPECT_OK(hkdf.Derive(nullptr, md_size, &key1));
EXPECT_OK(hkdf.Derive("", md_size, &key1));
// Same label, same key
EXPECT_OK(hkdf.Derive("same", md_size, &key1));
EXPECT_OK(hkdf.Derive("same", md_size, &key2));
EXPECT_EQ(key1.len(), key2.len());
EXPECT_EQ(memcmp(key1.get(), key2.get(), key1.len()), 0);
// Different label, different key.
EXPECT_OK(hkdf.Derive("diff", md_size, &key3));
EXPECT_EQ(key1.len(), key3.len());
EXPECT_NE(memcmp(key1.get(), key3.get(), key1.len()), 0);
}
// Based on RFC 5869, Appendix A.2: Test with SHA-256 and longer inputs/outputs
TEST(HKDF, Rfc5869_TC1) {
HKDF hkdf;
Secret ikm, okm;
Bytes salt;
uint8_t* buf;
ASSERT_OK(ikm.Allocate(22, &buf));
memset(buf, 0xb, ikm.len());
ASSERT_OK(salt.Resize(13));
for (uint8_t i = 0; i < salt.len(); ++i) {
salt[i] = i;
}
const char* info = "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9";
uint8_t expected[42] = {
0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a, 0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36,
0x2f, 0x2a, 0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c, 0x5d, 0xb0, 0x2d, 0x56,
0xec, 0xc4, 0xc5, 0xbf, 0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18, 0x58, 0x65,
};
EXPECT_OK(hkdf.Init(digest::kSHA256, ikm, salt, HKDF::ALLOW_WEAK_KEY));
EXPECT_OK(hkdf.Derive(info, sizeof(expected), &okm));
EXPECT_EQ(memcmp(okm.get(), expected, sizeof(expected)), 0);
}
// Based on RFC 5869, Appendix A.2: Basic test case with SHA-256
TEST(HKDF, Rfc5869_TC2) {
HKDF hkdf;
Secret ikm, okm;
Bytes salt;
uint8_t* buf;
ASSERT_OK(ikm.Allocate(80, &buf));
for (uint8_t i = 0; i < ikm.len(); ++i) {
buf[i] = i;
}
ASSERT_OK(salt.Resize(80));
for (uint8_t i = 0; i < salt.len(); ++i) {
salt[i] = static_cast<uint8_t>(0x60 + i);
}
const char* info =
"\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"
"\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf"
"\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf"
"\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef"
"\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff";
uint8_t expected[82] = {
0xb1, 0x1e, 0x39, 0x8d, 0xc8, 0x03, 0x27, 0xa1, 0xc8, 0xe7, 0xf7, 0x8c, 0x59, 0x6a,
0x49, 0x34, 0x4f, 0x01, 0x2e, 0xda, 0x2d, 0x4e, 0xfa, 0xd8, 0xa0, 0x50, 0xcc, 0x4c,
0x19, 0xaf, 0xa9, 0x7c, 0x59, 0x04, 0x5a, 0x99, 0xca, 0xc7, 0x82, 0x72, 0x71, 0xcb,
0x41, 0xc6, 0x5e, 0x59, 0x0e, 0x09, 0xda, 0x32, 0x75, 0x60, 0x0c, 0x2f, 0x09, 0xb8,
0x36, 0x77, 0x93, 0xa9, 0xac, 0xa3, 0xdb, 0x71, 0xcc, 0x30, 0xc5, 0x81, 0x79, 0xec,
0x3e, 0x87, 0xc1, 0x4c, 0x01, 0xd5, 0xc1, 0xf3, 0x43, 0x4f, 0x1d, 0x87,
};
EXPECT_OK(hkdf.Init(digest::kSHA256, ikm, salt));
EXPECT_OK(hkdf.Derive(info, sizeof(expected), &okm));
EXPECT_EQ(memcmp(okm.get(), expected, sizeof(expected)), 0);
}
// Based on RFC 5869, Appendix A.3: Test with SHA-256 and zero-length salt/info
TEST(HKDF, Rfc5869_TC3) {
HKDF hkdf;
Secret ikm, okm;
Bytes salt;
uint8_t* buf;
ASSERT_OK(ikm.Allocate(22, &buf));
memset(buf, 0xb, ikm.len());
const char* info = "";
uint8_t expected[42] = {
0x8d, 0xa4, 0xe7, 0x75, 0xa5, 0x63, 0xc1, 0x8f, 0x71, 0x5f, 0x80, 0x2a, 0x06, 0x3c,
0x5a, 0x31, 0xb8, 0xa1, 0x1f, 0x5c, 0x5e, 0xe1, 0x87, 0x9e, 0xc3, 0x45, 0x4e, 0x5f,
0x3c, 0x73, 0x8d, 0x2d, 0x9d, 0x20, 0x13, 0x95, 0xfa, 0xa4, 0xb6, 0x1a, 0x96, 0xc8,
};
EXPECT_OK(hkdf.Init(digest::kSHA256, ikm, salt, HKDF::ALLOW_WEAK_KEY));
EXPECT_OK(hkdf.Derive(info, sizeof(expected), &okm));
EXPECT_EQ(memcmp(okm.get(), expected, sizeof(expected)), 0);
}
} // namespace
} // namespace testing
} // namespace crypto