blob: 343352fd5ed5e652a4eaa561e625cad71ab410ae [file] [log] [blame] [edit]
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file contains Vnodes which back a Blobfs filesystem.
#ifndef SRC_STORAGE_BLOBFS_BLOB_H_
#define SRC_STORAGE_BLOBFS_BLOB_H_
#ifndef __Fuchsia__
#error Fuchsia-only Header
#endif
#include <fuchsia/io/llcpp/fidl.h>
#include <lib/async/cpp/wait.h>
#include <lib/fit/promise.h>
#include <lib/zx/event.h>
#include <string.h>
#include <memory>
#include <mutex>
#include <digest/digest.h>
#include <fbl/algorithm.h>
#include <fbl/intrusive_wavl_tree.h>
#include <fbl/macros.h>
#include <fbl/ref_ptr.h>
#include <fbl/vector.h>
#include <fs/journal/data_streamer.h>
#include <fs/vfs.h>
#include <fs/vfs_types.h>
#include <fs/vnode.h>
#include <storage/buffer/owned_vmoid.h>
#include "src/storage/blobfs/allocator/allocator.h"
#include "src/storage/blobfs/allocator/extent-reserver.h"
#include "src/storage/blobfs/allocator/node-reserver.h"
#include "src/storage/blobfs/blob-cache.h"
#include "src/storage/blobfs/blob-layout.h"
#include "src/storage/blobfs/common.h"
#include "src/storage/blobfs/compression/blob-compressor.h"
#include "src/storage/blobfs/compression/compressor.h"
#include "src/storage/blobfs/format-assertions.h"
#include "src/storage/blobfs/format.h"
#include "src/storage/blobfs/metrics.h"
#include "src/storage/blobfs/pager/page-watcher.h"
#include "src/storage/blobfs/transaction.h"
namespace blobfs {
class Blobfs;
class Producer;
using digest::Digest;
enum class BlobState : uint8_t {
// After Open:
kEmpty,
// After Space Reserved (but allocation not yet persisted).
kDataWrite,
// After Writing:
kReadable,
// After Unlink:
kPurged,
// Unrecoverable error states:
kError,
};
// clang-format on
class Blob final : public CacheNode, fbl::Recyclable<Blob> {
public:
// Constructs a blob, reads in data, verifies the contents, then destroys the in-memory copy.
static zx_status_t LoadAndVerifyBlob(Blobfs* bs, uint32_t node_index);
Blob(Blobfs* bs, const Digest& digest);
// Creates a readable blob from existing data.
Blob(Blobfs* bs, uint32_t node_index, const Inode& inode);
virtual ~Blob();
////////////////
// fs::Vnode interface.
using fs::Vnode::Open;
zx_status_t Open(ValidatedOptions options, fbl::RefPtr<Vnode>* out_redirect) final;
zx_status_t Close() final;
zx_status_t GetNodeInfoForProtocol(fs::VnodeProtocol protocol, fs::Rights rights,
fs::VnodeRepresentation* info) final;
fs::VnodeProtocolSet GetProtocols() const final;
bool ValidateRights(fs::Rights rights) final;
zx_status_t Read(void* data, size_t len, size_t off, size_t* out_actual) final;
zx_status_t Write(const void* data, size_t len, size_t offset, size_t* out_actual) final;
zx_status_t Append(const void* data, size_t len, size_t* out_end, size_t* out_actual) final;
zx_status_t GetAttributes(fs::VnodeAttributes* a) final;
zx_status_t Truncate(size_t len) final;
zx_status_t QueryFilesystem(llcpp::fuchsia::io::FilesystemInfo* out) final;
zx_status_t GetDevicePath(size_t buffer_len, char* out_name, size_t* out_len) final;
zx_status_t GetVmo(int flags, zx::vmo* out_vmo, size_t* out_size) final;
void Sync(SyncCallback on_complete) final;
////////////////
// fbl::Recyclable interface.
void fbl_recycle() final { CacheNode::fbl_recycle(); }
////////////////
// Other methods.
// Identifies if we can safely remove all on-disk and in-memory storage used by this blob.
// Note that this *must* be called on the main dispatch thread; otherwise the underlying state of
// the blob could change after (or during) the call, and the blob might not really be purgeable.
bool Purgeable() const {
return fd_count_ == 0 && !clone_ref_ && (DeletionQueued() || state() != BlobState::kReadable);
}
bool DeletionQueued() const { return deletable_; }
uint32_t GetMapIndex() const { return map_index_; }
// Returns a unique identifier for this blob
uint32_t Ino() const { return map_index_; }
uint64_t SizeData() const;
const Inode& GetNode() const { return inode_; }
void CompleteSync();
// When blob VMOs are cloned and returned to clients, blobfs watches
// the original VMO handle for the signal |ZX_VMO_ZERO_CHILDREN|.
// While this signal is not set, the blob's Vnode keeps an extra
// reference to itself to prevent teardown while clients are using
// this Vmo. This reference is internally called the "clone watcher".
//
// This function may be called on a blob to tell it to forcefully release
// the "reference to itself" that is kept when the blob is mapped.
//
// Returns this reference, if it exists, to provide control over
// when the Vnode destructor is executed.
fbl::RefPtr<Blob> CloneWatcherTeardown();
// Marks the blob as deletable, and attempt to purge it.
zx_status_t QueueUnlink();
// PrepareWrite should be called after allocating a vnode and before writing any data to the blob.
// The function sets blob size, allocates vmo needed for data and merkle tree, initiates
// structures needed for compression and reserves an inode for the blob. It is not meant to be
// called multiple times on a given vnode. This is public only for testing.
zx_status_t PrepareWrite(uint64_t size_data, bool compress);
// If this is part of a migration and involves writing a new blob to replace an old blob, this can
// be called so that the blob is deleted in the transaction that writes the new blob. The blob
// *must* not be currently in use. It is designed to be used for mount time migrations.
void SetOldBlob(Blob& blob);
private:
DISALLOW_COPY_ASSIGN_AND_MOVE(Blob);
////////////////
// blobfs::CacheNode interface.
BlobCache& Cache() final;
bool ShouldCache() const final;
void ActivateLowMemory() final;
////////////////
// Other methods.
void set_state(BlobState new_state) { state_ = new_state; };
BlobState state() const { return state_; }
// After writing the blob, marks the blob as readable.
[[nodiscard]] zx_status_t MarkReadable();
// Returns a handle to an event which will be signalled when
// the blob is readable.
//
// Returns "ZX_OK" if successful, otherwise the error code
// will indicate the failure status.
zx_status_t GetReadableEvent(zx::event* out);
// Returns a clone of the blobfs VMO.
//
// Monitors the current VMO, keeping a reference to the Vnode
// alive while the |out| VMO (and any clones it may have) are open.
zx_status_t CloneDataVmo(zx_rights_t rights, zx::vmo* out_vmo, size_t* out_size);
// Receives notifications when all clones vended by CloneDataVmo() are released.
void HandleNoClones(async_dispatcher_t* dispatcher, async::WaitBase* wait, zx_status_t status,
const zx_packet_signal_t* signal);
// Invokes |Purge()| if the vnode is purgeable.
zx_status_t TryPurge();
// Removes all traces of the vnode from blobfs.
// The blob is not expected to be accessed again after this is called.
zx_status_t Purge();
// Schedules journal transaction prepared by PrepareWrite for the null blob.
// Null blob doesn't have any data to write. They don't go through regular
// Write()/WriteInternal path so we explicitly issue journaled write that
// commits inode allocation and creation.
zx_status_t WriteNullBlob();
// If successful, allocates Blob Node and Blocks (in-memory)
// kBlobStateEmpty --> kBlobStateDataWrite
zx_status_t SpaceAllocate(uint32_t block_count);
// Writes to either the Merkle Tree or the Data section,
// depending on the state.
zx_status_t WriteInternal(const void* data, size_t len, size_t* actual);
// Reads from a blob.
// Requires: kBlobStateReadable
zx_status_t ReadInternal(void* data, size_t len, size_t off, size_t* actual);
// Loads the blob's data and merkle from disk, and initializes the data/merkle VMOs.
// If paging is enabled, the data VMO will be pager-backed and lazily loaded and verified as the
// client accesses the pages.
// If paging is disabled, the entire data VMO is loaded in and verified.
//
// Idempotent.
zx_status_t LoadVmosFromDisk();
// Initializes the data VMO for writing. Idempotent.
zx_status_t PrepareDataVmoForWriting();
// Commits all the data pages of the blob into memory, i.e. reads them from disk.
zx_status_t CommitDataBuffer();
// Verifies the integrity of the in-memory Blob - operates on the entire blob at once.
// LoadVmosFromDisk() must have already been called for this blob.
zx_status_t Verify() const;
// Called by the Vnode once the last write has completed, updating the
// on-disk metadata.
zx_status_t WriteMetadata(BlobTransaction& transaction);
// Returns whether the data or merkle tree bytes are mapped and resident in memory.
bool IsDataLoaded() const;
bool IsMerkleTreeLoaded() const;
// Acquires a pointer to the mapped data or merkle tree.
// May return nullptr if the mappings have not been initialized.
void* GetDataBuffer() const;
void* GetMerkleTreeBuffer(const BlobLayout& blob_layout) const;
// Returns whether the blob's contents are pager-backed or not.
bool IsPagerBacked() const;
// Returns a digest::Digest containing the blob's merkle root.
// Equivalent to digest::Digest(GetKey()).
digest::Digest MerkleRoot() const;
// Commits the blob to persistent storage.
zx_status_t Commit();
// Returns the block size used by blobfs.
uint32_t GetBlockSize() const;
// Write |block_count| blocks using the data from |producer| into |streamer|.
zx_status_t WriteData(uint32_t block_count, Producer& producer, fs::DataStreamer& streamer);
Blobfs* const blobfs_;
BlobState state_ = BlobState::kEmpty;
// True if this node should be unlinked when closed.
bool deletable_ = false;
bool tearing_down_ = false;
enum class SyncingState : char {
// The Blob is being streamed and it is not possible to generate the merkle root and metadata at
// this point.
kDataIncomplete,
// The blob merkle root is complete but the metadate write has not yet submitted to the
// underlying media.
kSyncing,
// The blob exists on the underlying media.
kDone,
};
// This value is marked kDone on the journal's background thread but read on the main thread so
// is protected by the mutex.
SyncingState syncing_state_ __TA_GUARDED(mutex_) = SyncingState::kDataIncomplete;
uint32_t map_index_ = 0;
// This object is not generally threadsafe but a few small things are done on the journal thread.
// This mutex protects such data.
std::mutex mutex_;
// VMO mappings for the blob's merkle tree and data.
// Data is stored in a separate VMO from the merkle tree for several reasons:
// - While data may be paged, the merkle tree (i.e. verification metadata) should always be
// retained.
// - VMO cloning when handing out a copy to read clients is simpler and requires no arithmetic.
// - Makes memory accounting more granular.
// For small blobs, merkle_mapping_ may be absent, since small blobs may not have any stored
// merkle tree.
fzl::OwnedVmoMapper merkle_mapping_;
fzl::OwnedVmoMapper data_mapping_;
// Watches any clones of "vmo_" provided to clients.
// Observes the ZX_VMO_ZERO_CHILDREN signal.
async::WaitMethod<Blob, &Blob::HandleNoClones> clone_watcher_;
// Keeps a reference to the blob alive (from within itself)
// until there are no cloned VMOs in used.
//
// This RefPtr is only non-null when a client is using a cloned VMO,
// or there would be a clear leak of Blob.
fbl::RefPtr<Blob> clone_ref_ = {};
zx::event readable_event_ = {};
uint32_t fd_count_ = 0;
// TODO(smklein): We are only using a few of these fields, such as:
// - blob_size
// - block_count
// To save space, we could avoid holding onto the entire inode.
Inode inode_ = {};
// Data used exclusively during writeback.
struct WriteInfo {
// See comment for merkle_tree() below.
static constexpr size_t kPreMerkleTreePadding = kBlobfsBlockSize;
WriteInfo() = default;
// Not copyable or movable because merkle_tree_creator has a pointer to digest.
WriteInfo(const WriteInfo&) = delete;
WriteInfo& operator=(const WriteInfo&) = delete;
// We leave room in the merkle tree buffer to add padding before the merkle tree which might be
// required with the compact blob layout.
uint8_t* merkle_tree() const {
ZX_ASSERT(merkle_tree_buffer);
return merkle_tree_buffer.get() + kPreMerkleTreePadding;
}
uint64_t bytes_written = {};
fbl::Vector<ReservedExtent> extents;
fbl::Vector<ReservedNode> node_indices;
std::optional<BlobCompressor> compressor;
// The fused write error. Once writing has failed, we return the same error on subsequent
// writes in case a higher layer dropped the error and returned a short write instead.
zx_status_t write_error = ZX_OK;
// As data is written, we build the merkle tree using this.
digest::MerkleTreeCreator merkle_tree_creator;
// The merkle tree creator stores the root digest here.
uint8_t digest[digest::kSha256Length];
// The merkle tree creator stores the rest of the tree here. The buffer includes space for
// padding. See the comment for merkle_tree() above.
std::unique_ptr<uint8_t[]> merkle_tree_buffer;
// The old blob that this write is replacing.
fbl::RefPtr<Blob> old_blob;
};
std::unique_ptr<WriteInfo> write_info_ = {};
// Reads in the blob's pages on demand.
std::unique_ptr<pager::PageWatcher> page_watcher_ = nullptr;
};
// Returns true if the given inode supports paging.
bool SupportsPaging(const Inode& inode);
} // namespace blobfs
#endif // SRC_STORAGE_BLOBFS_BLOB_H_