blob: 0660d6cb959a9aeb86ae1a0d27bfd99e1dbdcb64 [file] [log] [blame] [edit]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2014 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include "kernel/mp.h"
#include <assert.h>
#include <debug.h>
#include <inttypes.h>
#include <lib/arch/intrin.h>
#include <lib/console.h>
#include <platform.h>
#include <stdlib.h>
#include <trace.h>
#include <zircon/errors.h>
#include <zircon/types.h>
#include <arch/mp.h>
#include <arch/ops.h>
#include <dev/interrupt.h>
#include <fbl/algorithm.h>
#include <fbl/auto_call.h>
#include <kernel/align.h>
#include <kernel/cpu.h>
#include <kernel/deadline.h>
#include <kernel/dpc.h>
#include <kernel/event.h>
#include <kernel/mp.h>
#include <kernel/mutex.h>
#include <kernel/scheduler.h>
#include <kernel/spinlock.h>
#include <kernel/stats.h>
#include <kernel/thread_lock.h>
#include <kernel/timer.h>
#include <lk/init.h>
#include <platform/timer.h>
#define LOCAL_TRACE 0
// a global state structure, aligned on cpu cache line to minimize aliasing
struct mp_state mp __CPU_ALIGN_EXCLUSIVE;
// Helpers used for implementing mp_sync
struct mp_sync_context;
static void mp_sync_task(void* context);
void mp_init(void) {}
void mp_prepare_current_cpu_idle_state(bool idle) { arch_prepare_current_cpu_idle_state(idle); }
void mp_reschedule(cpu_mask_t mask, uint flags) {
// we must be holding the thread lock to access some of the cpu
// state bitmaps and some arch_mp_reschedule implementations.
DEBUG_ASSERT(thread_lock.IsHeld());
const cpu_num_t local_cpu = arch_curr_cpu_num();
LTRACEF("local %u, mask %#x\n", local_cpu, mask);
// mask out cpus that are not active and the local cpu
mask &= mp.active_cpus.load();
mask &= ~cpu_num_to_mask(local_cpu);
// mask out cpus that are currently running realtime code
if ((flags & MP_RESCHEDULE_FLAG_REALTIME) == 0) {
mask &= ~mp.realtime_cpus;
}
LTRACEF("local %u, post mask target now 0x%x\n", local_cpu, mask);
// if we have no work to do, return
if (mask == 0) {
return;
}
arch_mp_reschedule(mask);
}
void mp_interrupt(mp_ipi_target_t target, cpu_mask_t mask) {
arch_mp_send_ipi(target, mask, MP_IPI_INTERRUPT);
}
struct mp_sync_context {
mp_sync_task_t task;
void* task_context;
// Mask of which CPUs need to finish the task
ktl::atomic<cpu_mask_t> outstanding_cpus;
};
static void mp_sync_task(void* raw_context) {
auto context = reinterpret_cast<mp_sync_context*>(raw_context);
context->task(context->task_context);
// use seq-cst atomic to ensure this update is not seen before the
// side-effects of context->task
context->outstanding_cpus.fetch_and(~cpu_num_to_mask(arch_curr_cpu_num()));
}
/* @brief Execute a task on the specified CPUs, and block on the calling
* CPU until all CPUs have finished the task.
*
* If MP_IPI_TARGET_ALL or MP_IPI_TARGET_ALL_BUT_LOCAL is the target, the online CPU
* mask will be used to determine actual targets.
*
* Interrupts must be disabled if calling with MP_IPI_TARGET_ALL_BUT_LOCAL as target
*
* The callback in |task| will always be called with |arch_blocking_disallowed()|
* set to true.
*/
void mp_sync_exec(mp_ipi_target_t target, cpu_mask_t mask, mp_sync_task_t task, void* context) {
uint num_cpus = arch_max_num_cpus();
if (target == MP_IPI_TARGET_ALL) {
mask = mp_get_online_mask();
} else if (target == MP_IPI_TARGET_ALL_BUT_LOCAL) {
// targeting all other CPUs but the current one is hazardous
// if the local CPU may be changed underneath us
DEBUG_ASSERT(arch_ints_disabled());
mask = mp_get_online_mask() & ~cpu_num_to_mask(arch_curr_cpu_num());
} else {
// Mask any offline CPUs from target list
mask &= mp_get_online_mask();
}
// disable interrupts so our current CPU doesn't change
interrupt_saved_state_t irqstate = arch_interrupt_save();
arch::ThreadMemoryBarrier();
const cpu_num_t local_cpu = arch_curr_cpu_num();
// remove self from target lists, since no need to IPI ourselves
bool targetting_self = !!(mask & cpu_num_to_mask(local_cpu));
mask &= ~cpu_num_to_mask(local_cpu);
// create tasks to enqueue (we need one per target due to each containing
// a linked list node
struct mp_sync_context sync_context = {
.task = task,
.task_context = context,
.outstanding_cpus = mask,
};
struct mp_ipi_task sync_tasks[SMP_MAX_CPUS] = {};
for (cpu_num_t i = 0; i < num_cpus; ++i) {
sync_tasks[i].func = mp_sync_task;
sync_tasks[i].context = &sync_context;
}
// enqueue tasks
mp.ipi_task_lock.Acquire();
cpu_mask_t remaining = mask;
cpu_num_t cpu_id = 0;
while (remaining && cpu_id < num_cpus) {
if (remaining & 1) {
mp.ipi_task_list[cpu_id].push_back(&sync_tasks[cpu_id]);
}
remaining >>= 1;
cpu_id++;
}
mp.ipi_task_lock.Release();
// let CPUs know to begin executing
arch_mp_send_ipi(MP_IPI_TARGET_MASK, mask, MP_IPI_GENERIC);
if (targetting_self) {
bool previous_blocking_disallowed = arch_blocking_disallowed();
arch_set_blocking_disallowed(true);
mp_sync_task(&sync_context);
arch_set_blocking_disallowed(previous_blocking_disallowed);
}
arch::ThreadMemoryBarrier();
// we can take interrupts again once we've executed our task
arch_interrupt_restore(irqstate);
bool ints_disabled = arch_ints_disabled();
// wait for all other CPUs to be done with the context
while (1) {
// See comment in mp_unplug_trampoline about related CPU hotplug
// guarantees.
cpu_mask_t outstanding = sync_context.outstanding_cpus.load(ktl::memory_order_relaxed);
cpu_mask_t online = mp_get_online_mask();
if ((outstanding & online) == 0) {
break;
}
// If interrupts are still disabled, we need to attempt to process any
// tasks queued for us in order to prevent deadlock.
if (ints_disabled) {
// Optimistically check if our task list has work without the lock.
// mp_mbx_generic_irq will take the lock and check again.
bool empty = [local_cpu]() TA_NO_THREAD_SAFETY_ANALYSIS {
return mp.ipi_task_list[local_cpu].is_empty();
}();
if (!empty) {
bool previous_blocking_disallowed = arch_blocking_disallowed();
arch_set_blocking_disallowed(true);
mp_mbx_generic_irq(nullptr);
arch_set_blocking_disallowed(previous_blocking_disallowed);
continue;
}
}
arch::Yield();
}
arch::ThreadMemoryBarrier();
// make sure the sync_tasks aren't in lists anymore, since they're
// stack allocated
mp.ipi_task_lock.AcquireIrqSave(irqstate);
for (cpu_num_t i = 0; i < num_cpus; ++i) {
// If a task is still around, it's because the CPU went offline.
if (sync_tasks[i].InContainer()) {
sync_tasks[i].RemoveFromContainer();
}
}
mp.ipi_task_lock.ReleaseIrqRestore(irqstate);
}
static void mp_unplug_trampoline() TA_REQ(thread_lock) __NO_RETURN;
static void mp_unplug_trampoline() {
// We're still holding the thread lock from the reschedule that took us
// here.
Thread* ct = Thread::Current::Get();
auto unplug_done = reinterpret_cast<Event*>(ct->task_state().arg());
lockup_secondary_shutdown();
Scheduler::MigrateUnpinnedThreads();
DEBUG_ASSERT(!mp_is_cpu_active(arch_curr_cpu_num()));
// Now that this CPU is no longer active, it is critical that this thread
// never block. If this thread blocks, the scheduler may attempt to select
// this CPU's idle thread to run. Doing so would violate an invariant: tasks
// may only be scheduled on active CPUs.
DEBUG_ASSERT(arch_blocking_disallowed());
// Note that before this invocation, but after we stopped accepting
// interrupts, we may have received a synchronous task to perform.
// Clearing this flag will cause the mp_sync_exec caller to consider
// this CPU done. If this CPU comes back online before other all
// of the other CPUs finish their work (very unlikely, since tasks
// should be quick), then this CPU may execute the task.
mp_set_curr_cpu_online(false);
// We had better not be holding any OwnedWaitQueues at this point in time
// (it is unclear how we would have ever obtained any in the first place
// since everything this thread ever does is in this function).
ct->wait_queue_state().AssertNoOwnedWaitQueues();
// do *not* enable interrupts, we want this CPU to never receive another
// interrupt
thread_lock.Release();
// Stop and then shutdown this CPU's platform timer.
platform_stop_timer();
platform_shutdown_timer();
// Shutdown the interrupt controller for this CPU. On some platforms (arm64 with GIC) receiving
// an interrupt at a powered off CPU can result in implementation defined behavior (including
// resetting the whole system).
shutdown_interrupts_curr_cpu();
// flush all of our caches
arch_flush_state_and_halt(unplug_done);
}
// Hotplug the given cpus. Blocks until the CPUs are up, or a failure is
// detected.
//
// This should be called in a thread context
zx_status_t mp_hotplug_cpu_mask(cpu_mask_t cpu_mask) {
DEBUG_ASSERT(!arch_ints_disabled());
Guard<Mutex> lock(&mp.hotplug_lock);
// Make sure all of the requested CPUs are offline
if (cpu_mask & mp_get_online_mask()) {
return ZX_ERR_BAD_STATE;
}
while (cpu_mask != 0) {
cpu_num_t cpu_id = highest_cpu_set(cpu_mask);
cpu_mask &= ~cpu_num_to_mask(cpu_id);
zx_status_t status = platform_mp_cpu_hotplug(cpu_id);
if (status != ZX_OK) {
return status;
}
}
return ZX_OK;
}
// Unplug a single CPU. Must be called while holding the hotplug lock
static zx_status_t mp_unplug_cpu_mask_single_locked(cpu_num_t cpu_id, zx_time_t deadline,
Thread** leaked_thread) {
percpu& percpu_to_unplug = percpu::Get(cpu_id);
Thread* thread = nullptr;
auto cleanup_thread = fbl::MakeAutoCall([&thread, &leaked_thread, cpu_id]() {
// TODO(fxbug.dev/34447): Work around a race in thread cleanup by leaking the thread and stack
// structure. Since we're only using this while turning off the system currently, it's not a big
// problem leaking the thread structure and stack.
if (leaked_thread) {
*leaked_thread = thread;
} else if (thread != nullptr) {
TRACEF("WARNING: leaking thread for cpu %u\n", cpu_id);
}
});
// Wait for |percpu_to_unplug| to complete any in-progress DPCs and terminate its DPC thread.
// Later, once nothing is running on it, we'll migrate its queued DPCs to another CPU.
zx_status_t status = percpu_to_unplug.dpc_queue.Shutdown(deadline);
if (status != ZX_OK) {
return status;
}
// TODO(maniscalco): |cpu_to_unplug| is about to shutdown. We should ensure it has no pinned
// threads (except maybe the idle thread). Once we're confident we've terminated/migrated them
// all, this would be a good place to DEBUG_ASSERT.
// Create a thread for the unplug. We will cause the target CPU to
// context switch to this thread. After this happens, it should no
// longer be accessing system state and can be safely shut down.
//
// This thread is pinned to the target CPU and set to run with the
// highest priority. This should cause it to pick up the thread
// immediately (or very soon, if for some reason there is another
// HIGHEST_PRIORITY task scheduled in between when we resume the
// thread and when the CPU is woken up).
Event unplug_done;
thread = Thread::CreateEtc(nullptr, "unplug_thread", nullptr, &unplug_done, HIGHEST_PRIORITY,
mp_unplug_trampoline);
if (thread == nullptr) {
return ZX_ERR_NO_MEMORY;
}
status = platform_mp_prep_cpu_unplug(cpu_id);
if (status != ZX_OK) {
return status;
}
// Pin to the target CPU
thread->SetCpuAffinity(cpu_num_to_mask(cpu_id));
thread->SetDeadline({ZX_MSEC(9), ZX_MSEC(10), ZX_MSEC(10)});
status = thread->DetachAndResume();
if (status != ZX_OK) {
return status;
}
// Wait for the unplug thread to get scheduled on the target.
status = unplug_done.WaitDeadline(deadline, Interruptible::No);
if (status != ZX_OK) {
return status;
}
// Now that the cpu is no longer processing tasks, migrate
// |percpu_to_unplug|'s TimerQueue and DpcQueue to this cpu.
percpu& current_percpu = *get_local_percpu();
current_percpu.timer_queue.TransitionOffCpu(percpu_to_unplug.timer_queue);
current_percpu.dpc_queue.TransitionOffCpu(percpu_to_unplug.dpc_queue);
return platform_mp_cpu_unplug(cpu_id);
}
// Unplug the given cpus. Blocks until the CPUs are removed or |deadline| has been reached.
//
// Partial failure may occur (in which some CPUs are removed but not others).
//
// This should be called in a thread context.
//
// |leaked_threads| is an optional array of pointers to threads with length
// |SMP_MAX_CPUS|. If null, the threads used to "cleanup" each CPU will be
// leaked. If non-null, they will be returned to the caller so that the caller
// can |thread_forget| them.
zx_status_t mp_unplug_cpu_mask(cpu_mask_t cpu_mask, zx_time_t deadline, Thread** leaked_threads) {
DEBUG_ASSERT(!arch_ints_disabled());
Guard<Mutex> lock(&mp.hotplug_lock);
// Make sure all of the requested CPUs are online
if (cpu_mask & ~mp_get_online_mask()) {
return ZX_ERR_BAD_STATE;
}
while (cpu_mask != 0) {
cpu_num_t cpu_id = highest_cpu_set(cpu_mask);
cpu_mask &= ~cpu_num_to_mask(cpu_id);
zx_status_t status = mp_unplug_cpu_mask_single_locked(
cpu_id, deadline, leaked_threads ? &leaked_threads[cpu_id] : nullptr);
if (status != ZX_OK) {
return status;
}
}
return ZX_OK;
}
interrupt_eoi mp_mbx_generic_irq(void*) {
DEBUG_ASSERT(arch_ints_disabled());
const cpu_num_t local_cpu = arch_curr_cpu_num();
CPU_STATS_INC(generic_ipis);
while (1) {
struct mp_ipi_task* task;
mp.ipi_task_lock.Acquire();
task = mp.ipi_task_list[local_cpu].pop_front();
mp.ipi_task_lock.Release();
if (task == NULL) {
break;
}
task->func(task->context);
}
return IRQ_EOI_DEACTIVATE;
}
interrupt_eoi mp_mbx_reschedule_irq(void*) {
const cpu_num_t cpu = arch_curr_cpu_num();
LTRACEF("cpu %u\n", cpu);
CPU_STATS_INC(reschedule_ipis);
if (mp.active_cpus.load() & cpu_num_to_mask(cpu)) {
Thread::Current::preemption_state().PreemptSetPending();
}
return IRQ_EOI_DEACTIVATE;
}
interrupt_eoi mp_mbx_interrupt_irq(void*) {
const cpu_num_t cpu = arch_curr_cpu_num();
LTRACEF("cpu %u\n", cpu);
// do nothing, the entire point of this interrupt is to simply have one
// delivered to the cpu.
return IRQ_EOI_DEACTIVATE;
}
zx_status_t platform_mp_cpu_hotplug(cpu_num_t cpu_id) { return arch_mp_cpu_hotplug(cpu_id); }
namespace {
ktl::atomic<uint32_t> mp_all_cpu_startup_count{0};
Event mp_all_cpu_startup_event;
} // namespace
static void mp_all_cpu_startup_checkin_hook(unsigned int rl) {
uint32_t count = mp_all_cpu_startup_count.fetch_add(1) + 1;
if (count >= arch_max_num_cpus()) {
mp_all_cpu_startup_event.Signal();
}
}
zx_status_t mp_wait_for_all_cpus_started(Deadline deadline) {
return mp_all_cpu_startup_event.Wait(deadline);
}
// Notes about the startup check-in.
//
// In order to know when all of the all CPUs have started, we must first
// know the number of CPUs that we plan to start. This happens at different
// points in the startup process for ARM64 vs. x64.
//
// On ARM64, this happens indirectly during arch_init just before
// LK_INIT_LEVEL_ARCH is executed. This is where ZBI topology info from the
// bootloader is processed just before before the CPUs are started.
//
// On x64, this happens during platform_init just before LK_INIT_LEVEL_PLATFORM.
// ACPI topology info is parsed just before the all CPUs are started.
//
// The PLATFORM hook comes right after the ARCH hook, so to keep this mechanism
// generic, we have all of our CPUs check in once we reach the PLATFORM
// initialization level.
LK_INIT_HOOK_FLAGS(mp_all_cpu_startup_checkin, mp_all_cpu_startup_checkin_hook,
LK_INIT_LEVEL_PLATFORM, LK_INIT_FLAG_ALL_CPUS)
static int cmd_mp(int argc, const cmd_args* argv, uint32_t flags) {
if (argc < 2) {
printf("not enough arguments\n");
usage:
printf("usage:\n");
printf("%s unplug <cpu_id>\n", argv[0].str);
printf("%s hotplug <cpu_id>\n", argv[0].str);
printf("%s reschedule <cpu_id> : send a reschedule ipi to <cpu_id>\n", argv[0].str);
return ZX_ERR_INTERNAL;
}
if (!strcmp(argv[1].str, "unplug")) {
if (argc < 3) {
printf("specify a cpu_id\n");
goto usage;
}
zx_status_t status = mp_unplug_cpu((cpu_num_t)argv[2].u);
printf("CPU %lu unplug %s %d\n", argv[2].u, (status == ZX_OK ? "succeeded" : "failed"), status);
} else if (!strcmp(argv[1].str, "hotplug")) {
if (argc < 3) {
printf("specify a cpu_id\n");
goto usage;
}
zx_status_t status = mp_hotplug_cpu((cpu_num_t)argv[2].u);
printf("CPU %lu hotplug %s %d\n", argv[2].u, (status == ZX_OK ? "succeeded" : "failed"),
status);
} else if (!strcmp(argv[1].str, "reschedule")) {
if (argc < 3) {
printf("specify a cpu_id\n");
goto usage;
}
auto target_cpu = static_cast<cpu_num_t>(argv[2].u);
if (!mp_is_cpu_active(target_cpu)) {
printf("target cpu %u is not active\n", target_cpu);
return ZX_OK;
}
cpu_mask_t mask = cpu_num_to_mask(target_cpu);
cpu_num_t sending_cpu;
{
Guard<SpinLock, IrqSave> thread_lock_guard{ThreadLock::Get()};
sending_cpu = arch_curr_cpu_num();
mp_reschedule(mask, 0);
}
if (sending_cpu == target_cpu) {
printf("sending cpu is same as target cpu, no ipi sent\n");
} else {
printf("sent reschedule ipi to cpu %u\n", target_cpu);
}
} else {
printf("unknown command\n");
goto usage;
}
return ZX_OK;
}
STATIC_COMMAND_START
STATIC_COMMAND("mp", "mp test commands", &cmd_mp)
STATIC_COMMAND_END(mp)