blob: 4f9c3d91f94ae0d7754ccc10d4cadb594322f9fd [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Tests for MinFS-specific behavior.
#include <fcntl.h>
#include <fuchsia/io/llcpp/fidl.h>
#include <fuchsia/minfs/c/fidl.h>
#include <lib/fdio/cpp/caller.h>
#include <lib/fdio/vfs.h>
#include <lib/zx/vmo.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <zircon/device/vfs.h>
#include <zircon/errors.h>
#include <zircon/types.h>
#include <algorithm>
#include <string>
#include <vector>
#include <fbl/algorithm.h>
#include <fbl/array.h>
#include <fbl/unique_fd.h>
#include "src/storage/fs_test/fs_test_fixture.h"
#include "src/storage/fvm/format.h"
#include "src/storage/minfs/format.h"
#include "src/storage/minfs/transaction_limits.h"
namespace fs_test {
namespace {
namespace fio = ::llcpp::fuchsia::io;
// Tests using MinfsTest will get tested with and without FVM.
using MinfsTest = FilesystemTest;
void QueryInfo(const TestFilesystem& fs, fio::FilesystemInfo* info) {
// Sync before querying fs so that we can obtain an accurate number of used bytes. Otherwise,
// blocks which are reserved but not yet allocated won't be counted.
fbl::unique_fd root_fd = fs.GetRootFd();
fsync(root_fd.get());
fdio_cpp::FdioCaller caller(std::move(root_fd));
auto result = fio::DirectoryAdmin::Call::QueryFilesystem(caller.channel());
ASSERT_EQ(result.status(), ZX_OK);
ASSERT_EQ(result.Unwrap()->s, ZX_OK);
ASSERT_NE(result.Unwrap()->info, nullptr);
*info = *(result.Unwrap()->info);
// For now, info->name.data is a fixed size array.
const char* kFsName = "minfs";
ASSERT_EQ(memcmp(info->name.data(), kFsName, strlen(kFsName) + 1), 0)
<< "Unexpected filesystem mounted";
ASSERT_EQ(info->block_size, minfs::kMinfsBlockSize);
ASSERT_EQ(info->max_filename_size, minfs::kMinfsMaxNameSize);
ASSERT_EQ(info->fs_type, VFS_TYPE_MINFS);
ASSERT_NE(info->fs_id, 0ul);
ASSERT_EQ(info->used_bytes % info->block_size, 0ul);
ASSERT_EQ(info->total_bytes % info->block_size, 0ul);
}
void GetFreeBlocks(const TestFilesystem& fs, uint32_t* out_free_blocks) {
fio::FilesystemInfo info;
ASSERT_NO_FATAL_FAILURE(QueryInfo(fs, &info));
uint64_t total_bytes = info.total_bytes + info.free_shared_pool_bytes;
uint64_t used_bytes = info.used_bytes;
*out_free_blocks = static_cast<uint32_t>((total_bytes - used_bytes) / info.block_size);
}
// Write to the file until at most |max_remaining_blocks| remain in the partition.
// Return the new remaining block count as |actual_remaining_blocks|.
void FillPartition(const TestFilesystem& fs, int fd, uint32_t max_remaining_blocks,
uint32_t* actual_remaining_blocks) {
std::vector data(1'048'576, 0xaa);
uint32_t free_blocks;
while (true) {
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs, &free_blocks));
if (free_blocks <= max_remaining_blocks) {
break;
}
uint32_t blocks = free_blocks - max_remaining_blocks;
// Assume that writing 1 block might require writing 2 additional indirect blocks, so if there
// are more than 2 blocks to go, subtract 2, and if there are only 2 blocks to go, only do 1
// block.
if (blocks > 2) {
blocks -= 2;
} else if (blocks == 2) {
--blocks;
}
size_t bytes = std::min<size_t>(data.size(), blocks * minfs::kMinfsBlockSize);
ASSERT_EQ(write(fd, data.data(), bytes), static_cast<ssize_t>(bytes));
}
ASSERT_LE(free_blocks, max_remaining_blocks);
*actual_remaining_blocks = free_blocks;
}
// Tests using MinfsFvmTest will only run with FVM.
class MinfsFvmTest : public BaseFilesystemTest {
public:
MinfsFvmTest(const TestFilesystemOptions& options = TestFilesystemOptions::DefaultMinfs())
: BaseFilesystemTest(options) {}
protected:
// A simple structure used to validate the results of QueryInfo.
struct ExpectedQueryInfo {
size_t total_bytes;
size_t used_bytes;
size_t total_nodes;
size_t used_nodes;
size_t free_shared_pool_bytes;
};
void VerifyQueryInfo(const ExpectedQueryInfo& expected) const {
fio::FilesystemInfo info;
ASSERT_NO_FATAL_FAILURE(QueryInfo(fs(), &info));
ASSERT_EQ(info.total_bytes, expected.total_bytes);
ASSERT_EQ(info.used_bytes, expected.used_bytes);
ASSERT_EQ(info.total_nodes, expected.total_nodes);
ASSERT_EQ(info.used_nodes, expected.used_nodes);
ASSERT_EQ(info.free_shared_pool_bytes, expected.free_shared_pool_bytes);
}
void ToggleMetrics(bool enabled) const {
fbl::unique_fd fd = fs().GetRootFd();
ASSERT_TRUE(fd);
fdio_cpp::FdioCaller caller(std::move(fd));
zx_status_t status;
ASSERT_EQ(fuchsia_minfs_MinfsToggleMetrics(caller.borrow_channel(), enabled, &status), ZX_OK);
ASSERT_EQ(status, ZX_OK);
}
zx::status<fuchsia_minfs_Metrics> GetMetrics() const {
fbl::unique_fd fd = fs().GetRootFd();
if (!fd)
return zx::error(ZX_ERR_IO);
fdio_cpp::FdioCaller caller(std::move(fd));
fuchsia_minfs_Metrics metrics;
zx_status_t status;
zx_status_t fidl_status =
fuchsia_minfs_MinfsGetMetrics(caller.borrow_channel(), &status, &metrics);
if (fidl_status != ZX_OK)
return zx::error(fidl_status);
if (status != ZX_OK)
return zx::error(status);
return zx::ok(metrics);
}
};
class MinfsFvmTestWith8MiBSliceSize : public MinfsFvmTest {
public:
static TestFilesystemOptions GetOptions() {
auto options = TestFilesystemOptions::DefaultMinfs();
options.fvm_slice_size = 8'388'608;
return options;
}
MinfsFvmTestWith8MiBSliceSize() : MinfsFvmTest(GetOptions()) {}
};
// Tests using MinfsWithoutFvmTest will only run without FVM.
class MinfsWithoutFvmTest : public BaseFilesystemTest {
public:
MinfsWithoutFvmTest() : BaseFilesystemTest(TestFilesystemOptions::MinfsWithoutFvm()) {}
protected:
void GetAllocations(zx::vmo* out_vmo, uint64_t* out_count) const {
fbl::unique_fd fd = fs().GetRootFd();
ASSERT_TRUE(fd);
zx_status_t status;
fdio_cpp::FdioCaller caller(std::move(fd));
zx_handle_t vmo_handle;
ASSERT_EQ(fuchsia_minfs_MinfsGetAllocatedRegions(caller.borrow_channel(), &status, &vmo_handle,
out_count),
ZX_OK);
ASSERT_EQ(status, ZX_OK);
out_vmo->reset(vmo_handle);
}
void GetAllocatedBlocks(uint64_t* out_allocated_blocks) const {
fio::FilesystemInfo info;
ASSERT_NO_FATAL_FAILURE(QueryInfo(fs(), &info));
*out_allocated_blocks = static_cast<uint64_t>(info.used_bytes) / info.block_size;
}
};
// Verify initial conditions on a filesystem, and validate that filesystem modifications adjust the
// query info accordingly.
TEST_F(MinfsFvmTest, QueryInfo) {
fio::FilesystemInfo info;
ASSERT_NO_FATAL_FAILURE(QueryInfo(fs(), &info));
EXPECT_EQ(fs().options().fvm_slice_size, info.total_bytes);
// TODO(fxbug.dev/31276): Adjust this once minfs accounting on truncate is fixed.
EXPECT_EQ(2 * minfs::kMinfsBlockSize, info.used_bytes);
// The inode table's implementation is currently a flat array on disk.
EXPECT_EQ(fs().options().fvm_slice_size / sizeof(minfs::Inode), info.total_nodes);
// The "zero-th" inode is reserved, as well as the root directory.
const uint64_t kInitialUsedNodes = 2;
EXPECT_EQ(kInitialUsedNodes, info.used_nodes);
// Allocate kExtraNodeCount new files, each using truncated (sparse) files.
const uint64_t kExtraNodeCount = 16;
for (uint64_t i = 0; i < kExtraNodeCount; i++) {
const std::string path = GetPath("file_" + std::to_string(i));
fbl::unique_fd fd(open(path.c_str(), O_CREAT | O_RDWR));
ASSERT_GT(fd.get(), 0);
ASSERT_EQ(ftruncate(fd.get(), 30 * 1024), 0);
}
// Adjust our query expectations: We should see the new nodes.
ASSERT_NO_FATAL_FAILURE(QueryInfo(fs(), &info));
EXPECT_EQ(kInitialUsedNodes + kExtraNodeCount, info.used_nodes);
}
// Validate that Minfs metrics are functioning correctly.
TEST_F(MinfsFvmTest, Metrics) {
ASSERT_EQ(GetMetrics().status_value(), ZX_ERR_UNAVAILABLE);
ASSERT_NO_FATAL_FAILURE(ToggleMetrics(true));
zx::status<fuchsia_minfs_Metrics> metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_OK);
auto metrics = std::move(metrics_or).value();
ASSERT_EQ(metrics.fs_metrics.create.success.total_calls, 0ul);
ASSERT_EQ(metrics.fs_metrics.create.failure.total_calls, 0ul);
const std::string path = GetPath("test-file");
fbl::unique_fd fd(open(path.c_str(), O_CREAT | O_RDWR));
ASSERT_TRUE(fd);
metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_OK);
metrics = std::move(metrics_or).value();
ASSERT_EQ(metrics.fs_metrics.create.success.total_calls, 1ul);
ASSERT_EQ(metrics.fs_metrics.create.failure.total_calls, 0ul);
ASSERT_NE(metrics.fs_metrics.create.success.total_time_spent, 0ul);
ASSERT_EQ(metrics.fs_metrics.create.failure.total_time_spent, 0ul);
fd.reset(open(path.c_str(), O_CREAT | O_RDWR | O_EXCL));
ASSERT_FALSE(fd);
metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_OK);
metrics = std::move(metrics_or).value();
ASSERT_EQ(metrics.fs_metrics.create.success.total_calls, 1ul);
ASSERT_EQ(metrics.fs_metrics.create.failure.total_calls, 1ul);
ASSERT_NE(metrics.fs_metrics.create.success.total_time_spent, 0ul);
ASSERT_NE(metrics.fs_metrics.create.failure.total_time_spent, 0ul);
metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_OK);
metrics = std::move(metrics_or).value();
ASSERT_EQ(metrics.fs_metrics.unlink.success.total_calls, 0ul);
ASSERT_EQ(metrics.fs_metrics.unlink.failure.total_calls, 0ul);
ASSERT_EQ(metrics.fs_metrics.unlink.success.total_time_spent, 0ul);
ASSERT_EQ(metrics.fs_metrics.unlink.failure.total_time_spent, 0ul);
ASSERT_EQ(unlink(path.c_str()), 0);
metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_OK);
metrics = std::move(metrics_or).value();
ASSERT_EQ(metrics.fs_metrics.unlink.success.total_calls, 1ul);
ASSERT_EQ(metrics.fs_metrics.unlink.failure.total_calls, 0ul);
ASSERT_NE(metrics.fs_metrics.unlink.success.total_time_spent, 0ul);
ASSERT_EQ(metrics.fs_metrics.unlink.failure.total_time_spent, 0ul);
ASSERT_NE(unlink(path.c_str()), 0);
metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_OK);
metrics = std::move(metrics_or).value();
ASSERT_EQ(metrics.fs_metrics.unlink.success.total_calls, 1ul);
ASSERT_EQ(metrics.fs_metrics.unlink.failure.total_calls, 1ul);
ASSERT_NE(metrics.fs_metrics.unlink.success.total_time_spent, 0ul);
ASSERT_NE(metrics.fs_metrics.unlink.failure.total_time_spent, 0ul);
ASSERT_NO_FATAL_FAILURE(ToggleMetrics(false));
metrics_or = GetMetrics();
ASSERT_EQ(metrics_or.status_value(), ZX_ERR_UNAVAILABLE);
}
// Return number of blocks allocated by the file at |fd|.
void GetFileBlocks(int fd, uint64_t* blocks) {
struct stat stats;
ASSERT_EQ(fstat(fd, &stats), 0);
off_t size = stats.st_blocks * VNATTR_BLKSIZE;
ASSERT_EQ(size % minfs::kMinfsBlockSize, 0);
*blocks = static_cast<uint64_t>(size / minfs::kMinfsBlockSize);
}
// Fill a directory to at most |max_blocks| full of direntries.
// We assume the directory is empty to begin with, and any files we are adding do not already exist.
void FillDirectory(const TestFilesystem& fs, int dir_fd, uint32_t max_blocks) {
uint32_t file_count = 0;
int entries_per_iteration = 150;
while (true) {
std::string path;
for (int i = 0; i < entries_per_iteration; ++i) {
path = "file_" + std::to_string(file_count++);
fbl::unique_fd fd(openat(dir_fd, path.c_str(), O_CREAT | O_RDWR));
ASSERT_TRUE(fd);
}
uint64_t current_blocks;
ASSERT_NO_FATAL_FAILURE(GetFileBlocks(dir_fd, &current_blocks));
if (current_blocks > max_blocks) {
ASSERT_EQ(unlinkat(dir_fd, path.c_str(), 0), 0);
break;
} else if (current_blocks == max_blocks) {
// Do just one entry per iteration for the last block.
entries_per_iteration = 1;
}
}
}
// Test various operations when the Minfs partition is near capacity. This test is sensitive to the
// FVM slice size and was designed with a 8 MiB slice size in mind.
TEST_F(MinfsFvmTestWith8MiBSliceSize, FullOperations) {
// Define file names we will use upfront.
const char* big_path = "big_file";
const char* med_path = "med_file";
const char* sml_path = "sml_file";
// Open the mount point and create three files.
fbl::unique_fd mnt_fd = fs().GetRootFd();
ASSERT_TRUE(mnt_fd);
fbl::unique_fd big_fd(openat(mnt_fd.get(), big_path, O_CREAT | O_RDWR));
ASSERT_TRUE(big_fd);
fbl::unique_fd med_fd(openat(mnt_fd.get(), med_path, O_CREAT | O_RDWR));
ASSERT_TRUE(med_fd);
fbl::unique_fd sml_fd(openat(mnt_fd.get(), sml_path, O_CREAT | O_RDWR));
ASSERT_TRUE(sml_fd);
// Write to the "big" file, filling the partition
// and leaving at most kMinfsDirect + 1 blocks unused.
uint32_t free_blocks = minfs::kMinfsDirect + 1;
uint32_t actual_blocks;
ASSERT_NO_FATAL_FAILURE(FillPartition(fs(), big_fd.get(), free_blocks, &actual_blocks));
// Write enough data to the second file to take up all remaining blocks except for 1.
// This should strictly be writing to the direct block section of the file.
char data[minfs::kMinfsBlockSize];
memset(data, 0xaa, sizeof(data));
for (unsigned i = 0; i < actual_blocks - 1; i++) {
ASSERT_EQ(write(med_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
}
// Make sure we now have only 1 block remaining.
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &free_blocks));
ASSERT_EQ(free_blocks, 1u);
// We should now have exactly 1 free block remaining. Attempt to write into the indirect
// section of the file so we ensure that at least 2 blocks are required.
// This is expected to fail.
ASSERT_EQ(lseek(med_fd.get(), minfs::kMinfsBlockSize * minfs::kMinfsDirect, SEEK_SET),
minfs::kMinfsBlockSize * minfs::kMinfsDirect);
ASSERT_LT(write(med_fd.get(), data, sizeof(data)), 0);
// Without block reservation, something from the failed write remains allocated. Try editing
// nearby blocks to force a writeback of partially allocated data.
// Note: This will fail without block reservation since the previous failed write would leave
// the only free block incorrectly allocated and 1 additional block is required for
// copy-on-write truncation.
struct stat s;
ASSERT_EQ(fstat(big_fd.get(), &s), 0);
ssize_t truncate_size =
fbl::round_up(static_cast<uint64_t>(s.st_size / 2), minfs::kMinfsBlockSize);
ASSERT_EQ(ftruncate(big_fd.get(), truncate_size), 0);
// We should still have 1 free block remaining. Writing to the beginning of the second file
// should only require 1 (direct) block, and therefore pass.
// Note: This fails without block reservation.
ASSERT_EQ(write(sml_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
// Attempt to remount. Without block reservation, an additional block from the previously
// failed write will still be incorrectly allocated, causing fsck to fail.
EXPECT_EQ(fs().Unmount().status_value(), ZX_OK);
EXPECT_EQ(fs().Fsck().status_value(), ZX_OK);
EXPECT_EQ(fs().Mount().status_value(), ZX_OK);
// Re-open files.
mnt_fd = fs().GetRootFd();
ASSERT_TRUE(mnt_fd);
big_fd.reset(openat(mnt_fd.get(), big_path, O_RDWR));
ASSERT_TRUE(big_fd);
sml_fd.reset(openat(mnt_fd.get(), sml_path, O_RDWR));
ASSERT_TRUE(sml_fd);
// Make sure we now have at least kMinfsDirect + 1 blocks remaining.
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &free_blocks));
ASSERT_GE(free_blocks, minfs::kMinfsDirect + 1);
// We have some room now, so create a new directory.
const char* dir_path = "directory";
ASSERT_EQ(mkdirat(mnt_fd.get(), dir_path, 0666), 0);
fbl::unique_fd dir_fd(openat(mnt_fd.get(), dir_path, O_RDONLY));
ASSERT_TRUE(dir_fd);
// Fill the directory up to kMinfsDirect blocks full of direntries.
ASSERT_NO_FATAL_FAILURE(FillDirectory(fs(), dir_fd.get(), minfs::kMinfsDirect));
// Now re-fill the partition by writing as much as possible back to the original file.
// Attempt to leave 1 block free.
ASSERT_EQ(lseek(big_fd.get(), truncate_size, SEEK_SET), truncate_size);
free_blocks = 1;
ASSERT_NO_FATAL_FAILURE(FillPartition(fs(), big_fd.get(), free_blocks, &actual_blocks));
if (actual_blocks == 0) {
// It is possible that, in our previous allocation of big_fd, we ended up leaving less than
// |free_blocks| free. Since the file has grown potentially large, it is possible that
// allocating a single block will also allocate additional indirect blocks.
// For example, in a case where we have 2 free blocks remaining and expect to allocate 1,
// we may actually end up allocating 2 instead, leaving us with 0 free blocks.
// Since sml_fd is using less than kMinfsDirect blocks and thus is guaranteed to have a 1:1
// block usage ratio, we can remedy this situation by removing a single block from sml_fd.
ASSERT_EQ(ftruncate(sml_fd.get(), 0), 0);
}
while (actual_blocks > free_blocks) {
// Otherwise, if too many blocks remain (if e.g. we needed to allocate 3 blocks but only 2
// are remaining), write to sml_fd until only 1 remains.
ASSERT_EQ(write(sml_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
actual_blocks--;
}
// Ensure that there is now exactly one block remaining.
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &actual_blocks));
ASSERT_EQ(free_blocks, actual_blocks);
// Now, attempt to add one more file to the directory we created. Since it will need to
// allocate 2 blocks (1 indirect + 1 direct) and there is only 1 remaining, it should fail.
uint64_t block_count;
ASSERT_NO_FATAL_FAILURE(GetFileBlocks(dir_fd.get(), &block_count));
ASSERT_EQ(block_count, minfs::kMinfsDirect);
fbl::unique_fd tmp_fd(openat(dir_fd.get(), "new_file", O_CREAT | O_RDWR));
ASSERT_FALSE(tmp_fd);
// Again, try editing nearby blocks to force bad allocation leftovers to be persisted, and
// remount the partition. This is expected to fail without block reservation.
ASSERT_EQ(fstat(big_fd.get(), &s), 0);
ASSERT_EQ(s.st_size % minfs::kMinfsBlockSize, 0);
truncate_size = s.st_size - minfs::kMinfsBlockSize;
ASSERT_EQ(ftruncate(big_fd.get(), truncate_size), 0);
EXPECT_EQ(fs().Unmount().status_value(), ZX_OK);
EXPECT_EQ(fs().Fsck().status_value(), ZX_OK);
EXPECT_EQ(fs().Mount().status_value(), ZX_OK);
// Re-open files.
mnt_fd = fs().GetRootFd();
ASSERT_TRUE(mnt_fd);
big_fd.reset(openat(mnt_fd.get(), big_path, O_RDWR));
ASSERT_TRUE(big_fd);
sml_fd.reset(openat(mnt_fd.get(), sml_path, O_RDWR));
ASSERT_TRUE(sml_fd);
// Fill the partition again, writing one block of data to sml_fd
// in case we need an emergency truncate.
ASSERT_EQ(write(sml_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
ASSERT_EQ(lseek(big_fd.get(), truncate_size, SEEK_SET), truncate_size);
free_blocks = 1;
ASSERT_NO_FATAL_FAILURE(FillPartition(fs(), big_fd.get(), free_blocks, &actual_blocks));
if (actual_blocks == 0) {
// If we ended up with fewer blocks than expected, truncate sml_fd to create more space.
// (See note above for details.)
ASSERT_EQ(ftruncate(sml_fd.get(), 0), 0);
}
while (actual_blocks > free_blocks) {
// Otherwise, if too many blocks remain (if e.g. we needed to allocate 3 blocks but only 2
// are remaining), write to sml_fd until only 1 remains.
ASSERT_EQ(write(sml_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
actual_blocks--;
}
// Ensure that there is now exactly one block remaining.
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &actual_blocks));
ASSERT_EQ(free_blocks, actual_blocks);
// Now, attempt to rename one of our original files under the new directory.
// This should also fail.
ASSERT_NE(renameat(mnt_fd.get(), med_path, dir_fd.get(), med_path), 0);
// Again, truncate the original file and attempt to remount.
// Again, this should fail without block reservation.
ASSERT_EQ(fstat(big_fd.get(), &s), 0);
ASSERT_EQ(s.st_size % minfs::kMinfsBlockSize, 0);
truncate_size = s.st_size - minfs::kMinfsBlockSize;
ASSERT_EQ(ftruncate(big_fd.get(), truncate_size), 0);
EXPECT_EQ(fs().Unmount().status_value(), ZX_OK);
EXPECT_EQ(fs().Mount().status_value(), ZX_OK);
mnt_fd = fs().GetRootFd();
ASSERT_EQ(unlinkat(mnt_fd.get(), big_path, 0), 0);
ASSERT_EQ(unlinkat(mnt_fd.get(), med_path, 0), 0);
ASSERT_EQ(unlinkat(mnt_fd.get(), sml_path, 0), 0);
}
TEST_P(MinfsTest, UnlinkFail) {
uint32_t original_blocks;
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &original_blocks));
uint32_t fd_count = 100;
fbl::unique_fd fds[fd_count];
char data[minfs::kMinfsBlockSize];
memset(data, 0xaa, sizeof(data));
const std::string filename = GetPath("file");
// Open, write to, and unlink |fd_count| total files without closing them.
for (unsigned i = 0; i < fd_count; i++) {
// Since we are unlinking, we can use the same filename for all files.
fds[i].reset(open(filename.c_str(), O_CREAT | O_RDWR | O_EXCL));
ASSERT_TRUE(fds[i]);
ASSERT_EQ(write(fds[i].get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
ASSERT_EQ(unlink(filename.c_str()), 0);
}
// Close the first, middle, and last files to test behavior when various "links" are removed.
uint32_t first_fd = 0;
uint32_t mid_fd = fd_count / 2;
uint32_t last_fd = fd_count - 1;
ASSERT_EQ(close(fds[first_fd].release()), 0);
ASSERT_EQ(close(fds[mid_fd].release()), 0);
ASSERT_EQ(close(fds[last_fd].release()), 0);
// Sync Minfs to ensure all unlink operations complete.
fbl::unique_fd fd(open(filename.c_str(), O_CREAT));
ASSERT_TRUE(fd);
ASSERT_EQ(syncfs(fd.get()), 0);
// Check that the number of Minfs free blocks has decreased.
uint32_t current_blocks;
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &current_blocks));
ASSERT_LT(current_blocks, original_blocks);
// Put the ramdisk to sleep and close all the fds. This will cause file purge to fail,
// and all unlinked files will be left intact (on disk).
ASSERT_EQ(fs().GetRamDisk()->SleepAfter(0).status_value(), ZX_OK);
// The ram-disk is asleep but since no transactions have been processed, the writeback state has
// not been updated. The first file we close will appear to succeed.
ASSERT_EQ(close(fds[first_fd + 1].release()), 0);
// Sync to ensure the writeback state is updated. Since the purge from the previous close will
// fail, sync will also fail.
ASSERT_LT(syncfs(fd.get()), 0);
// Close all open fds.
for (unsigned i = first_fd + 2; i < last_fd; i++) {
if (i != mid_fd) {
ASSERT_EQ(close(fds[i].release()), -1);
}
}
// Sync Minfs to ensure all close operations complete. Since Minfs is in a read-only state and
// some requests have not been successfully persisted to disk, the sync is expected to fail.
ASSERT_LT(syncfs(fd.get()), 0);
// Remount Minfs, which should cause leftover unlinked files to be removed.
ASSERT_EQ(fs().GetRamDisk()->Wake().status_value(), ZX_OK);
EXPECT_EQ(fs().Unmount().status_value(), ZX_OK);
EXPECT_EQ(fs().Mount().status_value(), ZX_OK);
// Check that the block count has been reverted to the value before any files were added.
ASSERT_NO_FATAL_FAILURE(GetFreeBlocks(fs(), &current_blocks));
ASSERT_EQ(current_blocks, original_blocks);
}
// Verifies that the information returned by GetAllocatedRegions FIDL call is correct by
// checking it against the block devices metrics.
TEST_F(MinfsWithoutFvmTest, GetAllocatedRegions) {
constexpr char kFirstPath[] = "some_file";
constexpr char kSecondPath[] = "another_file";
fbl::unique_fd mnt_fd = fs().GetRootFd();
ASSERT_TRUE(mnt_fd);
fbl::unique_fd first_fd(openat(mnt_fd.get(), kFirstPath, O_CREAT | O_RDWR));
ASSERT_TRUE(first_fd);
fbl::unique_fd second_fd(openat(mnt_fd.get(), kSecondPath, O_CREAT | O_RDWR));
ASSERT_TRUE(second_fd);
char data[minfs::kMinfsBlockSize];
memset(data, 0xb0b, sizeof(data));
// Interleave writes
ASSERT_EQ(write(first_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
ASSERT_EQ(fsync(first_fd.get()), 0);
ASSERT_EQ(write(second_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
ASSERT_EQ(fsync(second_fd.get()), 0);
ASSERT_EQ(write(first_fd.get(), data, sizeof(data)), static_cast<ssize_t>(sizeof(data)));
ASSERT_EQ(fsync(first_fd.get()), 0);
// Ensure that the number of bytes reported via GetAllocatedRegions and QueryInfo is the same
zx::vmo vmo;
uint64_t count;
uint64_t actual_blocks;
uint64_t total_blocks = 0;
ASSERT_NO_FATAL_FAILURE(GetAllocations(&vmo, &count));
ASSERT_NO_FATAL_FAILURE(GetAllocatedBlocks(&actual_blocks));
fbl::Array<fuchsia_minfs_BlockRegion> buffer(new fuchsia_minfs_BlockRegion[count], count);
ASSERT_EQ(vmo.read(buffer.data(), 0, sizeof(fuchsia_minfs_BlockRegion) * count), ZX_OK);
for (size_t i = 0; i < count; i++) {
total_blocks += buffer[i].length;
}
ASSERT_EQ(total_blocks, actual_blocks);
// Delete second_fd. This allows us test that the FIDL call will still match the metrics
// from QueryInfo after deletes and with fragmentation.
ASSERT_EQ(unlinkat(mnt_fd.get(), kSecondPath, 0), 0);
ASSERT_EQ(close(second_fd.release()), 0);
ASSERT_EQ(fsync(mnt_fd.get()), 0);
total_blocks = 0;
ASSERT_NO_FATAL_FAILURE(GetAllocations(&vmo, &count));
ASSERT_NO_FATAL_FAILURE(GetAllocatedBlocks(&actual_blocks));
buffer.reset(new fuchsia_minfs_BlockRegion[count], count);
ASSERT_EQ(vmo.read(buffer.data(), 0, sizeof(fuchsia_minfs_BlockRegion) * count), ZX_OK);
for (size_t i = 0; i < count; i++) {
total_blocks += buffer[i].length;
}
ASSERT_EQ(total_blocks, actual_blocks);
}
INSTANTIATE_TEST_SUITE_P(/*no prefix*/, MinfsTest,
testing::Values(TestFilesystemOptions::DefaultMinfs(),
TestFilesystemOptions::MinfsWithoutFvm()),
testing::PrintToStringParamName());
} // namespace
} // namespace fs_test