blob: aa8ab91ed163140038026a389353876f6dc925bb [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
// fidl_experiment = output_index_json
#pragma once
#include <lib/fidl/cpp/wire/array.h>
#include <lib/fidl/cpp/wire/envelope.h>
#include <lib/fidl/cpp/wire/internal/framework_err.h>
#include <lib/fidl/cpp/wire/message.h>
#include <lib/fidl/cpp/wire/message_storage.h>
#include <lib/fidl/cpp/wire/object_view.h>
#include <lib/fidl/cpp/wire/string_view.h>
#include <lib/fidl/cpp/wire/traits.h>
#include <lib/fidl/cpp/wire/wire_types.h>
#include <lib/stdcompat/optional.h>
#include <cinttypes>
#ifdef __Fuchsia__
#endif // __Fuchsia__
#include <fidl/test.arrays/cpp/common_types.h>
#include <fidl/test.arrays/cpp/markers.h>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshadow"
namespace test_arrays {
namespace wire {
struct StructSmallArray;
struct StructLargeArray;
class TableSmallArray;
class TableLargeArray;
class UnionSmallArray;
class UnionLargeArray;
} // namespace wire
} // namespace test_arrays
template <>
class ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>;
template <>
class ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray>;
template <>
struct ::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray> final {
public:
WireTableFrame() = default;
// In its intended usage, WireTableFrame will be referenced by an ObjectView.
// If the ObjectView is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
WireTableFrame(const WireTableFrame&) = delete;
WireTableFrame& operator=(const WireTableFrame&) = delete;
private:
WireTableFrame(WireTableFrame&&) noexcept = default;
WireTableFrame& operator=(WireTableFrame&&) noexcept = default;
bool HasUnknownData() const;
uint64_t ComputeMaxOrdinal() const;
::fidl::Envelope<::fidl::Array<uint32_t, 2>> a_;
friend class ::test_arrays::wire::TableSmallArray;
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>>;
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray>>;
};
namespace test_arrays {
namespace wire {
class TableSmallArray {
public:
TableSmallArray() = default;
TableSmallArray(const TableSmallArray& other) noexcept = default;
TableSmallArray& operator=(const TableSmallArray& other) noexcept = default;
TableSmallArray(TableSmallArray&& other) noexcept = default;
TableSmallArray& operator=(TableSmallArray&& other) noexcept = default;
~TableSmallArray() = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
// Returns whether the table references unknown fields.
bool HasUnknownData() const;
// Return a builder that by defaults allocates of an arena.
static ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray> Builder(::fidl::AnyArena& arena);
// Return a builder that relies on explicitly allocating |fidl::ObjectView|s.
static ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray> ExternalBuilder(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>> frame);
[[nodiscard]] ::fidl::Array<uint32_t, 2>& a() const {
ZX_ASSERT(has_a());
return frame_ptr_->a_.get_data();
}
[[nodiscard]] bool has_a() const {
return max_ordinal_ >= 1 && frame_ptr_->a_.has_data();
}
#if defined(FIDL_WIRE_ALLOW_DEPRECATED_MUTABLE_TABLES) || false
public:
#else // !defined(FIDL_WIRE_ALLOW_DEPRECATED_MUTABLE_TABLES)
private:
#endif // FIDL_WIRE_ALLOW_DEPRECATED_MUTABLE_TABLES
TableSmallArray& set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 2>> elem) {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.set_data(elem);
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
return *this;
}
TableSmallArray& set_a(std::nullptr_t) {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.set_data(nullptr);
return *this;
}
template <typename... Args>
TableSmallArray& set_a(::fidl::AnyArena& allocator, Args&&... args) {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.set_data(
::fidl::ObjectView<::fidl::Array<uint32_t, 2>>(allocator, std::forward<Args>(args)...));
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
return *this;
}
TableSmallArray& clear_a() {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.clear_data();
max_ordinal_ = frame_ptr_->ComputeMaxOrdinal();
return *this;
}
explicit TableSmallArray(::fidl::AnyArena& allocator)
: frame_ptr_(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>(allocator)) {}
// This constructor allows a user controlled allocation (not using a Arena).
// It should only be used when performance is key.
// As soon as the frame is given to the table, it must not be used directly or for another table.
explicit TableSmallArray(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>&& frame)
: frame_ptr_(std::move(frame)) {}
void Allocate(::fidl::AnyArena& allocator) {
max_ordinal_ = 0;
frame_ptr_ = ::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>(allocator);
}
void Init(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>&& frame_ptr) {
max_ordinal_ = 0;
frame_ptr_ = std::move(frame_ptr);
}
private:
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>>;
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray>>;
uint64_t max_ordinal_ = 0;
::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>> frame_ptr_;
};
} // namespace wire
} // namespace test_arrays
template <typename BuilderImpl>
class ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, BuilderImpl> {
protected:
// |Wrapper_Ignore_Me_| wraps a |fidl::ObjectView<T>| and reduces its
// priority in overload resolution. When the user writes `{}` as the
// setter argument, that would default construct the field instead of
// constructing a NULL object view.
template <typename U>
struct Wrapper_Ignore_Me_ {
Wrapper_Ignore_Me_(U v) : value(v) {}
U value;
};
public:
// Build and return the table. The builder should not be used after this.
::test_arrays::wire::TableSmallArray Build() {
ZX_DEBUG_ASSERT(table_.frame_ptr_ != nullptr);
::test_arrays::wire::TableSmallArray t = std::move(table_);
// Poison this builder to prevent accidental reuse.
table_.frame_ptr_ = nullptr;
return t;
}
[[nodiscard]] bool has_a() const {
return table_.has_a();
}
// Clears the a field.
//
// This method should be used sparingly, such as only during tests, as it has
// O(number_of_fields) complexity.
void clear_a() {
table_.clear_a();
}
// Getter for a.
//
[[nodiscard]] ::fidl::Array<uint32_t, 2>& a() const {
return table_.a();
}
// Setter for a.
//
BuilderImpl& a(Wrapper_Ignore_Me_<::fidl::ObjectView<::fidl::Array<uint32_t, 2>>> elem) {
ZX_DEBUG_ASSERT(table_.frame_ptr_ != nullptr);
ZX_DEBUG_ASSERT(elem.value.get() != nullptr);
table_.frame_ptr_->a_.set_data(elem.value);
table_.max_ordinal_ = std::max(table_.max_ordinal_, static_cast<uint64_t>(1));
return *static_cast<BuilderImpl*>(this);
}
protected:
WireTableBaseBuilder(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>&& frame)
: table_(std::move(frame)) {}
private:
::test_arrays::wire::TableSmallArray table_;
};
template <>
class ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray> final : public ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>> {
using Base = ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>>;
public:
using Base::a;
template <
typename First = ::fidl::Array<uint32_t, 2>,
typename... Args,
std::enable_if_t<!std::is_same_v<cpp20::remove_cvref_t<First>, fidl::ObjectView<::fidl::Array<uint32_t, 2>>>, int> = 0>
::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>& a(First&& first, Args&&... args_) {
fidl::ObjectView<::fidl::Array<uint32_t, 2>> view_(arena_.get(), std::forward<First>(first), std::forward<Args>(args_)...);
a(Base::Wrapper_Ignore_Me_<fidl::ObjectView<::fidl::Array<uint32_t, 2>>>(view_));
return *this;
}
private:
friend class ::test_arrays::wire::TableSmallArray;
WireTableBuilder(::fidl::AnyArena& arena)
: Base(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>(arena)),
arena_(arena) {}
[[maybe_unused]] std::reference_wrapper<::fidl::AnyArena> arena_;
};
template <>
class ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray> final : public ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray>> {
using Base = ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableSmallArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray>>;
private:
friend class ::test_arrays::wire::TableSmallArray;
using Base::Base;
WireTableExternalBuilder(::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>* frame)
: Base(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>>::FromExternal(frame)) {}
};
namespace test_arrays {
namespace wire {
inline ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray> TableSmallArray::Builder(::fidl::AnyArena& arena) {
return ::fidl::WireTableBuilder<::test_arrays::wire::TableSmallArray>(arena);
}
inline ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray> TableSmallArray::ExternalBuilder(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableSmallArray>> frame) {
return ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableSmallArray>(std::move(frame));
}
} // namespace wire
} // namespace test_arrays
template <>
class ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>;
template <>
class ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray>;
template <>
struct ::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray> final {
public:
WireTableFrame() = default;
// In its intended usage, WireTableFrame will be referenced by an ObjectView.
// If the ObjectView is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
WireTableFrame(const WireTableFrame&) = delete;
WireTableFrame& operator=(const WireTableFrame&) = delete;
private:
WireTableFrame(WireTableFrame&&) noexcept = default;
WireTableFrame& operator=(WireTableFrame&&) noexcept = default;
bool HasUnknownData() const;
uint64_t ComputeMaxOrdinal() const;
::fidl::Envelope<::fidl::Array<uint32_t, 100>> a_;
friend class ::test_arrays::wire::TableLargeArray;
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>>;
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray>>;
};
namespace test_arrays {
namespace wire {
class TableLargeArray {
public:
TableLargeArray() = default;
TableLargeArray(const TableLargeArray& other) noexcept = default;
TableLargeArray& operator=(const TableLargeArray& other) noexcept = default;
TableLargeArray(TableLargeArray&& other) noexcept = default;
TableLargeArray& operator=(TableLargeArray&& other) noexcept = default;
~TableLargeArray() = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
// Returns whether the table references unknown fields.
bool HasUnknownData() const;
// Return a builder that by defaults allocates of an arena.
static ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray> Builder(::fidl::AnyArena& arena);
// Return a builder that relies on explicitly allocating |fidl::ObjectView|s.
static ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray> ExternalBuilder(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>> frame);
[[nodiscard]] ::fidl::Array<uint32_t, 100>& a() const {
ZX_ASSERT(has_a());
return frame_ptr_->a_.get_data();
}
[[nodiscard]] bool has_a() const {
return max_ordinal_ >= 1 && frame_ptr_->a_.has_data();
}
#if defined(FIDL_WIRE_ALLOW_DEPRECATED_MUTABLE_TABLES) || false
public:
#else // !defined(FIDL_WIRE_ALLOW_DEPRECATED_MUTABLE_TABLES)
private:
#endif // FIDL_WIRE_ALLOW_DEPRECATED_MUTABLE_TABLES
TableLargeArray& set_a(::fidl::ObjectView<::fidl::Array<uint32_t, 100>> elem) {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.set_data(elem);
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
return *this;
}
TableLargeArray& set_a(std::nullptr_t) {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.set_data(nullptr);
return *this;
}
template <typename... Args>
TableLargeArray& set_a(::fidl::AnyArena& allocator, Args&&... args) {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.set_data(
::fidl::ObjectView<::fidl::Array<uint32_t, 100>>(allocator, std::forward<Args>(args)...));
max_ordinal_ = std::max(max_ordinal_, static_cast<uint64_t>(1));
return *this;
}
TableLargeArray& clear_a() {
ZX_DEBUG_ASSERT(frame_ptr_ != nullptr);
frame_ptr_->a_.clear_data();
max_ordinal_ = frame_ptr_->ComputeMaxOrdinal();
return *this;
}
explicit TableLargeArray(::fidl::AnyArena& allocator)
: frame_ptr_(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>(allocator)) {}
// This constructor allows a user controlled allocation (not using a Arena).
// It should only be used when performance is key.
// As soon as the frame is given to the table, it must not be used directly or for another table.
explicit TableLargeArray(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>&& frame)
: frame_ptr_(std::move(frame)) {}
void Allocate(::fidl::AnyArena& allocator) {
max_ordinal_ = 0;
frame_ptr_ = ::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>(allocator);
}
void Init(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>&& frame_ptr) {
max_ordinal_ = 0;
frame_ptr_ = std::move(frame_ptr);
}
private:
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>>;
friend ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray>>;
uint64_t max_ordinal_ = 0;
::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>> frame_ptr_;
};
} // namespace wire
} // namespace test_arrays
template <typename BuilderImpl>
class ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, BuilderImpl> {
protected:
// |Wrapper_Ignore_Me_| wraps a |fidl::ObjectView<T>| and reduces its
// priority in overload resolution. When the user writes `{}` as the
// setter argument, that would default construct the field instead of
// constructing a NULL object view.
template <typename U>
struct Wrapper_Ignore_Me_ {
Wrapper_Ignore_Me_(U v) : value(v) {}
U value;
};
public:
// Build and return the table. The builder should not be used after this.
::test_arrays::wire::TableLargeArray Build() {
ZX_DEBUG_ASSERT(table_.frame_ptr_ != nullptr);
::test_arrays::wire::TableLargeArray t = std::move(table_);
// Poison this builder to prevent accidental reuse.
table_.frame_ptr_ = nullptr;
return t;
}
[[nodiscard]] bool has_a() const {
return table_.has_a();
}
// Clears the a field.
//
// This method should be used sparingly, such as only during tests, as it has
// O(number_of_fields) complexity.
void clear_a() {
table_.clear_a();
}
// Getter for a.
//
[[nodiscard]] ::fidl::Array<uint32_t, 100>& a() const {
return table_.a();
}
// Setter for a.
//
BuilderImpl& a(Wrapper_Ignore_Me_<::fidl::ObjectView<::fidl::Array<uint32_t, 100>>> elem) {
ZX_DEBUG_ASSERT(table_.frame_ptr_ != nullptr);
ZX_DEBUG_ASSERT(elem.value.get() != nullptr);
table_.frame_ptr_->a_.set_data(elem.value);
table_.max_ordinal_ = std::max(table_.max_ordinal_, static_cast<uint64_t>(1));
return *static_cast<BuilderImpl*>(this);
}
protected:
WireTableBaseBuilder(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>&& frame)
: table_(std::move(frame)) {}
private:
::test_arrays::wire::TableLargeArray table_;
};
template <>
class ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray> final : public ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>> {
using Base = ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>>;
public:
using Base::a;
template <
typename First = ::fidl::Array<uint32_t, 100>,
typename... Args,
std::enable_if_t<!std::is_same_v<cpp20::remove_cvref_t<First>, fidl::ObjectView<::fidl::Array<uint32_t, 100>>>, int> = 0>
::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>& a(First&& first, Args&&... args_) {
fidl::ObjectView<::fidl::Array<uint32_t, 100>> view_(arena_.get(), std::forward<First>(first), std::forward<Args>(args_)...);
a(Base::Wrapper_Ignore_Me_<fidl::ObjectView<::fidl::Array<uint32_t, 100>>>(view_));
return *this;
}
private:
friend class ::test_arrays::wire::TableLargeArray;
WireTableBuilder(::fidl::AnyArena& arena)
: Base(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>(arena)),
arena_(arena) {}
[[maybe_unused]] std::reference_wrapper<::fidl::AnyArena> arena_;
};
template <>
class ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray> final : public ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray>> {
using Base = ::fidl::internal::WireTableBaseBuilder<::test_arrays::wire::TableLargeArray, ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray>>;
private:
friend class ::test_arrays::wire::TableLargeArray;
using Base::Base;
WireTableExternalBuilder(::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>* frame)
: Base(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>>::FromExternal(frame)) {}
};
namespace test_arrays {
namespace wire {
inline ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray> TableLargeArray::Builder(::fidl::AnyArena& arena) {
return ::fidl::WireTableBuilder<::test_arrays::wire::TableLargeArray>(arena);
}
inline ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray> TableLargeArray::ExternalBuilder(::fidl::ObjectView<::fidl::WireTableFrame<::test_arrays::wire::TableLargeArray>> frame) {
return ::fidl::WireTableExternalBuilder<::test_arrays::wire::TableLargeArray>(std::move(frame));
}
class UnionSmallArray {
public:
UnionSmallArray() : ordinal_(::test_arrays::wire::UnionSmallArray::Ordinal::Invalid), envelope_{} {}
UnionSmallArray(const UnionSmallArray&) = default;
UnionSmallArray& operator=(const UnionSmallArray&) = default;
UnionSmallArray(UnionSmallArray&&) = default;
UnionSmallArray& operator=(UnionSmallArray&&) = default;
enum class Tag : fidl_xunion_tag_t {
kA = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == ::test_arrays::wire::UnionSmallArray::Ordinal::Invalid; }
bool is_a() const { return ordinal_ == ::test_arrays::wire::UnionSmallArray::Ordinal::kA; }
static UnionSmallArray WithA(::fidl::ObjectView<::fidl::Array<uint32_t, 2>> val) {
UnionSmallArray result;
result.ordinal_ = ::test_arrays::wire::UnionSmallArray::Ordinal::kA;
result.envelope_.As<::fidl::Array<uint32_t, 2>>().set_data(std::move(val));
return result;
}
template <typename... Args>
static UnionSmallArray WithA(::fidl::AnyArena& allocator, Args&&... args) {
return WithA(::fidl::ObjectView<::fidl::Array<uint32_t, 2>>(allocator,
std::forward<Args>(args)...));
}
::fidl::Array<uint32_t, 2>& a() {
ZX_ASSERT(ordinal_ == ::test_arrays::wire::UnionSmallArray::Ordinal::kA);
return envelope_.As<::fidl::Array<uint32_t, 2>>().get_data();
}
const ::fidl::Array<uint32_t, 2>& a() const {
ZX_ASSERT(ordinal_ == ::test_arrays::wire::UnionSmallArray::Ordinal::kA);
return envelope_.As<::fidl::Array<uint32_t, 2>>().get_data();
}
::test_arrays::wire::UnionSmallArray::Tag Which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<::test_arrays::wire::UnionSmallArray::Tag>(ordinal_);
}
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kA = 1, // 0x1
};
static void SizeAndOffsetAssertionHelper();
::test_arrays::wire::UnionSmallArray::Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::UntypedEnvelope envelope_;
};
class UnionLargeArray {
public:
UnionLargeArray() : ordinal_(::test_arrays::wire::UnionLargeArray::Ordinal::Invalid), envelope_{} {}
UnionLargeArray(const UnionLargeArray&) = default;
UnionLargeArray& operator=(const UnionLargeArray&) = default;
UnionLargeArray(UnionLargeArray&&) = default;
UnionLargeArray& operator=(UnionLargeArray&&) = default;
enum class Tag : fidl_xunion_tag_t {
kA = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == ::test_arrays::wire::UnionLargeArray::Ordinal::Invalid; }
bool is_a() const { return ordinal_ == ::test_arrays::wire::UnionLargeArray::Ordinal::kA; }
static UnionLargeArray WithA(::fidl::ObjectView<::fidl::Array<uint32_t, 100>> val) {
UnionLargeArray result;
result.ordinal_ = ::test_arrays::wire::UnionLargeArray::Ordinal::kA;
result.envelope_.As<::fidl::Array<uint32_t, 100>>().set_data(std::move(val));
return result;
}
template <typename... Args>
static UnionLargeArray WithA(::fidl::AnyArena& allocator, Args&&... args) {
return WithA(::fidl::ObjectView<::fidl::Array<uint32_t, 100>>(allocator,
std::forward<Args>(args)...));
}
::fidl::Array<uint32_t, 100>& a() {
ZX_ASSERT(ordinal_ == ::test_arrays::wire::UnionLargeArray::Ordinal::kA);
return envelope_.As<::fidl::Array<uint32_t, 100>>().get_data();
}
const ::fidl::Array<uint32_t, 100>& a() const {
ZX_ASSERT(ordinal_ == ::test_arrays::wire::UnionLargeArray::Ordinal::kA);
return envelope_.As<::fidl::Array<uint32_t, 100>>().get_data();
}
::test_arrays::wire::UnionLargeArray::Tag Which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<::test_arrays::wire::UnionLargeArray::Tag>(ordinal_);
}
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kA = 1, // 0x1
};
static void SizeAndOffsetAssertionHelper();
::test_arrays::wire::UnionLargeArray::Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::UntypedEnvelope envelope_;
};
struct StructSmallArray {
::fidl::Array<uint32_t, 2> a = {};
};
struct StructLargeArray {
::fidl::Array<uint32_t, 100> a = {};
};
} // namespace wire
} // namespace test_arrays
namespace fidl {
template <>
struct TypeTraits<::test_arrays::wire::StructSmallArray> {
static constexpr uint32_t kMaxNumHandles = 0;
static constexpr uint32_t kMaxDepth = 0;
static constexpr uint32_t kPrimarySize = 8;
[[maybe_unused]]
static constexpr uint32_t kMaxOutOfLine = 0;
static constexpr bool kHasFlexibleEnvelope = false;
static constexpr bool kHasPointer = false;
};
template <>
struct IsFidlType<::test_arrays::wire::StructSmallArray> : public std::true_type {};
template <>
struct IsWire<::test_arrays::wire::StructSmallArray> : public std::true_type {};
template <>
struct IsStruct<::test_arrays::wire::StructSmallArray> : public std::true_type {};
static_assert(std::is_standard_layout_v<::test_arrays::wire::StructSmallArray>);
static_assert(offsetof(::test_arrays::wire::StructSmallArray, a) == 0);
static_assert(sizeof(::test_arrays::wire::StructSmallArray) == TypeTraits<::test_arrays::wire::StructSmallArray>::kPrimarySize);
template <bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::StructSmallArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive> {
static constexpr size_t kInlineSize = 8;
static constexpr auto kMembers = std::make_tuple(::fidl::internal::WireStructMemberCodingInfo<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>());
static constexpr bool kHasPadding = false;
using Base = WireStructCodingTraitsBase<::test_arrays::wire::StructSmallArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive>;
static constexpr bool kIsMemcpyCompatible = Base::kIsMemcpyCompatible;
static void Encode(
internal::WireEncoder* encoder, ::test_arrays::wire::StructSmallArray* value, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
if constexpr (kIsMemcpyCompatible) {
memcpy(position.As<void>(), value, sizeof(::test_arrays::wire::StructSmallArray));
} else {
internal::WireCodingTraits<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::Encode(encoder, &value->a, position + 0, recursion_depth);
}
}
static void Decode(
internal::WireDecoder* decoder, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
if constexpr (!Base::are_members_memcpy_compatible) {
internal::WireCodingTraits<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::Decode(
decoder, position + 0, recursion_depth);
}
}
};
template <>
struct TypeTraits<::test_arrays::wire::StructLargeArray> {
static constexpr uint32_t kMaxNumHandles = 0;
static constexpr uint32_t kMaxDepth = 0;
static constexpr uint32_t kPrimarySize = 400;
[[maybe_unused]]
static constexpr uint32_t kMaxOutOfLine = 0;
static constexpr bool kHasFlexibleEnvelope = false;
static constexpr bool kHasPointer = false;
};
template <>
struct IsFidlType<::test_arrays::wire::StructLargeArray> : public std::true_type {};
template <>
struct IsWire<::test_arrays::wire::StructLargeArray> : public std::true_type {};
template <>
struct IsStruct<::test_arrays::wire::StructLargeArray> : public std::true_type {};
static_assert(std::is_standard_layout_v<::test_arrays::wire::StructLargeArray>);
static_assert(offsetof(::test_arrays::wire::StructLargeArray, a) == 0);
static_assert(sizeof(::test_arrays::wire::StructLargeArray) == TypeTraits<::test_arrays::wire::StructLargeArray>::kPrimarySize);
template <bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::StructLargeArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive> {
static constexpr size_t kInlineSize = 400;
static constexpr auto kMembers = std::make_tuple(::fidl::internal::WireStructMemberCodingInfo<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>());
static constexpr bool kHasPadding = false;
using Base = WireStructCodingTraitsBase<::test_arrays::wire::StructLargeArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive>;
static constexpr bool kIsMemcpyCompatible = Base::kIsMemcpyCompatible;
static void Encode(
internal::WireEncoder* encoder, ::test_arrays::wire::StructLargeArray* value, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
if constexpr (kIsMemcpyCompatible) {
memcpy(position.As<void>(), value, sizeof(::test_arrays::wire::StructLargeArray));
} else {
internal::WireCodingTraits<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::Encode(encoder, &value->a, position + 0, recursion_depth);
}
}
static void Decode(
internal::WireDecoder* decoder, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
if constexpr (!Base::are_members_memcpy_compatible) {
internal::WireCodingTraits<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::Decode(
decoder, position + 0, recursion_depth);
}
}
};
template <>
struct TypeTraits<::test_arrays::wire::TableSmallArray> {
static constexpr uint32_t kMaxNumHandles = 0;
static constexpr uint32_t kMaxDepth = 2;
static constexpr uint32_t kPrimarySize = 16;
[[maybe_unused]]
static constexpr uint32_t kMaxOutOfLine = 16;
static constexpr bool kHasFlexibleEnvelope = true;
static constexpr bool kHasPointer = true;
};
template <>
struct IsFidlType<::test_arrays::wire::TableSmallArray> : public std::true_type {};
template <>
struct IsWire<::test_arrays::wire::TableSmallArray> : public std::true_type {};
template <>
struct IsTable<::test_arrays::wire::TableSmallArray> : public std::true_type {};
static_assert(std::is_standard_layout_v<::test_arrays::wire::TableSmallArray>);
template <bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::TableSmallArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive>
: ::fidl::internal::WireTableCodingTraitsBase<IsRecursive> {
using Base = ::fidl::internal::WireTableCodingTraitsBase<IsRecursive>;
static constexpr size_t kInlineSize = 16;
static constexpr bool kIsMemcpyCompatible = false;
static void Encode(internal::WireEncoder* encoder, ::test_arrays::wire::TableSmallArray* value, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(encoder, 2);
if (!inner_depth.IsValid()) {
return;
}
::fidl::internal::WirePosition vector_position;
if (Base::PreworkResult::kEarlyExit ==
Base::PrepareForBodyEncode(encoder, value, position, &vector_position)) {
return;
}
fidl_vector_t* vec = reinterpret_cast<fidl_vector_t*>(value);
fidl_envelope_t* envelopes = static_cast<fidl_envelope_t*>(vec->data);
for (size_t i = 0; i < vec->count; i++) {
size_t encode_inline_size = 0;
switch (i) {
case 0:
encode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
}
::fidl::internal::EncodeFn<IsRecursive> encode_fn = nullptr;
switch (i) {
case 0:
encode_fn = ::fidl::internal::MakeEncodeFn<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
}
WirePosition envelope_position = vector_position + i * sizeof(fidl_envelope_t);
WireEncodeEnvelope(encode_inline_size, encode_fn, encoder, &envelopes[i], envelope_position, inner_depth);
}
}
static void Decode(internal::WireDecoder* decoder, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(decoder, 2);
if (!inner_depth.IsValid()) {
return;
}
::fidl::internal::WirePosition vector_position;
if (Base::PreworkResult::kEarlyExit == Base::DecodePrework(decoder, position, &vector_position)) {
return;
}
fidl_vector_t* vec = position.As<fidl_vector_t>();
for (size_t i = 0; i < vec->count; i++) {
size_t decode_inline_size = 0;
switch (i) {
case 0:
decode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
}
DecodeFn<IsRecursive> decode_fn = nullptr;
switch (i) {
case 0:
decode_fn = ::fidl::internal::MakeDecodeFn<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
}
::fidl::internal::WireDecodeOptionalEnvelope(decode_inline_size, decode_fn, decoder, vector_position + i * sizeof(fidl_envelope_t), inner_depth);
}
}
};
template <>
struct TypeTraits<::test_arrays::wire::TableLargeArray> {
static constexpr uint32_t kMaxNumHandles = 0;
static constexpr uint32_t kMaxDepth = 2;
static constexpr uint32_t kPrimarySize = 16;
[[maybe_unused]]
static constexpr uint32_t kMaxOutOfLine = 408;
static constexpr bool kHasFlexibleEnvelope = true;
static constexpr bool kHasPointer = true;
};
template <>
struct IsFidlType<::test_arrays::wire::TableLargeArray> : public std::true_type {};
template <>
struct IsWire<::test_arrays::wire::TableLargeArray> : public std::true_type {};
template <>
struct IsTable<::test_arrays::wire::TableLargeArray> : public std::true_type {};
static_assert(std::is_standard_layout_v<::test_arrays::wire::TableLargeArray>);
template <bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::TableLargeArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive>
: ::fidl::internal::WireTableCodingTraitsBase<IsRecursive> {
using Base = ::fidl::internal::WireTableCodingTraitsBase<IsRecursive>;
static constexpr size_t kInlineSize = 16;
static constexpr bool kIsMemcpyCompatible = false;
static void Encode(internal::WireEncoder* encoder, ::test_arrays::wire::TableLargeArray* value, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(encoder, 2);
if (!inner_depth.IsValid()) {
return;
}
::fidl::internal::WirePosition vector_position;
if (Base::PreworkResult::kEarlyExit ==
Base::PrepareForBodyEncode(encoder, value, position, &vector_position)) {
return;
}
fidl_vector_t* vec = reinterpret_cast<fidl_vector_t*>(value);
fidl_envelope_t* envelopes = static_cast<fidl_envelope_t*>(vec->data);
for (size_t i = 0; i < vec->count; i++) {
size_t encode_inline_size = 0;
switch (i) {
case 0:
encode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
}
::fidl::internal::EncodeFn<IsRecursive> encode_fn = nullptr;
switch (i) {
case 0:
encode_fn = ::fidl::internal::MakeEncodeFn<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
}
WirePosition envelope_position = vector_position + i * sizeof(fidl_envelope_t);
WireEncodeEnvelope(encode_inline_size, encode_fn, encoder, &envelopes[i], envelope_position, inner_depth);
}
}
static void Decode(internal::WireDecoder* decoder, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(decoder, 2);
if (!inner_depth.IsValid()) {
return;
}
::fidl::internal::WirePosition vector_position;
if (Base::PreworkResult::kEarlyExit == Base::DecodePrework(decoder, position, &vector_position)) {
return;
}
fidl_vector_t* vec = position.As<fidl_vector_t>();
for (size_t i = 0; i < vec->count; i++) {
size_t decode_inline_size = 0;
switch (i) {
case 0:
decode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
}
DecodeFn<IsRecursive> decode_fn = nullptr;
switch (i) {
case 0:
decode_fn = ::fidl::internal::MakeDecodeFn<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
}
::fidl::internal::WireDecodeOptionalEnvelope(decode_inline_size, decode_fn, decoder, vector_position + i * sizeof(fidl_envelope_t), inner_depth);
}
}
};
template <>
struct TypeTraits<::test_arrays::wire::UnionSmallArray> {
static constexpr uint32_t kMaxNumHandles = 0;
static constexpr uint32_t kMaxDepth = 1;
static constexpr uint32_t kPrimarySize = 16;
[[maybe_unused]]
static constexpr uint32_t kMaxOutOfLine = 8;
static constexpr bool kHasFlexibleEnvelope = false;
static constexpr bool kHasPointer = true;
};
template <>
struct IsFidlType<::test_arrays::wire::UnionSmallArray> : public std::true_type {};
template <>
struct IsWire<::test_arrays::wire::UnionSmallArray> : public std::true_type {};
template <>
struct IsUnion<::test_arrays::wire::UnionSmallArray> : public std::true_type {};
static_assert(std::is_standard_layout_v<::test_arrays::wire::UnionSmallArray>);
template <typename Constraint, bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::UnionSmallArray, Constraint, IsRecursive> {
static constexpr size_t kInlineSize = 16;
static constexpr bool kIsMemcpyCompatible = false;
static void Encode(internal::WireEncoder* encoder, ::test_arrays::wire::UnionSmallArray* value, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
fidl_union_t* u = reinterpret_cast<fidl_union_t*>(value);
if (unlikely(u->tag == 0)) {
if constexpr (Constraint::is_optional) {
*position.As<fidl_union_t>() = {};
return;
}
encoder->SetError(kCodingErrorInvalidUnionTag);
return;
}
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(encoder, 1);
if (!inner_depth.IsValid()) {
return;
}
*position.As<fidl_xunion_tag_t>() = u->tag;
size_t encode_inline_size;
switch (u->tag) {
case 1: // ::test_arrays::wire::UnionSmallArray::Tag::kA
encode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
default:
encode_inline_size = 0;
break;
}
::fidl::internal::EncodeFn<IsRecursive> encode_fn;
switch (u->tag) {
case 1: // ::test_arrays::wire::UnionSmallArray::Tag::kA
encode_fn = ::fidl::internal::MakeEncodeFn<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
default:
encode_fn = nullptr;
break;
}
WireEncodeEnvelope(encode_inline_size, encode_fn, encoder, &u->envelope, position + sizeof(fidl_xunion_tag_t), inner_depth);
}
static void Decode(internal::WireDecoder* decoder, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
::test_arrays::wire::UnionSmallArray::Tag tag = *position.As<::test_arrays::wire::UnionSmallArray::Tag>();
if (unlikely(static_cast<uint64_t>(tag) == 0)) {
if constexpr (!Constraint::is_optional) {
decoder->SetError(kCodingErrorInvalidUnionTag);
return;
}
static_assert(sizeof(fidl_envelope_t) == sizeof(uint64_t));
if (*(position + sizeof(fidl_xunion_tag_t)).As<uint64_t>() != 0) {
decoder->SetError(kCodingErrorZeroTagButNonZeroEnvelope);
}
return;
}
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(decoder, 1);
if (!inner_depth.IsValid()) {
return;
}
size_t decode_inline_size;
switch (tag) {
case ::test_arrays::wire::UnionSmallArray::Tag::kA:
decode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
default:
decode_inline_size = 0;
break;
}
DecodeFn<IsRecursive> decode_fn;
switch (tag) {
case ::test_arrays::wire::UnionSmallArray::Tag::kA:
decode_fn = ::fidl::internal::MakeDecodeFn<::fidl::Array<uint32_t, 2>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
default:
decode_fn = nullptr;
break;
}
::fidl::internal::WireDecodeStrictEnvelope(decode_inline_size, decode_fn, decoder, position + sizeof(fidl_xunion_tag_t), inner_depth);
}
};
// Top-level union.
template <bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::UnionSmallArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive>
: public ::fidl::internal::WireCodingTraits<::test_arrays::wire::UnionSmallArray, ::fidl::internal::WireCodingConstraintUnion<false>, IsRecursive> {};
template <>
struct TypeTraits<::test_arrays::wire::UnionLargeArray> {
static constexpr uint32_t kMaxNumHandles = 0;
static constexpr uint32_t kMaxDepth = 1;
static constexpr uint32_t kPrimarySize = 16;
[[maybe_unused]]
static constexpr uint32_t kMaxOutOfLine = 400;
static constexpr bool kHasFlexibleEnvelope = false;
static constexpr bool kHasPointer = true;
};
template <>
struct IsFidlType<::test_arrays::wire::UnionLargeArray> : public std::true_type {};
template <>
struct IsWire<::test_arrays::wire::UnionLargeArray> : public std::true_type {};
template <>
struct IsUnion<::test_arrays::wire::UnionLargeArray> : public std::true_type {};
static_assert(std::is_standard_layout_v<::test_arrays::wire::UnionLargeArray>);
template <typename Constraint, bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::UnionLargeArray, Constraint, IsRecursive> {
static constexpr size_t kInlineSize = 16;
static constexpr bool kIsMemcpyCompatible = false;
static void Encode(internal::WireEncoder* encoder, ::test_arrays::wire::UnionLargeArray* value, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
fidl_union_t* u = reinterpret_cast<fidl_union_t*>(value);
if (unlikely(u->tag == 0)) {
if constexpr (Constraint::is_optional) {
*position.As<fidl_union_t>() = {};
return;
}
encoder->SetError(kCodingErrorInvalidUnionTag);
return;
}
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(encoder, 1);
if (!inner_depth.IsValid()) {
return;
}
*position.As<fidl_xunion_tag_t>() = u->tag;
size_t encode_inline_size;
switch (u->tag) {
case 1: // ::test_arrays::wire::UnionLargeArray::Tag::kA
encode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
default:
encode_inline_size = 0;
break;
}
::fidl::internal::EncodeFn<IsRecursive> encode_fn;
switch (u->tag) {
case 1: // ::test_arrays::wire::UnionLargeArray::Tag::kA
encode_fn = ::fidl::internal::MakeEncodeFn<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
default:
encode_fn = nullptr;
break;
}
WireEncodeEnvelope(encode_inline_size, encode_fn, encoder, &u->envelope, position + sizeof(fidl_xunion_tag_t), inner_depth);
}
static void Decode(internal::WireDecoder* decoder, ::fidl::internal::WirePosition position, RecursionDepth<IsRecursive> recursion_depth) {
::test_arrays::wire::UnionLargeArray::Tag tag = *position.As<::test_arrays::wire::UnionLargeArray::Tag>();
if (unlikely(static_cast<uint64_t>(tag) == 0)) {
if constexpr (!Constraint::is_optional) {
decoder->SetError(kCodingErrorInvalidUnionTag);
return;
}
static_assert(sizeof(fidl_envelope_t) == sizeof(uint64_t));
if (*(position + sizeof(fidl_xunion_tag_t)).As<uint64_t>() != 0) {
decoder->SetError(kCodingErrorZeroTagButNonZeroEnvelope);
}
return;
}
RecursionDepth<IsRecursive> inner_depth = recursion_depth.Add(decoder, 1);
if (!inner_depth.IsValid()) {
return;
}
size_t decode_inline_size;
switch (tag) {
case ::test_arrays::wire::UnionLargeArray::Tag::kA:
decode_inline_size = ::fidl::internal::WireCodingTraits<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>::kInlineSize;
break;
default:
decode_inline_size = 0;
break;
}
DecodeFn<IsRecursive> decode_fn;
switch (tag) {
case ::test_arrays::wire::UnionLargeArray::Tag::kA:
decode_fn = ::fidl::internal::MakeDecodeFn<::fidl::Array<uint32_t, 100>, fidl::internal::WireCodingConstraintEmpty, IsRecursive>();
break;
default:
decode_fn = nullptr;
break;
}
::fidl::internal::WireDecodeStrictEnvelope(decode_inline_size, decode_fn, decoder, position + sizeof(fidl_xunion_tag_t), inner_depth);
}
};
// Top-level union.
template <bool IsRecursive>
struct ::fidl::internal::WireCodingTraits<::test_arrays::wire::UnionLargeArray, ::fidl::internal::WireCodingConstraintEmpty, IsRecursive>
: public ::fidl::internal::WireCodingTraits<::test_arrays::wire::UnionLargeArray, ::fidl::internal::WireCodingConstraintUnion<false>, IsRecursive> {};
#pragma clang diagnostic pop
} // namespace fidl