blob: 29a50735c8523b101f7994db10da9692643ce28b [file] [log] [blame]
// Copyright 2018 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use point::{TypedPoint2D, TypedPoint3D};
use vector::{TypedVector2D, TypedVector3D};
use num::{One, Zero};
use core::fmt;
use core::marker::PhantomData;
use core::ops::Div;
/// Homogeneous vector in 3D space.
#[derive(EuclidMatrix)]
#[repr(C)]
pub struct HomogeneousVector<T, U> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
impl<T, U> HomogeneousVector<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub fn new(x: T, y: T, z: T, w: T) -> Self {
HomogeneousVector { x, y, z, w, _unit: PhantomData }
}
}
impl<T: Copy + Div<T, Output=T> + Zero + PartialOrd, U> HomogeneousVector<T, U> {
/// Convert into Cartesian 2D point.
///
/// Returns None if the point is on or behind the W=0 hemisphere.
#[inline]
pub fn to_point2d(&self) -> Option<TypedPoint2D<T, U>> {
if self.w > T::zero() {
Some(TypedPoint2D::new(self.x / self.w, self.y / self.w))
} else {
None
}
}
/// Convert into Cartesian 3D point.
///
/// Returns None if the point is on or behind the W=0 hemisphere.
#[inline]
pub fn to_point3d(&self) -> Option<TypedPoint3D<T, U>> {
if self.w > T::zero() {
Some(TypedPoint3D::new(self.x / self.w, self.y / self.w, self.z / self.w))
} else {
None
}
}
}
impl<T: Zero, U> From<TypedVector2D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(v: TypedVector2D<T, U>) -> Self {
HomogeneousVector::new(v.x, v.y, T::zero(), T::zero())
}
}
impl<T: Zero, U> From<TypedVector3D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(v: TypedVector3D<T, U>) -> Self {
HomogeneousVector::new(v.x, v.y, v.z, T::zero())
}
}
impl<T: Zero + One, U> From<TypedPoint2D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(p: TypedPoint2D<T, U>) -> Self {
HomogeneousVector::new(p.x, p.y, T::zero(), T::one())
}
}
impl<T: One, U> From<TypedPoint3D<T, U>> for HomogeneousVector<T, U> {
#[inline]
fn from(p: TypedPoint3D<T, U>) -> Self {
HomogeneousVector::new(p.x, p.y, p.z, T::one())
}
}
impl<T: fmt::Debug, U> fmt::Debug for HomogeneousVector<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?},{:?},{:?},{:?})", self.x, self.y, self.z, self.w)
}
}
impl<T: fmt::Display, U> fmt::Display for HomogeneousVector<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({},{},{},{})", self.x, self.y, self.z, self.w)
}
}
#[cfg(test)]
mod homogeneous {
use super::HomogeneousVector;
use point::{Point2D, Point3D};
#[test]
fn roundtrip() {
assert_eq!(Some(Point2D::new(1.0, 2.0)), HomogeneousVector::from(Point2D::new(1.0, 2.0)).to_point2d());
assert_eq!(Some(Point3D::new(1.0, -2.0, 0.1)), HomogeneousVector::from(Point3D::new(1.0, -2.0, 0.1)).to_point3d());
}
#[test]
fn negative() {
assert_eq!(None, HomogeneousVector::<f32, ()>::new(1.0, 2.0, 3.0, 0.0).to_point2d());
assert_eq!(None, HomogeneousVector::<f32, ()>::new(1.0, -2.0, -3.0, -2.0).to_point3d());
}
}