blob: 65a2b216ec89fb43ba75dcaad12581a7e28dfaf0 [file] [log] [blame]
//! A procedural macro attribute for instrumenting functions with [`tracing`].
//!
//! [`tracing`] is a framework for instrumenting Rust programs to collect
//! structured, event-based diagnostic information. This crate provides the
//! [`#[instrument]`][instrument] procedural macro attribute.
//!
//! Note that this macro is also re-exported by the main `tracing` crate.
//!
//! *Compiler support: [requires `rustc` 1.42+][msrv]*
//!
//! [msrv]: #supported-rust-versions
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! tracing-attributes = "0.1.13"
//! ```
//!
//! The [`#[instrument]`][instrument] attribute can now be added to a function
//! to automatically create and enter `tracing` [span] when that function is
//! called. For example:
//!
//! ```
//! use tracing_attributes::instrument;
//!
//! #[instrument]
//! pub fn my_function(my_arg: usize) {
//! // ...
//! }
//!
//! # fn main() {}
//! ```
//!
//! [`tracing`]: https://crates.io/crates/tracing
//! [span]: https://docs.rs/tracing/latest/tracing/span/index.html
//! [instrument]: attr.instrument.html
//!
//! ## Supported Rust Versions
//!
//! Tracing is built against the latest stable release. The minimum supported
//! version is 1.42. The current Tracing version is not guaranteed to build on
//! Rust versions earlier than the minimum supported version.
//!
//! Tracing follows the same compiler support policies as the rest of the Tokio
//! project. The current stable Rust compiler and the three most recent minor
//! versions before it will always be supported. For example, if the current
//! stable compiler version is 1.45, the minimum supported version will not be
//! increased past 1.42, three minor versions prior. Increasing the minimum
//! supported compiler version is not considered a semver breaking change as
//! long as doing so complies with this policy.
//!
#![doc(html_root_url = "https://docs.rs/tracing-attributes/0.1.13")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/tokio-rs/tracing/master/assets/logo-type.png",
issue_tracker_base_url = "https://github.com/tokio-rs/tracing/issues/"
)]
#![cfg_attr(docsrs, deny(broken_intra_doc_links))]
#![warn(
missing_debug_implementations,
missing_docs,
rust_2018_idioms,
unreachable_pub,
bad_style,
const_err,
dead_code,
improper_ctypes,
non_shorthand_field_patterns,
no_mangle_generic_items,
overflowing_literals,
path_statements,
patterns_in_fns_without_body,
private_in_public,
unconditional_recursion,
unused,
unused_allocation,
unused_comparisons,
unused_parens,
while_true
)]
// TODO: once `tracing` bumps its MSRV to 1.42, remove this allow.
#![allow(unused)]
extern crate proc_macro;
use std::collections::{HashMap, HashSet};
use std::iter;
use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens, TokenStreamExt as _};
use syn::ext::IdentExt as _;
use syn::parse::{Parse, ParseStream};
use syn::{
punctuated::Punctuated, spanned::Spanned, AttributeArgs, Block, Expr, ExprCall, FieldPat,
FnArg, Ident, Item, ItemFn, Lit, LitInt, LitStr, Meta, MetaList, MetaNameValue, NestedMeta,
Pat, PatIdent, PatReference, PatStruct, PatTuple, PatTupleStruct, PatType, Path, Signature,
Stmt, Token,
};
/// Instruments a function to create and enter a `tracing` [span] every time
/// the function is called.
///
/// By default, the generated span's [name] will be the name of the function,
/// the span's [target] will be the current module path, and the span's [level]
/// will be [`INFO`], although these properties can be overridden. Any arguments
/// to that function will be recorded as fields using [`fmt::Debug`].
///
/// # Overriding Span Attributes
///
/// To change the [name] of the generated span, add a `name` argument to the
/// `#[instrument]` macro, followed by an equals sign and a string literal. For
/// example:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // The generated span's name will be "my_span" rather than "my_function".
/// #[instrument(name = "my_span")]
/// pub fn my_function() {
/// // ... do something incredibly interesting and important ...
/// }
/// ```
///
/// To override the [target] of the generated span, add a `target` argument to
/// the `#[instrument]` macro, followed by an equals sign and a string literal
/// for the new target. The [module path] is still recorded separately. For
/// example:
///
/// ```
/// pub mod my_module {
/// # use tracing_attributes::instrument;
/// // The generated span's target will be "my_crate::some_special_target",
/// // rather than "my_crate::my_module".
/// #[instrument(target = "my_crate::some_special_target")]
/// pub fn my_function() {
/// // ... all kinds of neat code in here ...
/// }
/// }
/// ```
///
/// Finally, to override the [level] of the generated span, add a `level`
/// argument, followed by an equals sign and a string literal with the name of
/// the desired level. Level names are not case sensitive. For example:
///
/// ```
/// # use tracing_attributes::instrument;
/// // The span's level will be TRACE rather than INFO.
/// #[instrument(level = "trace")]
/// pub fn my_function() {
/// // ... I have written a truly marvelous implementation of this function,
/// // which this example is too narrow to contain ...
/// }
/// ```
///
/// # Skipping Fields
///
/// To skip recording one or more arguments to a function or method, pass
/// the argument's name inside the `skip()` argument on the `#[instrument]`
/// macro. This can be used when an argument to an instrumented function does
/// not implement [`fmt::Debug`], or to exclude an argument with a verbose or
/// costly `Debug` implementation. Note that:
///
/// - multiple argument names can be passed to `skip`.
/// - arguments passed to `skip` do _not_ need to implement `fmt::Debug`.
///
/// ## Examples
///
/// ```
/// # use tracing_attributes::instrument;
/// // This type doesn't implement `fmt::Debug`!
/// struct NonDebug;
///
/// // `arg` will be recorded, while `non_debug` will not.
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
/// // ...
/// }
/// ```
///
/// Skipping the `self` parameter:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[derive(Debug)]
/// struct MyType {
/// data: Vec<u8>, // Suppose this buffer is often quite long...
/// }
///
/// impl MyType {
/// // Suppose we don't want to print an entire kilobyte of `data`
/// // every time this is called...
/// #[instrument(skip(self))]
/// pub fn my_method(&mut self, an_interesting_argument: usize) {
/// // ... do something (hopefully, using all that `data`!)
/// }
/// }
/// ```
///
/// # Adding Fields
///
/// Additional fields (key-value pairs with arbitrary data) may be added to the
/// generated span using the `fields` argument on the `#[instrument]` macro. Any
/// Rust expression can be used as a field value in this manner. These
/// expressions will be evaluated at the beginning of the function's body, so
/// arguments to the function may be used in these expressions. Field names may
/// also be specified *without* values. Doing so will result in an [empty field]
/// whose value may be recorded later within the function body.
///
/// This supports the same [field syntax] as the `span!` and `event!` macros.
///
/// Note that overlap between the names of fields and (non-skipped) arguments
/// will result in a compile error.
///
/// ## Examples
///
/// Adding a new field based on the value of an argument:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This will record a field named "i" with the value of `i` *and* a field
/// // named "next" with the value of `i` + 1.
/// #[instrument(fields(next = i + 1))]
/// pub fn my_function(i: usize) {
/// // ...
/// }
/// ```
///
/// Recording specific properties of a struct as their own fields:
///
/// ```
/// # mod http {
/// # pub struct Error;
/// # pub struct Response<B> { pub(super) _b: std::marker::PhantomData<B> }
/// # pub struct Request<B> { _b: B }
/// # impl<B> std::fmt::Debug for Request<B> {
/// # fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
/// # f.pad("request")
/// # }
/// # }
/// # impl<B> Request<B> {
/// # pub fn uri(&self) -> &str { "fake" }
/// # pub fn method(&self) -> &str { "GET" }
/// # }
/// # }
/// # use tracing_attributes::instrument;
///
/// // This will record the request's URI and HTTP method as their own separate
/// // fields.
/// #[instrument(fields(http.uri = req.uri(), http.method = req.method()))]
/// pub fn handle_request<B>(req: http::Request<B>) -> http::Response<B> {
/// // ... handle the request ...
/// # http::Response { _b: std::marker::PhantomData }
/// }
/// ```
///
/// This can be used in conjunction with `skip` to record only some fields of a
/// struct:
/// ```
/// # use tracing_attributes::instrument;
/// // Remember the struct with the very large `data` field from the earlier
/// // example? Now it also has a `name`, which we might want to include in
/// // our span.
/// #[derive(Debug)]
/// struct MyType {
/// name: &'static str,
/// data: Vec<u8>,
/// }
///
/// impl MyType {
/// // This will skip the `data` field, but will include `self.name`,
/// // formatted using `fmt::Display`.
/// #[instrument(skip(self), fields(self.name = %self.name))]
/// pub fn my_method(&mut self, an_interesting_argument: usize) {
/// // ... do something (hopefully, using all that `data`!)
/// }
/// }
/// ```
///
/// Adding an empty field to be recorded later:
///
/// ```
/// # use tracing_attributes::instrument;
///
/// // This function does a very interesting and important mathematical calculation.
/// // Suppose we want to record both the inputs to the calculation *and* its result...
/// #[instrument(fields(result))]
/// pub fn do_calculation(input_1: usize, input_2: usize) -> usize {
/// // Rerform the calculation.
/// let result = input_1 + input_2;
///
/// // Record the result as part of the current span.
/// tracing::Span::current().record("result", &result);
///
/// // Now, the result will also be included on this event!
/// tracing::info!("calculation complete!");
///
/// // ... etc ...
/// # 0
/// }
/// ```
///
/// # Examples
///
/// Instrumenting a function:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub fn my_function(my_arg: usize) {
/// // This event will be recorded inside a span named `my_function` with the
/// // field `my_arg`.
/// tracing::info!("inside my_function!");
/// // ...
/// }
/// ```
/// Setting the level for the generated span:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(level = "debug")]
/// pub fn my_function() {
/// // ...
/// }
/// ```
/// Overriding the generated span's name:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(name = "my_name")]
/// pub fn my_function() {
/// // ...
/// }
/// ```
/// Overriding the generated span's target:
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(target = "my_target")]
/// pub fn my_function() {
/// // ...
/// }
/// ```
///
/// To skip recording an argument, pass the argument's name to the `skip`:
///
/// ```
/// # use tracing_attributes::instrument;
/// struct NonDebug;
///
/// #[instrument(skip(non_debug))]
/// fn my_function(arg: usize, non_debug: NonDebug) {
/// // ...
/// }
/// ```
///
/// To add an additional context to the span, pass key-value pairs to `fields`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(fields(foo="bar", id=1, show=true))]
/// fn my_function(arg: usize) {
/// // ...
/// }
/// ```
///
/// If the function returns a `Result<T, E>` and `E` implements `std::fmt::Display`, you can add
/// `err` to emit error events when the function returns `Err`:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument(err)]
/// fn my_function(arg: usize) -> Result<(), std::io::Error> {
/// Ok(())
/// }
/// ```
///
/// `async fn`s may also be instrumented:
///
/// ```
/// # use tracing_attributes::instrument;
/// #[instrument]
/// pub async fn my_function() -> Result<(), ()> {
/// // ...
/// # Ok(())
/// }
/// ```
///
/// It also works with [async-trait](https://crates.io/crates/async-trait)
/// (a crate that allows defining async functions in traits,
/// something not currently possible in Rust),
/// and hopefully most libraries that exhibit similar behaviors:
///
/// ```
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Foo {
/// async fn foo(&self, arg: usize);
/// }
///
/// #[derive(Debug)]
/// struct FooImpl(usize);
///
/// #[async_trait]
/// impl Foo for FooImpl {
/// #[instrument(fields(value = self.0, tmp = std::any::type_name::<Self>()))]
/// async fn foo(&self, arg: usize) {}
/// }
/// ```
///
/// An interesting note on this subject is that references to the `Self`
/// type inside the `fields` argument are only allowed when the instrumented
/// function is a method aka. the function receives `self` as an argument.
/// For example, this *will not work* because it doesn't receive `self`:
/// ```compile_fail
/// # use tracing::instrument;
/// use async_trait::async_trait;
///
/// #[async_trait]
/// pub trait Bar {
/// async fn bar();
/// }
///
/// #[derive(Debug)]
/// struct BarImpl(usize);
///
/// #[async_trait]
/// impl Bar for BarImpl {
/// #[instrument(fields(tmp = std::any::type_name::<Self>()))]
/// async fn bar() {}
/// }
/// ```
/// Instead, you should manually rewrite any `Self` types as the type for
/// which you implement the trait: `#[instrument(fields(tmp = std::any::type_name::<Bar>()))]`.
///
/// [span]: https://docs.rs/tracing/latest/tracing/span/index.html
/// [name]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.name
/// [target]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.target
/// [level]: https://docs.rs/tracing/latest/tracing/struct.Level.html
/// [module path]: https://docs.rs/tracing/latest/tracing/struct.Metadata.html#method.module_path
/// [`INFO`]: https://docs.rs/tracing/latest/tracing/struct.Level.html#associatedconstant.INFO
/// [empty field]: https://docs.rs/tracing/latest/tracing/field/struct.Empty.html
/// [field syntax]: https://docs.rs/tracing/latest/tracing/#recording-fields
/// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
#[proc_macro_attribute]
pub fn instrument(
args: proc_macro::TokenStream,
item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let input: ItemFn = syn::parse_macro_input!(item as ItemFn);
let args = syn::parse_macro_input!(args as InstrumentArgs);
let instrumented_function_name = input.sig.ident.to_string();
// check for async_trait-like patterns in the block and wrap the
// internal function with Instrument instead of wrapping the
// async_trait generated wrapper
if let Some(internal_fun) = get_async_trait_info(&input.block, input.sig.asyncness.is_some()) {
// let's rewrite some statements!
let mut stmts: Vec<Stmt> = input.block.stmts.to_vec();
for stmt in &mut stmts {
if let Stmt::Item(Item::Fn(fun)) = stmt {
// instrument the function if we considered it as the one we truly want to trace
if fun.sig.ident == internal_fun.name {
*stmt = syn::parse2(gen_body(
fun,
args,
instrumented_function_name,
Some(internal_fun),
))
.unwrap();
break;
}
}
}
let vis = &input.vis;
let sig = &input.sig;
let attrs = &input.attrs;
quote!(
#(#attrs) *
#vis #sig {
#(#stmts) *
}
)
.into()
} else {
gen_body(&input, args, instrumented_function_name, None).into()
}
}
fn gen_body(
input: &ItemFn,
mut args: InstrumentArgs,
instrumented_function_name: String,
async_trait_fun: Option<AsyncTraitInfo>,
) -> proc_macro2::TokenStream {
// these are needed ahead of time, as ItemFn contains the function body _and_
// isn't representable inside a quote!/quote_spanned! macro
// (Syn's ToTokens isn't implemented for ItemFn)
let ItemFn {
attrs,
vis,
block,
sig,
..
} = input;
let Signature {
output: return_type,
inputs: params,
unsafety,
asyncness,
constness,
abi,
ident,
generics:
syn::Generics {
params: gen_params,
where_clause,
..
},
..
} = sig;
let err = args.err;
let warnings = args.warnings();
// generate the span's name
let span_name = args
// did the user override the span's name?
.name
.as_ref()
.map(|name| quote!(#name))
.unwrap_or_else(|| quote!(#instrumented_function_name));
// generate this inside a closure, so we can return early on errors.
let span = (|| {
// Pull out the arguments-to-be-skipped first, so we can filter results
// below.
let param_names: Vec<(Ident, Ident)> = params
.clone()
.into_iter()
.flat_map(|param| match param {
FnArg::Typed(PatType { pat, .. }) => param_names(*pat),
FnArg::Receiver(_) => Box::new(iter::once(Ident::new("self", param.span()))),
})
// Little dance with new (user-exposed) names and old (internal)
// names of identifiers. That way, you can do the following
// even though async_trait rewrite "self" as "_self":
// ```
// #[async_trait]
// impl Foo for FooImpl {
// #[instrument(skip(self))]
// async fn foo(&self, v: usize) {}
// }
// ```
.map(|x| {
// if we are inside a function generated by async-trait, we
// should take care to rewrite "_self" as "self" for
// 'user convenience'
if async_trait_fun.is_some() && x == "_self" {
(Ident::new("self", x.span()), x)
} else {
(x.clone(), x)
}
})
.collect();
for skip in &args.skips {
if !param_names.iter().map(|(user, _)| user).any(|y| y == skip) {
return quote_spanned! {skip.span()=>
compile_error!("attempting to skip non-existent parameter")
};
}
}
let level = args.level();
let target = args.target();
// filter out skipped fields
let mut quoted_fields: Vec<_> = param_names
.into_iter()
.filter(|(param, _)| {
if args.skips.contains(param) {
return false;
}
// If any parameters have the same name as a custom field, skip
// and allow them to be formatted by the custom field.
if let Some(ref fields) = args.fields {
fields.0.iter().all(|Field { ref name, .. }| {
let first = name.first();
first != name.last() || !first.iter().any(|name| name == &param)
})
} else {
true
}
})
.map(|(user_name, real_name)| quote!(#user_name = tracing::field::debug(&#real_name)))
.collect();
// when async-trait is in use, replace instances of "self" with "_self" inside the fields values
if let (Some(ref async_trait_fun), Some(Fields(ref mut fields))) =
(async_trait_fun, &mut args.fields)
{
let mut replacer = SelfReplacer {
ty: async_trait_fun.self_type.clone(),
};
for e in fields.iter_mut().filter_map(|f| f.value.as_mut()) {
syn::visit_mut::visit_expr_mut(&mut replacer, e);
}
}
let custom_fields = &args.fields;
quote!(tracing::span!(
target: #target,
#level,
#span_name,
#(#quoted_fields,)*
#custom_fields
))
})();
// Generate the instrumented function body.
// If the function is an `async fn`, this will wrap it in an async block,
// which is `instrument`ed using `tracing-futures`. Otherwise, this will
// enter the span and then perform the rest of the body.
// If `err` is in args, instrument any resulting `Err`s.
let body = if asyncness.is_some() {
if err {
quote_spanned! {block.span()=>
let __tracing_attr_span = #span;
tracing::Instrument::instrument(async move {
match async move { #block }.await {
#[allow(clippy::unit_arg)]
Ok(x) => Ok(x),
Err(e) => {
tracing::error!(error = %e);
Err(e)
}
}
}, __tracing_attr_span).await
}
} else {
quote_spanned!(block.span()=>
let __tracing_attr_span = #span;
tracing::Instrument::instrument(
async move { #block },
__tracing_attr_span
)
.await
)
}
} else if err {
quote_spanned!(block.span()=>
let __tracing_attr_span = #span;
let __tracing_attr_guard = __tracing_attr_span.enter();
#[allow(clippy::redundant_closure_call)]
match (move || #block)() {
#[allow(clippy::unit_arg)]
Ok(x) => Ok(x),
Err(e) => {
tracing::error!(error = %e);
Err(e)
}
}
)
} else {
quote_spanned!(block.span()=>
let __tracing_attr_span = #span;
let __tracing_attr_guard = __tracing_attr_span.enter();
#block
)
};
quote!(
#(#attrs) *
#vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #return_type
#where_clause
{
#warnings
#body
}
)
}
#[derive(Default, Debug)]
struct InstrumentArgs {
level: Option<Level>,
name: Option<LitStr>,
target: Option<LitStr>,
skips: HashSet<Ident>,
fields: Option<Fields>,
err: bool,
/// Errors describing any unrecognized parse inputs that we skipped.
parse_warnings: Vec<syn::Error>,
}
impl InstrumentArgs {
fn level(&self) -> impl ToTokens {
fn is_level(lit: &LitInt, expected: u64) -> bool {
match lit.base10_parse::<u64>() {
Ok(value) => value == expected,
Err(_) => false,
}
}
match &self.level {
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("trace") => {
quote!(tracing::Level::TRACE)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("debug") => {
quote!(tracing::Level::DEBUG)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("info") => {
quote!(tracing::Level::INFO)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("warn") => {
quote!(tracing::Level::WARN)
}
Some(Level::Str(ref lit)) if lit.value().eq_ignore_ascii_case("error") => {
quote!(tracing::Level::ERROR)
}
Some(Level::Int(ref lit)) if is_level(lit, 1) => quote!(tracing::Level::TRACE),
Some(Level::Int(ref lit)) if is_level(lit, 2) => quote!(tracing::Level::DEBUG),
Some(Level::Int(ref lit)) if is_level(lit, 3) => quote!(tracing::Level::INFO),
Some(Level::Int(ref lit)) if is_level(lit, 4) => quote!(tracing::Level::WARN),
Some(Level::Int(ref lit)) if is_level(lit, 5) => quote!(tracing::Level::ERROR),
Some(Level::Path(ref pat)) => quote!(#pat),
Some(lit) => quote! {
compile_error!(
"unknown verbosity level, expected one of \"trace\", \
\"debug\", \"info\", \"warn\", or \"error\", or a number 1-5"
)
},
None => quote!(tracing::Level::INFO),
}
}
fn target(&self) -> impl ToTokens {
if let Some(ref target) = self.target {
quote!(#target)
} else {
quote!(module_path!())
}
}
/// Generate "deprecation" warnings for any unrecognized attribute inputs
/// that we skipped.
///
/// For backwards compatibility, we need to emit compiler warnings rather
/// than errors for unrecognized inputs. Generating a fake deprecation is
/// the only way to do this on stable Rust right now.
fn warnings(&self) -> impl ToTokens {
let warnings = self.parse_warnings.iter().map(|err| {
let msg = format!("found unrecognized input, {}", err);
let msg = LitStr::new(&msg, err.span());
// TODO(eliza): This is a bit of a hack, but it's just about the
// only way to emit warnings from a proc macro on stable Rust.
// Eventually, when the `proc_macro::Diagnostic` API stabilizes, we
// should definitely use that instead.
quote_spanned! {err.span()=>
#[warn(deprecated)]
{
#[deprecated(since = "not actually deprecated", note = #msg)]
const TRACING_INSTRUMENT_WARNING: () = ();
let _ = TRACING_INSTRUMENT_WARNING;
}
}
});
quote! {
{ #(#warnings)* }
}
}
}
impl Parse for InstrumentArgs {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let mut args = Self::default();
while !input.is_empty() {
let lookahead = input.lookahead1();
if lookahead.peek(kw::name) {
if args.name.is_some() {
return Err(input.error("expected only a single `name` argument"));
}
let name = input.parse::<StrArg<kw::name>>()?.value;
args.name = Some(name);
} else if lookahead.peek(LitStr) {
// XXX: apparently we support names as either named args with an
// sign, _or_ as unnamed string literals. That's weird, but
// changing it is apparently breaking.
if args.name.is_some() {
return Err(input.error("expected only a single `name` argument"));
}
args.name = Some(input.parse()?);
} else if lookahead.peek(kw::target) {
if args.target.is_some() {
return Err(input.error("expected only a single `target` argument"));
}
let target = input.parse::<StrArg<kw::target>>()?.value;
args.target = Some(target);
} else if lookahead.peek(kw::level) {
if args.level.is_some() {
return Err(input.error("expected only a single `level` argument"));
}
args.level = Some(input.parse()?);
} else if lookahead.peek(kw::skip) {
if !args.skips.is_empty() {
return Err(input.error("expected only a single `skip` argument"));
}
let Skips(skips) = input.parse()?;
args.skips = skips;
} else if lookahead.peek(kw::fields) {
if args.fields.is_some() {
return Err(input.error("expected only a single `fields` argument"));
}
args.fields = Some(input.parse()?);
} else if lookahead.peek(kw::err) {
let _ = input.parse::<kw::err>()?;
args.err = true;
} else if lookahead.peek(Token![,]) {
let _ = input.parse::<Token![,]>()?;
} else {
// We found a token that we didn't expect!
// We want to emit warnings for these, rather than errors, so
// we'll add it to the list of unrecognized inputs we've seen so
// far and keep going.
args.parse_warnings.push(lookahead.error());
// Parse the unrecognized token tree to advance the parse
// stream, and throw it away so we can keep parsing.
let _ = input.parse::<proc_macro2::TokenTree>();
}
}
Ok(args)
}
}
struct StrArg<T> {
value: LitStr,
_p: std::marker::PhantomData<T>,
}
impl<T: Parse> Parse for StrArg<T> {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<T>()?;
let _ = input.parse::<Token![=]>()?;
let value = input.parse()?;
Ok(Self {
value,
_p: std::marker::PhantomData,
})
}
}
struct Skips(HashSet<Ident>);
impl Parse for Skips {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<kw::skip>();
let content;
let _ = syn::parenthesized!(content in input);
let names: Punctuated<Ident, Token![,]> = content.parse_terminated(Ident::parse_any)?;
let mut skips = HashSet::new();
for name in names {
if skips.contains(&name) {
return Err(syn::Error::new(
name.span(),
"tried to skip the same field twice",
));
} else {
skips.insert(name);
}
}
Ok(Self(skips))
}
}
#[derive(Debug)]
struct Fields(Punctuated<Field, Token![,]>);
#[derive(Debug)]
struct Field {
name: Punctuated<Ident, Token![.]>,
value: Option<Expr>,
kind: FieldKind,
}
#[derive(Debug, Eq, PartialEq)]
enum FieldKind {
Debug,
Display,
Value,
}
impl Parse for Fields {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<kw::fields>();
let content;
let _ = syn::parenthesized!(content in input);
let fields: Punctuated<_, Token![,]> = content.parse_terminated(Field::parse)?;
Ok(Self(fields))
}
}
impl ToTokens for Fields {
fn to_tokens(&self, tokens: &mut TokenStream) {
self.0.to_tokens(tokens)
}
}
impl Parse for Field {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let mut kind = FieldKind::Value;
if input.peek(Token![%]) {
input.parse::<Token![%]>()?;
kind = FieldKind::Display;
} else if input.peek(Token![?]) {
input.parse::<Token![?]>()?;
kind = FieldKind::Debug;
};
let name = Punctuated::parse_separated_nonempty_with(input, Ident::parse_any)?;
let value = if input.peek(Token![=]) {
input.parse::<Token![=]>()?;
if input.peek(Token![%]) {
input.parse::<Token![%]>()?;
kind = FieldKind::Display;
} else if input.peek(Token![?]) {
input.parse::<Token![?]>()?;
kind = FieldKind::Debug;
};
Some(input.parse()?)
} else {
None
};
Ok(Self { name, kind, value })
}
}
impl ToTokens for Field {
fn to_tokens(&self, tokens: &mut TokenStream) {
if let Some(ref value) = self.value {
let name = &self.name;
let kind = &self.kind;
tokens.extend(quote! {
#name = #kind#value
})
} else if self.kind == FieldKind::Value {
// XXX(eliza): I don't like that fields without values produce
// empty fields rather than local variable shorthand...but,
// we've released a version where field names without values in
// `instrument` produce empty field values, so changing it now
// is a breaking change. agh.
let name = &self.name;
tokens.extend(quote!(#name = tracing::field::Empty))
} else {
self.kind.to_tokens(tokens);
self.name.to_tokens(tokens);
}
}
}
impl ToTokens for FieldKind {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
FieldKind::Debug => tokens.extend(quote! { ? }),
FieldKind::Display => tokens.extend(quote! { % }),
_ => {}
}
}
}
#[derive(Debug)]
enum Level {
Str(LitStr),
Int(LitInt),
Path(Path),
}
impl Parse for Level {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let _ = input.parse::<kw::level>()?;
let _ = input.parse::<Token![=]>()?;
let lookahead = input.lookahead1();
if lookahead.peek(LitStr) {
Ok(Self::Str(input.parse()?))
} else if lookahead.peek(LitInt) {
Ok(Self::Int(input.parse()?))
} else if lookahead.peek(Ident) {
Ok(Self::Path(input.parse()?))
} else {
Err(lookahead.error())
}
}
}
fn param_names(pat: Pat) -> Box<dyn Iterator<Item = Ident>> {
match pat {
Pat::Ident(PatIdent { ident, .. }) => Box::new(iter::once(ident)),
Pat::Reference(PatReference { pat, .. }) => param_names(*pat),
Pat::Struct(PatStruct { fields, .. }) => Box::new(
fields
.into_iter()
.flat_map(|FieldPat { pat, .. }| param_names(*pat)),
),
Pat::Tuple(PatTuple { elems, .. }) => Box::new(elems.into_iter().flat_map(param_names)),
Pat::TupleStruct(PatTupleStruct {
pat: PatTuple { elems, .. },
..
}) => Box::new(elems.into_iter().flat_map(param_names)),
// The above *should* cover all cases of irrefutable patterns,
// but we purposefully don't do any funny business here
// (such as panicking) because that would obscure rustc's
// much more informative error message.
_ => Box::new(iter::empty()),
}
}
mod kw {
syn::custom_keyword!(fields);
syn::custom_keyword!(skip);
syn::custom_keyword!(level);
syn::custom_keyword!(target);
syn::custom_keyword!(name);
syn::custom_keyword!(err);
}
// Get the AST of the inner function we need to hook, if it was generated
// by async-trait.
// When we are given a function annotated by async-trait, that function
// is only a placeholder that returns a pinned future containing the
// user logic, and it is that pinned future that needs to be instrumented.
// Were we to instrument its parent, we would only collect information
// regarding the allocation of that future, and not its own span of execution.
// So we inspect the block of the function to find if it matches the pattern
// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))` and we return
// the name `foo` if that is the case. 'gen_body' will then be able
// to use that information to instrument the proper function.
// (this follows the approach suggested in
// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
fn get_async_trait_function(block: &Block, block_is_async: bool) -> Option<&ItemFn> {
// are we in an async context? If yes, this isn't a async_trait-like pattern
if block_is_async {
return None;
}
// list of async functions declared inside the block
let mut inside_funs = Vec::new();
// last expression declared in the block (it determines the return
// value of the block, so that if we are working on a function
// whose `trait` or `impl` declaration is annotated by async_trait,
// this is quite likely the point where the future is pinned)
let mut last_expr = None;
// obtain the list of direct internal functions and the last
// expression of the block
for stmt in &block.stmts {
if let Stmt::Item(Item::Fn(fun)) = &stmt {
// is the function declared as async? If so, this is a good
// candidate, let's keep it in hand
if fun.sig.asyncness.is_some() {
inside_funs.push(fun);
}
} else if let Stmt::Expr(e) = &stmt {
last_expr = Some(e);
}
}
// let's play with (too much) pattern matching
// is the last expression a function call?
if let Some(Expr::Call(ExprCall {
func: outside_func,
args: outside_args,
..
})) = last_expr
{
if let Expr::Path(path) = outside_func.as_ref() {
// is it a call to `Box::pin()`?
if "Box::pin" == path_to_string(&path.path) {
// does it takes at least an argument? (if it doesn't,
// it's not gonna compile anyway, but that's no reason
// to (try to) perform an out of bounds access)
if outside_args.is_empty() {
return None;
}
// is the argument to Box::pin a function call itself?
if let Expr::Call(ExprCall { func, args, .. }) = &outside_args[0] {
if let Expr::Path(inside_path) = func.as_ref() {
// "stringify" the path of the function called
let func_name = path_to_string(&inside_path.path);
// is this function directly defined insided the current block?
for fun in inside_funs {
if fun.sig.ident == func_name {
// we must hook this function now
return Some(fun);
}
}
}
}
}
}
}
None
}
struct AsyncTraitInfo {
name: String,
self_type: Option<syn::TypePath>,
}
// Return the informations necessary to process a function annotated with async-trait.
fn get_async_trait_info(block: &Block, block_is_async: bool) -> Option<AsyncTraitInfo> {
let fun = get_async_trait_function(block, block_is_async)?;
// if "_self" is present as an argument, we store its type to be able to rewrite "Self" (the
// parameter type) with the type of "_self"
let self_type = fun
.sig
.inputs
.iter()
.map(|arg| {
if let FnArg::Typed(ty) = arg {
if let Pat::Ident(PatIdent { ident, .. }) = &*ty.pat {
if ident == "_self" {
let mut ty = &*ty.ty;
// extract the inner type if the argument is "&self" or "&mut self"
if let syn::Type::Reference(syn::TypeReference { elem, .. }) = ty {
ty = &*elem;
}
if let syn::Type::Path(tp) = ty {
return Some(tp.clone());
}
}
}
}
None
})
.next();
let self_type = match self_type {
Some(x) => x,
None => None,
};
Some(AsyncTraitInfo {
name: fun.sig.ident.to_string(),
self_type,
})
}
// Return a path as a String
fn path_to_string(path: &Path) -> String {
use std::fmt::Write;
// some heuristic to prevent too many allocations
let mut res = String::with_capacity(path.segments.len() * 5);
for i in 0..path.segments.len() {
write!(&mut res, "{}", path.segments[i].ident)
.expect("writing to a String should never fail");
if i < path.segments.len() - 1 {
res.push_str("::");
}
}
res
}
// A visitor struct replacing the "self" and "Self" tokens in user-supplied fields expressions when
// the function is generated by async-trait.
struct SelfReplacer {
ty: Option<syn::TypePath>,
}
impl syn::visit_mut::VisitMut for SelfReplacer {
fn visit_ident_mut(&mut self, id: &mut Ident) {
if id == "self" {
*id = Ident::new("_self", id.span())
}
}
fn visit_type_mut(&mut self, ty: &mut syn::Type) {
if let syn::Type::Path(syn::TypePath { ref mut path, .. }) = ty {
if path_to_string(path) == "Self" {
if let Some(ref true_type) = self.ty {
*path = true_type.path.clone();
}
}
}
}
}