blob: bc1961db408a5e43ad9273aec22873876ec9c1d4 [file] [log] [blame]
//! Thread parking and unparking.
//!
//! A parker is in either notified or unnotified state. Method [`park()`][`Parker::park()`] blocks
//! the current thread until the parker becomes notified and then puts it back into unnotified
//! state. Method [`unpark()`][`Unparker::unpark()`] puts it into notified state.
//!
//! # Examples
//!
//! ```
//! use std::thread;
//! use std::time::Duration;
//! use parking::Parker;
//!
//! let p = Parker::new();
//! let u = p.unparker();
//!
//! // Notify the parker.
//! u.unpark();
//!
//! // Wakes up immediately because the parker is notified.
//! p.park();
//!
//! thread::spawn(move || {
//! thread::sleep(Duration::from_millis(500));
//! u.unpark();
//! });
//!
//! // Wakes up when `u.unpark()` notifies and then goes back into unnotified state.
//! p.park();
//! ```
#![forbid(unsafe_code)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
use std::cell::Cell;
use std::fmt;
use std::marker::PhantomData;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::{Arc, Condvar, Mutex};
use std::time::{Duration, Instant};
/// Creates a parker and an associated unparker.
///
/// # Examples
///
/// ```
/// let (p, u) = parking::pair();
/// ```
pub fn pair() -> (Parker, Unparker) {
let p = Parker::new();
let u = p.unparker();
(p, u)
}
/// Waits for a notification.
pub struct Parker {
unparker: Unparker,
_marker: PhantomData<Cell<()>>,
}
impl Parker {
/// Creates a new parker.
///
/// # Examples
///
/// ```
/// use parking::Parker;
///
/// let p = Parker::new();
/// ```
///
pub fn new() -> Parker {
Parker {
unparker: Unparker {
inner: Arc::new(Inner {
state: AtomicUsize::new(EMPTY),
lock: Mutex::new(()),
cvar: Condvar::new(),
}),
},
_marker: PhantomData,
}
}
/// Blocks until notified and then goes back into unnotified state.
///
/// # Examples
///
/// ```
/// use parking::Parker;
///
/// let p = Parker::new();
/// let u = p.unparker();
///
/// // Notify the parker.
/// u.unpark();
///
/// // Wakes up immediately because the parker is notified.
/// p.park();
/// ```
pub fn park(&self) {
self.unparker.inner.park(None);
}
/// Blocks until notified and then goes back into unnotified state, or times out after
/// `duration`.
///
/// Returns `true` if notified before the timeout.
///
/// # Examples
///
/// ```
/// use std::time::Duration;
/// use parking::Parker;
///
/// let p = Parker::new();
///
/// // Wait for a notification, or time out after 500 ms.
/// p.park_timeout(Duration::from_millis(500));
/// ```
pub fn park_timeout(&self, duration: Duration) -> bool {
self.unparker.inner.park(Some(duration))
}
/// Blocks until notified and then goes back into unnotified state, or times out at `instant`.
///
/// Returns `true` if notified before the deadline.
///
/// # Examples
///
/// ```
/// use std::time::{Duration, Instant};
/// use parking::Parker;
///
/// let p = Parker::new();
///
/// // Wait for a notification, or time out after 500 ms.
/// p.park_deadline(Instant::now() + Duration::from_millis(500));
/// ```
pub fn park_deadline(&self, instant: Instant) -> bool {
self.unparker
.inner
.park(Some(instant.saturating_duration_since(Instant::now())))
}
/// Notifies the parker.
///
/// Returns `true` if this call is the first to notify the parker, or `false` if the parker
/// was already notified.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use std::time::Duration;
/// use parking::Parker;
///
/// let p = Parker::new();
///
/// assert_eq!(p.unpark(), true);
/// assert_eq!(p.unpark(), false);
///
/// // Wakes up immediately.
/// p.park();
/// ```
pub fn unpark(&self) -> bool {
self.unparker.unpark()
}
/// Returns a handle for unparking.
///
/// The returned [`Unparker`] can be cloned and shared among threads.
///
/// # Examples
///
/// ```
/// use parking::Parker;
///
/// let p = Parker::new();
/// let u = p.unparker();
///
/// // Notify the parker.
/// u.unpark();
///
/// // Wakes up immediately because the parker is notified.
/// p.park();
/// ```
pub fn unparker(&self) -> Unparker {
self.unparker.clone()
}
}
impl Default for Parker {
fn default() -> Parker {
Parker::new()
}
}
impl fmt::Debug for Parker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Parker { .. }")
}
}
/// Notifies a parker.
pub struct Unparker {
inner: Arc<Inner>,
}
impl Unparker {
/// Notifies the associated parker.
///
/// Returns `true` if this call is the first to notify the parker, or `false` if the parker
/// was already notified.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use std::time::Duration;
/// use parking::Parker;
///
/// let p = Parker::new();
/// let u = p.unparker();
///
/// thread::spawn(move || {
/// thread::sleep(Duration::from_millis(500));
/// u.unpark();
/// });
///
/// // Wakes up when `u.unpark()` notifies and then goes back into unnotified state.
/// p.park();
/// ```
pub fn unpark(&self) -> bool {
self.inner.unpark()
}
}
impl fmt::Debug for Unparker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Unparker { .. }")
}
}
impl Clone for Unparker {
fn clone(&self) -> Unparker {
Unparker {
inner: self.inner.clone(),
}
}
}
const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;
struct Inner {
state: AtomicUsize,
lock: Mutex<()>,
cvar: Condvar,
}
impl Inner {
fn park(&self, timeout: Option<Duration>) -> bool {
// If we were previously notified then we consume this notification and return quickly.
if self
.state
.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
.is_ok()
{
return true;
}
// If the timeout is zero, then there is no need to actually block.
if let Some(dur) = timeout {
if dur == Duration::from_millis(0) {
return false;
}
}
// Otherwise we need to coordinate going to sleep.
let mut m = self.lock.lock().unwrap();
match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
Ok(_) => {}
// Consume this notification to avoid spurious wakeups in the next park.
Err(NOTIFIED) => {
// We must read `state` here, even though we know it will be `NOTIFIED`. This is
// because `unpark` may have been called again since we read `NOTIFIED` in the
// `compare_exchange` above. We must perform an acquire operation that synchronizes
// with that `unpark` to observe any writes it made before the call to `unpark`. To
// do that we must read from the write it made to `state`.
let old = self.state.swap(EMPTY, SeqCst);
assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
return true;
}
Err(n) => panic!("inconsistent park_timeout state: {}", n),
}
match timeout {
None => {
loop {
// Block the current thread on the conditional variable.
m = self.cvar.wait(m).unwrap();
if self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst).is_ok() {
// got a notification
return true;
}
}
}
Some(timeout) => {
// Wait with a timeout, and if we spuriously wake up or otherwise wake up from a
// notification we just want to unconditionally set `state` back to `EMPTY`, either
// consuming a notification or un-flagging ourselves as parked.
let (_m, _result) = self.cvar.wait_timeout(m, timeout).unwrap();
match self.state.swap(EMPTY, SeqCst) {
NOTIFIED => true, // got a notification
PARKED => false, // no notification
n => panic!("inconsistent park_timeout state: {}", n),
}
}
}
}
pub fn unpark(&self) -> bool {
// To ensure the unparked thread will observe any writes we made before this call, we must
// perform a release operation that `park` can synchronize with. To do that we must write
// `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather
// than a compare-and-swap that returns if it reads `NOTIFIED` on failure.
match self.state.swap(NOTIFIED, SeqCst) {
EMPTY => return true, // no one was waiting
NOTIFIED => return false, // already unparked
PARKED => {} // gotta go wake someone up
_ => panic!("inconsistent state in unpark"),
}
// There is a period between when the parked thread sets `state` to `PARKED` (or last
// checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`.
// If we were to notify during this period it would be ignored and then when the parked
// thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this
// stage so we can acquire `lock` to wait until it is ready to receive the notification.
//
// Releasing `lock` before the call to `notify_one` means that when the parked thread wakes
// it doesn't get woken only to have to wait for us to release `lock`.
drop(self.lock.lock().unwrap());
self.cvar.notify_one();
true
}
}