blob: dadc5571e13642ae4626016b398c0b227376da58 [file] [log] [blame]
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use crate::approxord::{max, min};
use crate::num::*;
use crate::point::{point3, Point3D};
use crate::scale::Scale;
use crate::size::Size3D;
use crate::vector::Vector3D;
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub};
/// An axis aligned 3D box represented by its minimum and maximum coordinates.
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct Box3D<T, U> {
pub min: Point3D<T, U>,
pub max: Point3D<T, U>,
}
impl<T: Hash, U> Hash for Box3D<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.min.hash(h);
self.max.hash(h);
}
}
impl<T: Copy, U> Copy for Box3D<T, U> {}
impl<T: Clone, U> Clone for Box3D<T, U> {
fn clone(&self) -> Self {
Self::new(self.min.clone(), self.max.clone())
}
}
impl<T: PartialEq, U> PartialEq for Box3D<T, U> {
fn eq(&self, other: &Self) -> bool {
self.min.eq(&other.min) && self.max.eq(&other.max)
}
}
impl<T: Eq, U> Eq for Box3D<T, U> {}
impl<T: fmt::Debug, U> fmt::Debug for Box3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Box3D")
.field(&self.min)
.field(&self.max)
.finish()
}
}
impl<T, U> Box3D<T, U> {
/// Constructor.
#[inline]
pub const fn new(min: Point3D<T, U>, max: Point3D<T, U>) -> Self {
Box3D { min, max }
}
}
impl<T, U> Box3D<T, U>
where
T: PartialOrd,
{
/// Returns true if the box has a negative volume.
///
/// The common interpretation for a negative box is to consider it empty. It can be obtained
/// by calculating the intersection of two boxes that do not intersect.
#[inline]
pub fn is_negative(&self) -> bool {
self.max.x < self.min.x || self.max.y < self.min.y || self.max.z < self.min.z
}
/// Returns true if the size is zero, negative or NaN.
#[inline]
pub fn is_empty(&self) -> bool {
!(self.max.x > self.min.x && self.max.y > self.min.y && self.max.z > self.min.z)
}
#[inline]
pub fn intersects(&self, other: &Self) -> bool {
self.min.x < other.max.x
&& self.max.x > other.min.x
&& self.min.y < other.max.y
&& self.max.y > other.min.y
&& self.min.z < other.max.z
&& self.max.z > other.min.z
}
/// Returns `true` if this box3d contains the point. Points are considered
/// in the box3d if they are on the front, left or top faces, but outside if they
/// are on the back, right or bottom faces.
#[inline]
pub fn contains(&self, other: Point3D<T, U>) -> bool {
self.min.x <= other.x
&& other.x < self.max.x
&& self.min.y <= other.y
&& other.y < self.max.y
&& self.min.z <= other.z
&& other.z < self.max.z
}
/// Returns `true` if this box3d contains the interior of the other box3d. Always
/// returns `true` if other is empty, and always returns `false` if other is
/// nonempty but this box3d is empty.
#[inline]
pub fn contains_box(&self, other: &Self) -> bool {
other.is_empty()
|| (self.min.x <= other.min.x
&& other.max.x <= self.max.x
&& self.min.y <= other.min.y
&& other.max.y <= self.max.y
&& self.min.z <= other.min.z
&& other.max.z <= self.max.z)
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + PartialOrd,
{
#[inline]
pub fn to_non_empty(&self) -> Option<Self> {
if self.is_empty() {
return None;
}
Some(*self)
}
#[inline]
pub fn intersection(&self, other: &Self) -> Option<Self> {
let b = self.intersection_unchecked(other);
if b.is_empty() {
return None;
}
Some(b)
}
pub fn intersection_unchecked(&self, other: &Self) -> Self {
let intersection_min = Point3D::new(
max(self.min.x, other.min.x),
max(self.min.y, other.min.y),
max(self.min.z, other.min.z),
);
let intersection_max = Point3D::new(
min(self.max.x, other.max.x),
min(self.max.y, other.max.y),
min(self.max.z, other.max.z),
);
Box3D::new(intersection_min, intersection_max)
}
/// Returns the smallest box containing both of the provided boxes.
#[inline]
pub fn union(&self, other: &Self) -> Self {
Box3D::new(
Point3D::new(
min(self.min.x, other.min.x),
min(self.min.y, other.min.y),
min(self.min.z, other.min.z),
),
Point3D::new(
max(self.max.x, other.max.x),
max(self.max.y, other.max.y),
max(self.max.z, other.max.z),
),
)
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Add<T, Output = T>,
{
/// Returns the same box3d, translated by a vector.
#[inline]
#[must_use]
pub fn translate(&self, by: Vector3D<T, U>) -> Self {
Box3D {
min: self.min + by,
max: self.max + by,
}
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Sub<T, Output = T>,
{
#[inline]
pub fn size(&self) -> Size3D<T, U> {
Size3D::new(
self.max.x - self.min.x,
self.max.y - self.min.y,
self.max.z - self.min.z,
)
}
#[inline]
pub fn width(&self) -> T {
self.max.x - self.min.x
}
#[inline]
pub fn height(&self) -> T {
self.max.y - self.min.y
}
#[inline]
pub fn depth(&self) -> T {
self.max.z - self.min.z
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Inflates the box by the specified sizes on each side respectively.
#[inline]
#[must_use]
pub fn inflate(&self, width: T, height: T, depth: T) -> Self {
Box3D::new(
Point3D::new(self.min.x - width, self.min.y - height, self.min.z - depth),
Point3D::new(self.max.x + width, self.max.y + height, self.max.z + depth),
)
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Zero + PartialOrd,
{
/// Creates a Box3D of the given size, at offset zero.
#[inline]
pub fn from_size(size: Size3D<T, U>) -> Self {
let zero = Point3D::zero();
let point = size.to_vector().to_point();
Box3D::from_points(&[zero, point])
}
/// Returns the smallest box containing all of the provided points.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<Point3D<T, U>>,
{
let mut points = points.into_iter();
let (mut min_x, mut min_y, mut min_z) = match points.next() {
Some(first) => first.borrow().to_tuple(),
None => return Box3D::zero(),
};
let (mut max_x, mut max_y, mut max_z) = (min_x, min_y, min_z);
for point in points {
let p = point.borrow();
if p.x < min_x {
min_x = p.x
}
if p.x > max_x {
max_x = p.x
}
if p.y < min_y {
min_y = p.y
}
if p.y > max_y {
max_y = p.y
}
if p.z < min_z {
min_z = p.z
}
if p.z > max_z {
max_z = p.z
}
}
Box3D {
min: point3(min_x, min_y, min_z),
max: point3(max_x, max_y, max_z),
}
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this box3d and another box3d.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t))
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + One + Add<Output = T> + Div<Output = T>,
{
pub fn center(&self) -> Point3D<T, U> {
let two = T::one() + T::one();
(self.min + self.max.to_vector()) / two
}
}
impl<T, U> Box3D<T, U>
where
T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn volume(&self) -> T {
let size = self.size();
size.width * size.height * size.depth
}
#[inline]
pub fn xy_area(&self) -> T {
let size = self.size();
size.width * size.height
}
#[inline]
pub fn yz_area(&self) -> T {
let size = self.size();
size.depth * size.height
}
#[inline]
pub fn xz_area(&self) -> T {
let size = self.size();
size.depth * size.width
}
}
impl<T, U> Box3D<T, U>
where
T: Zero,
{
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
Box3D::new(Point3D::zero(), Point3D::zero())
}
}
impl<T: Copy + Mul, U> Mul<T> for Box3D<T, U> {
type Output = Box3D<T::Output, U>;
#[inline]
fn mul(self, scale: T) -> Self::Output {
Box3D::new(self.min * scale, self.max * scale)
}
}
impl<T: Copy + MulAssign, U> MulAssign<T> for Box3D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
self.min *= scale;
self.max *= scale;
}
}
impl<T: Copy + Div, U> Div<T> for Box3D<T, U> {
type Output = Box3D<T::Output, U>;
#[inline]
fn div(self, scale: T) -> Self::Output {
Box3D::new(self.min / scale.clone(), self.max / scale)
}
}
impl<T: Copy + DivAssign, U> DivAssign<T> for Box3D<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
self.min /= scale;
self.max /= scale;
}
}
impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box3D<T, U1> {
type Output = Box3D<T::Output, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
Box3D::new(self.min * scale.clone(), self.max * scale)
}
}
impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Box3D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: Scale<T, U, U>) {
self.min *= scale.clone();
self.max *= scale;
}
}
impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Box3D<T, U2> {
type Output = Box3D<T::Output, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
Box3D::new(self.min / scale.clone(), self.max / scale)
}
}
impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Box3D<T, U> {
#[inline]
fn div_assign(&mut self, scale: Scale<T, U, U>) {
self.min /= scale.clone();
self.max /= scale;
}
}
impl<T, U> Box3D<T, U>
where
T: Copy,
{
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Box3D<T, UnknownUnit> {
Box3D {
min: self.min.to_untyped(),
max: self.max.to_untyped(),
}
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(c: &Box3D<T, UnknownUnit>) -> Box3D<T, U> {
Box3D {
min: Point3D::from_untyped(c.min),
max: Point3D::from_untyped(c.max),
}
}
/// Cast the unit
#[inline]
pub fn cast_unit<V>(&self) -> Box3D<T, V> {
Box3D::new(self.min.cast_unit(), self.max.cast_unit())
}
#[inline]
pub fn scale<S: Copy>(&self, x: S, y: S, z: S) -> Self
where
T: Mul<S, Output = T>,
{
Box3D::new(
Point3D::new(self.min.x * x, self.min.y * y, self.min.z * z),
Point3D::new(self.max.x * x, self.max.y * y, self.max.z * z),
)
}
}
impl<T: NumCast + Copy, U> Box3D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
#[inline]
pub fn cast<NewT: NumCast>(&self) -> Box3D<NewT, U> {
Box3D::new(self.min.cast(), self.max.cast())
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn try_cast<NewT: NumCast>(&self) -> Option<Box3D<NewT, U>> {
match (self.min.try_cast(), self.max.try_cast()) {
(Some(a), Some(b)) => Some(Box3D::new(a, b)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` box3d.
#[inline]
pub fn to_f32(&self) -> Box3D<f32, U> {
self.cast()
}
/// Cast into an `f64` box3d.
#[inline]
pub fn to_f64(&self) -> Box3D<f64, U> {
self.cast()
}
/// Cast into an `usize` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> Box3D<usize, U> {
self.cast()
}
/// Cast into an `u32` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> Box3D<u32, U> {
self.cast()
}
/// Cast into an `i32` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> Box3D<i32, U> {
self.cast()
}
/// Cast into an `i64` box3d, truncating decimals if any.
///
/// When casting from floating point cuboids, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> Box3D<i64, U> {
self.cast()
}
}
impl<T, U> Box3D<T, U>
where
T: Round,
{
/// Return a box3d with edges rounded to integer coordinates, such that
/// the returned box3d has the same set of pixel centers as the original
/// one.
/// Values equal to 0.5 round up.
/// Suitable for most places where integral device coordinates
/// are needed, but note that any translation should be applied first to
/// avoid pixel rounding errors.
/// Note that this is *not* rounding to nearest integer if the values are negative.
/// They are always rounding as floor(n + 0.5).
#[must_use]
pub fn round(&self) -> Self {
Box3D::new(self.min.round(), self.max.round())
}
}
impl<T, U> Box3D<T, U>
where
T: Floor + Ceil,
{
/// Return a box3d with faces/edges rounded to integer coordinates, such that
/// the original box3d contains the resulting box3d.
#[must_use]
pub fn round_in(&self) -> Self {
Box3D {
min: self.min.ceil(),
max: self.max.floor(),
}
}
/// Return a box3d with faces/edges rounded to integer coordinates, such that
/// the original box3d is contained in the resulting box3d.
#[must_use]
pub fn round_out(&self) -> Self {
Box3D {
min: self.min.floor(),
max: self.max.ceil(),
}
}
}
impl<T, U> From<Size3D<T, U>> for Box3D<T, U>
where
T: Copy + Zero + PartialOrd,
{
fn from(b: Size3D<T, U>) -> Self {
Self::from_size(b)
}
}
/// Shorthand for `Box3D::new(Point3D::new(x1, y1, z1), Point3D::new(x2, y2, z2))`.
pub fn box3d<T: Copy, U>(
min_x: T,
min_y: T,
min_z: T,
max_x: T,
max_y: T,
max_z: T,
) -> Box3D<T, U> {
Box3D::new(
Point3D::new(min_x, min_y, min_z),
Point3D::new(max_x, max_y, max_z),
)
}
#[cfg(test)]
mod tests {
use crate::default::{Box3D, Point3D};
use crate::{point3, size3, vec3};
#[test]
fn test_new() {
let b = Box3D::new(point3(-1.0, -1.0, -1.0), point3(1.0, 1.0, 1.0));
assert!(b.min.x == -1.0);
assert!(b.min.y == -1.0);
assert!(b.min.z == -1.0);
assert!(b.max.x == 1.0);
assert!(b.max.y == 1.0);
assert!(b.max.z == 1.0);
}
#[test]
fn test_size() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.size().width == 20.0);
assert!(b.size().height == 20.0);
assert!(b.size().depth == 20.0);
}
#[test]
fn test_width_height_depth() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.width() == 20.0);
assert!(b.height() == 20.0);
assert!(b.depth() == 20.0);
}
#[test]
fn test_center() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.center() == Point3D::zero());
}
#[test]
fn test_volume() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.volume() == 8000.0);
}
#[test]
fn test_area() {
let b = Box3D::new(point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0));
assert!(b.xy_area() == 400.0);
assert!(b.yz_area() == 400.0);
assert!(b.xz_area() == 400.0);
}
#[test]
fn test_from_points() {
let b = Box3D::from_points(&[point3(50.0, 160.0, 12.5), point3(100.0, 25.0, 200.0)]);
assert!(b.min == point3(50.0, 25.0, 12.5));
assert!(b.max == point3(100.0, 160.0, 200.0));
}
#[test]
fn test_min_max() {
let b = Box3D::from_points(&[point3(50.0, 25.0, 12.5), point3(100.0, 160.0, 200.0)]);
assert!(b.min.x == 50.0);
assert!(b.min.y == 25.0);
assert!(b.min.z == 12.5);
assert!(b.max.x == 100.0);
assert!(b.max.y == 160.0);
assert!(b.max.z == 200.0);
}
#[test]
fn test_round_in() {
let b =
Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round_in();
assert!(b.min.x == -25.0);
assert!(b.min.y == -40.0);
assert!(b.min.z == -70.0);
assert!(b.max.x == 60.0);
assert!(b.max.y == 36.0);
assert!(b.max.z == 89.0);
}
#[test]
fn test_round_out() {
let b = Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)])
.round_out();
assert!(b.min.x == -26.0);
assert!(b.min.y == -41.0);
assert!(b.min.z == -71.0);
assert!(b.max.x == 61.0);
assert!(b.max.y == 37.0);
assert!(b.max.z == 90.0);
}
#[test]
fn test_round() {
let b =
Box3D::from_points(&[point3(-25.5, -40.4, -70.9), point3(60.3, 36.5, 89.8)]).round();
assert!(b.min.x == -25.0);
assert!(b.min.y == -40.0);
assert!(b.min.z == -71.0);
assert!(b.max.x == 60.0);
assert!(b.max.y == 37.0);
assert!(b.max.z == 90.0);
}
#[test]
fn test_from_size() {
let b = Box3D::from_size(size3(30.0, 40.0, 50.0));
assert!(b.min == Point3D::zero());
assert!(b.size().width == 30.0);
assert!(b.size().height == 40.0);
assert!(b.size().depth == 50.0);
}
#[test]
fn test_translate() {
let size = size3(15.0, 15.0, 200.0);
let mut center = (size / 2.0).to_vector().to_point();
let b = Box3D::from_size(size);
assert!(b.center() == center);
let translation = vec3(10.0, 2.5, 9.5);
let b = b.translate(translation);
center += translation;
assert!(b.center() == center);
assert!(b.max.x == 25.0);
assert!(b.max.y == 17.5);
assert!(b.max.z == 209.5);
assert!(b.min.x == 10.0);
assert!(b.min.y == 2.5);
assert!(b.min.z == 9.5);
}
#[test]
fn test_union() {
let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(0.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(0.0, 20.0, 20.0), point3(20.0, -20.0, -20.0)]);
let b = b1.union(&b2);
assert!(b.max.x == 20.0);
assert!(b.max.y == 20.0);
assert!(b.max.z == 20.0);
assert!(b.min.x == -20.0);
assert!(b.min.y == -20.0);
assert!(b.min.z == -20.0);
assert!(b.volume() == (40.0 * 40.0 * 40.0));
}
#[test]
fn test_intersects() {
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
assert!(b1.intersects(&b2));
}
#[test]
fn test_intersection_unchecked() {
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
let b = b1.intersection_unchecked(&b2);
assert!(b.max.x == 10.0);
assert!(b.max.y == 20.0);
assert!(b.max.z == 20.0);
assert!(b.min.x == -10.0);
assert!(b.min.y == -20.0);
assert!(b.min.z == -20.0);
assert!(b.volume() == (20.0 * 40.0 * 40.0));
}
#[test]
fn test_intersection() {
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
assert!(b1.intersection(&b2).is_some());
let b1 = Box3D::from_points(&[point3(-15.0, -20.0, -20.0), point3(-10.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(10.0, 20.0, 20.0), point3(15.0, -20.0, -20.0)]);
assert!(b1.intersection(&b2).is_none());
}
#[test]
fn test_scale() {
let b = Box3D::from_points(&[point3(-10.0, -10.0, -10.0), point3(10.0, 10.0, 10.0)]);
let b = b.scale(0.5, 0.5, 0.5);
assert!(b.max.x == 5.0);
assert!(b.max.y == 5.0);
assert!(b.max.z == 5.0);
assert!(b.min.x == -5.0);
assert!(b.min.y == -5.0);
assert!(b.min.z == -5.0);
}
#[test]
fn test_zero() {
let b = Box3D::<f64>::zero();
assert!(b.max.x == 0.0);
assert!(b.max.y == 0.0);
assert!(b.max.z == 0.0);
assert!(b.min.x == 0.0);
assert!(b.min.y == 0.0);
assert!(b.min.z == 0.0);
}
#[test]
fn test_lerp() {
let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(-10.0, -10.0, -10.0)]);
let b2 = Box3D::from_points(&[point3(10.0, 10.0, 10.0), point3(20.0, 20.0, 20.0)]);
let b = b1.lerp(b2, 0.5);
assert!(b.center() == Point3D::zero());
assert!(b.size().width == 10.0);
assert!(b.size().height == 10.0);
assert!(b.size().depth == 10.0);
}
#[test]
fn test_contains() {
let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]);
assert!(b.contains(point3(-15.3, 10.5, 18.4)));
}
#[test]
fn test_contains_box() {
let b1 = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]);
let b2 = Box3D::from_points(&[point3(-14.3, -16.5, -19.3), point3(6.7, 17.6, 2.5)]);
assert!(b1.contains_box(&b2));
}
#[test]
fn test_inflate() {
let b = Box3D::from_points(&[point3(-20.0, -20.0, -20.0), point3(20.0, 20.0, 20.0)]);
let b = b.inflate(10.0, 5.0, 2.0);
assert!(b.size().width == 60.0);
assert!(b.size().height == 50.0);
assert!(b.size().depth == 44.0);
assert!(b.center() == Point3D::zero());
}
#[test]
fn test_is_empty() {
for i in 0..3 {
let mut coords_neg = [-20.0, -20.0, -20.0];
let mut coords_pos = [20.0, 20.0, 20.0];
coords_neg[i] = 0.0;
coords_pos[i] = 0.0;
let b = Box3D::from_points(&[Point3D::from(coords_neg), Point3D::from(coords_pos)]);
assert!(b.is_empty());
}
}
#[test]
fn test_nan_empty_or_negative() {
use std::f32::NAN;
assert!(Box3D { min: point3(NAN, 2.0, 1.0), max: point3(1.0, 3.0, 5.0) }.is_empty());
assert!(Box3D { min: point3(0.0, NAN, 1.0), max: point3(1.0, 2.0, 5.0) }.is_empty());
assert!(Box3D { min: point3(1.0, -2.0, NAN), max: point3(3.0, 2.0, 5.0) }.is_empty());
assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(NAN, 2.0, 5.0) }.is_empty());
assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(0.0, NAN, 5.0) }.is_empty());
assert!(Box3D { min: point3(1.0, -2.0, 1.0), max: point3(0.0, 1.0, NAN) }.is_empty());
}
}