blob: d2e7659eda2b2d2fc4984be221016224b125e7eb [file] [log] [blame]
use crate::codec::decoder::Decoder;
use crate::codec::encoder::Encoder;
use crate::codec::framed_read::{framed_read2, framed_read2_with_buffer, FramedRead2};
use crate::codec::framed_write::{framed_write2, framed_write2_with_buffer, FramedWrite2};
use tokio::{
io::{AsyncBufRead, AsyncRead, AsyncWrite},
stream::Stream,
};
use bytes::BytesMut;
use futures_sink::Sink;
use pin_project_lite::pin_project;
use std::fmt;
use std::io::{self, BufRead, Read, Write};
use std::mem::MaybeUninit;
use std::pin::Pin;
use std::task::{Context, Poll};
pin_project! {
/// A unified [`Stream`] and [`Sink`] interface to an underlying I/O object, using
/// the `Encoder` and `Decoder` traits to encode and decode frames.
///
/// You can create a `Framed` instance by using the [`Decoder::framed`] adapter, or
/// by using the `new` function seen below.
///
/// [`Stream`]: tokio::stream::Stream
/// [`Sink`]: futures_sink::Sink
/// [`AsyncRead`]: tokio::io::AsyncRead
/// [`Decoder::framed`]: crate::codec::Decoder::framed()
pub struct Framed<T, U> {
#[pin]
inner: FramedRead2<FramedWrite2<Fuse<T, U>>>,
}
}
pin_project! {
pub(crate) struct Fuse<T, U> {
#[pin]
pub(crate) io: T,
pub(crate) codec: U,
}
}
/// Abstracts over `FramedRead2` being either `FramedRead2<FramedWrite2<Fuse<T, U>>>` or
/// `FramedRead2<Fuse<T, U>>` and lets the io and codec parts be extracted in either case.
pub(crate) trait ProjectFuse {
type Io;
type Codec;
fn project(self: Pin<&mut Self>) -> Fuse<Pin<&mut Self::Io>, &mut Self::Codec>;
}
impl<T, U> ProjectFuse for Fuse<T, U> {
type Io = T;
type Codec = U;
fn project(self: Pin<&mut Self>) -> Fuse<Pin<&mut Self::Io>, &mut Self::Codec> {
let self_ = self.project();
Fuse {
io: self_.io,
codec: self_.codec,
}
}
}
impl<T, U> Framed<T, U>
where
T: AsyncRead + AsyncWrite,
{
/// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
/// I/O object, using [`Decoder`] and [`Encoder`] to read and write the raw data.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the codec
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both [`Stream`] and
/// [`Sink`]; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// If you want to work more directly with the streams and sink, consider
/// calling [`split`] on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
///
/// [`Stream`]: tokio::stream::Stream
/// [`Sink`]: futures_sink::Sink
/// [`Decode`]: crate::codec::Decoder
/// [`Encoder`]: crate::codec::Encoder
/// [`split`]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.split
pub fn new(inner: T, codec: U) -> Framed<T, U> {
Framed {
inner: framed_read2(framed_write2(Fuse { io: inner, codec })),
}
}
/// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
/// I/O object, using [`Decoder`] and [`Encoder`] to read and write the raw data,
/// with a specific read buffer initial capacity.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the codec
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both [`Stream`] and
/// [`Sink`]; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// If you want to work more directly with the streams and sink, consider
/// calling [`split`] on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
///
/// [`Stream`]: tokio::stream::Stream
/// [`Sink`]: futures_sink::Sink
/// [`Decode`]: crate::codec::Decoder
/// [`Encoder`]: crate::codec::Encoder
/// [`split`]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.split
pub fn with_capacity(inner: T, codec: U, capacity: usize) -> Framed<T, U> {
Framed {
inner: framed_read2_with_buffer(
framed_write2(Fuse { io: inner, codec }),
BytesMut::with_capacity(capacity),
),
}
}
}
impl<T, U> Framed<T, U> {
/// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
/// I/O object, using [`Decoder`] and [`Encoder`] to read and write the raw data.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually
/// wants to batch these into meaningful chunks, called "frames". This
/// method layers framing on top of an I/O object, by using the `Codec`
/// traits to handle encoding and decoding of messages frames. Note that
/// the incoming and outgoing frame types may be distinct.
///
/// This function returns a *single* object that is both [`Stream`] and
/// [`Sink`]; grouping this into a single object is often useful for layering
/// things like gzip or TLS, which require both read and write access to the
/// underlying object.
///
/// This objects takes a stream and a readbuffer and a writebuffer. These field
/// can be obtained from an existing `Framed` with the [`into_parts`] method.
///
/// If you want to work more directly with the streams and sink, consider
/// calling [`split`] on the `Framed` returned by this method, which will
/// break them into separate objects, allowing them to interact more easily.
///
/// [`Stream`]: tokio::stream::Stream
/// [`Sink`]: futures_sink::Sink
/// [`Decoder`]: crate::codec::Decoder
/// [`Encoder`]: crate::codec::Encoder
/// [`into_parts`]: crate::codec::Framed::into_parts()
/// [`split`]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.split
pub fn from_parts(parts: FramedParts<T, U>) -> Framed<T, U> {
Framed {
inner: framed_read2_with_buffer(
framed_write2_with_buffer(
Fuse {
io: parts.io,
codec: parts.codec,
},
parts.write_buf,
),
parts.read_buf,
),
}
}
/// Returns a reference to the underlying I/O stream wrapped by
/// `Framed`.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn get_ref(&self) -> &T {
&self.inner.get_ref().get_ref().io
}
/// Returns a mutable reference to the underlying I/O stream wrapped by
/// `Framed`.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner.get_mut().get_mut().io
}
/// Returns a reference to the underlying codec wrapped by
/// `Framed`.
///
/// Note that care should be taken to not tamper with the underlying codec
/// as it may corrupt the stream of frames otherwise being worked with.
pub fn codec(&self) -> &U {
&self.inner.get_ref().get_ref().codec
}
/// Returns a mutable reference to the underlying codec wrapped by
/// `Framed`.
///
/// Note that care should be taken to not tamper with the underlying codec
/// as it may corrupt the stream of frames otherwise being worked with.
pub fn codec_mut(&mut self) -> &mut U {
&mut self.inner.get_mut().get_mut().codec
}
/// Returns a reference to the read buffer.
pub fn read_buffer(&self) -> &BytesMut {
self.inner.buffer()
}
/// Consumes the `Framed`, returning its underlying I/O stream.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn into_inner(self) -> T {
self.inner.into_inner().into_inner().io
}
/// Consumes the `Framed`, returning its underlying I/O stream, the buffer
/// with unprocessed data, and the codec.
///
/// Note that care should be taken to not tamper with the underlying stream
/// of data coming in as it may corrupt the stream of frames otherwise
/// being worked with.
pub fn into_parts(self) -> FramedParts<T, U> {
let (inner, read_buf) = self.inner.into_parts();
let (inner, write_buf) = inner.into_parts();
FramedParts {
io: inner.io,
codec: inner.codec,
read_buf,
write_buf,
_priv: (),
}
}
}
impl<T, U> Stream for Framed<T, U>
where
T: AsyncRead,
U: Decoder,
{
type Item = Result<U::Item, U::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.project().inner.poll_next(cx)
}
}
impl<T, I, U> Sink<I> for Framed<T, U>
where
T: AsyncWrite,
U: Encoder<I>,
U::Error: From<io::Error>,
{
type Error = U::Error;
fn poll_ready(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.project().inner.get_pin_mut().poll_ready(cx)
}
fn start_send(self: Pin<&mut Self>, item: I) -> Result<(), Self::Error> {
self.project().inner.get_pin_mut().start_send(item)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.project().inner.get_pin_mut().poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.project().inner.get_pin_mut().poll_close(cx)
}
}
impl<T, U> fmt::Debug for Framed<T, U>
where
T: fmt::Debug,
U: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Framed")
.field("io", &self.inner.get_ref().get_ref().io)
.field("codec", &self.inner.get_ref().get_ref().codec)
.finish()
}
}
// ===== impl Fuse =====
impl<T: Read, U> Read for Fuse<T, U> {
fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
self.io.read(dst)
}
}
impl<T: BufRead, U> BufRead for Fuse<T, U> {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
self.io.fill_buf()
}
fn consume(&mut self, amt: usize) {
self.io.consume(amt)
}
}
impl<T: AsyncRead, U> AsyncRead for Fuse<T, U> {
unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [MaybeUninit<u8>]) -> bool {
self.io.prepare_uninitialized_buffer(buf)
}
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<Result<usize, io::Error>> {
self.project().io.poll_read(cx, buf)
}
}
impl<T: AsyncBufRead, U> AsyncBufRead for Fuse<T, U> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
self.project().io.poll_fill_buf(cx)
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.project().io.consume(amt)
}
}
impl<T: Write, U> Write for Fuse<T, U> {
fn write(&mut self, src: &[u8]) -> io::Result<usize> {
self.io.write(src)
}
fn flush(&mut self) -> io::Result<()> {
self.io.flush()
}
}
impl<T: AsyncWrite, U> AsyncWrite for Fuse<T, U> {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, io::Error>> {
self.project().io.poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
self.project().io.poll_flush(cx)
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
self.project().io.poll_shutdown(cx)
}
}
impl<T, U: Decoder> Decoder for Fuse<T, U> {
type Item = U::Item;
type Error = U::Error;
fn decode(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.codec.decode(buffer)
}
fn decode_eof(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
self.codec.decode_eof(buffer)
}
}
impl<T, I, U: Encoder<I>> Encoder<I> for Fuse<T, U> {
type Error = U::Error;
fn encode(&mut self, item: I, dst: &mut BytesMut) -> Result<(), Self::Error> {
self.codec.encode(item, dst)
}
}
/// `FramedParts` contains an export of the data of a Framed transport.
/// It can be used to construct a new [`Framed`] with a different codec.
/// It contains all current buffers and the inner transport.
///
/// [`Framed`]: crate::codec::Framed
#[derive(Debug)]
pub struct FramedParts<T, U> {
/// The inner transport used to read bytes to and write bytes to
pub io: T,
/// The codec
pub codec: U,
/// The buffer with read but unprocessed data.
pub read_buf: BytesMut,
/// A buffer with unprocessed data which are not written yet.
pub write_buf: BytesMut,
/// This private field allows us to add additional fields in the future in a
/// backwards compatible way.
_priv: (),
}
impl<T, U> FramedParts<T, U> {
/// Create a new, default, `FramedParts`
pub fn new<I>(io: T, codec: U) -> FramedParts<T, U>
where
U: Encoder<I>,
{
FramedParts {
io,
codec,
read_buf: BytesMut::new(),
write_buf: BytesMut::new(),
_priv: (),
}
}
}