blob: 70a1afa626f5b24cbf7c30165e9c9c68d6d8acb4 [file] [log] [blame]
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "blob.h"
#include <condition_variable>
#include <blobfs/common.h>
#include <blobfs/format.h>
#include <blobfs/mkfs.h>
#include <block-client/cpp/fake-device.h>
#include <fbl/auto_call.h>
#include <gtest/gtest.h>
#include "blobfs.h"
#include "test/blob_utils.h"
#include "utils.h"
namespace blobfs {
namespace {
constexpr const char kEmptyBlobName[] =
"15ec7bf0b50732b49f8228e07d24365338f9e3ab994b00af08e5a3bffe55fd8b";
constexpr uint32_t kBlockSize = 512;
constexpr uint32_t kNumBlocks = 400 * kBlobfsBlockSize / kBlockSize;
class BlobTest : public testing::Test {
public:
void SetUp() override {
auto device = std::make_unique<block_client::FakeBlockDevice>(kNumBlocks, kBlockSize);
device_ = device.get();
ASSERT_EQ(FormatFilesystem(device.get()), ZX_OK);
MountOptions options;
ASSERT_EQ(Blobfs::Create(loop_.dispatcher(), std::move(device), &options, zx::resource(), &fs_),
ZX_OK);
}
void TearDown() override { device_ = nullptr; }
fbl::RefPtr<fs::Vnode> OpenRoot() const {
fbl::RefPtr<fs::Vnode> root;
EXPECT_EQ(fs_->OpenRootNode(&root), ZX_OK);
return root;
}
protected:
async::Loop loop_{&kAsyncLoopConfigAttachToCurrentThread};
block_client::FakeBlockDevice* device_;
std::unique_ptr<Blobfs> fs_;
};
TEST_F(BlobTest, Truncate_WouldOverflow) {
fbl::RefPtr root = OpenRoot();
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Create(&file, kEmptyBlobName, 0), ZX_OK);
EXPECT_EQ(file->Truncate(UINT64_MAX), ZX_ERR_OUT_OF_RANGE);
}
// Tests that Blob::Sync issues the callback in the right way in the right cases. This does not
// currently test that the data was actually written to the block device.
TEST_F(BlobTest, SyncBehavior) {
auto root = OpenRoot();
std::unique_ptr<BlobInfo> info;
GenerateRandomBlob("", 64, &info);
memmove(info->path, info->path + 1, strlen(info->path)); // Remove leading slash.
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Create(&file, info->path, 0), ZX_OK);
size_t out_actual = 0;
EXPECT_EQ(file->Truncate(info->size_data), ZX_OK);
// PHASE 1: Incomplete data.
//
// Try syncing before the data has been written. This currently issues an error synchronously but
// we accept either synchronous or asynchronous callbacks.
file->Sync([loop = &loop_](zx_status_t status) {
EXPECT_EQ(ZX_ERR_BAD_STATE, status);
loop->Quit();
});
loop_.Run();
// PHASE 2: Complete data, not yet synced.
device_->Pause(); // Don't let it sync yet.
EXPECT_EQ(file->Write(info->data.get(), info->size_data, 0, &out_actual), ZX_OK);
EXPECT_EQ(info->size_data, out_actual);
loop_.ResetQuit();
file->Sync([loop = &loop_](zx_status_t status) {
EXPECT_EQ(ZX_OK, status);
loop->Quit();
});
// Allow the Sync to continue and wait for the reply. The system may issue this callback
// asynchronously. RunUntilIdle can't be used because the backend posts work to another thread and
// then back here.
device_->Resume();
loop_.Run();
// PHASE 3: Data previously synced.
//
// Once the blob is in a fully synced state, calling Sync on it will complete with success.
loop_.ResetQuit();
file->Sync([loop = &loop_](zx_status_t status) {
EXPECT_EQ(ZX_OK, status);
loop->Quit();
});
}
TEST_F(BlobTest, ReadingBlobVerifiesTail) {
// Remount without compression so that we can manipulate the data that is loaded.
MountOptions options = {.compression_settings = {
.compression_algorithm = CompressionAlgorithm::UNCOMPRESSED,
}};
ASSERT_EQ(Blobfs::Create(loop_.dispatcher(), Blobfs::Destroy(std::move(fs_)), &options,
zx::resource(), &fs_),
ZX_OK);
std::unique_ptr<BlobInfo> info;
uint64_t block;
{
auto root = OpenRoot();
GenerateRandomBlob("", 64, &info);
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Create(&file, info->path + 1, 0), ZX_OK);
size_t out_actual = 0;
EXPECT_EQ(file->Truncate(info->size_data), ZX_OK);
EXPECT_EQ(file->Write(info->data.get(), info->size_data, 0, &out_actual), ZX_OK);
EXPECT_EQ(out_actual, info->size_data);
{
auto blob = fbl::RefPtr<Blob>::Downcast(file);
block = fs_->GetNode(blob->Ino())->extents[0].Start() + DataStartBlock(fs_->Info());
}
}
// Unmount.
std::unique_ptr<block_client::BlockDevice> device = Blobfs::Destroy(std::move(fs_));
// Read the block that contains the blob.
storage::VmoBuffer buffer;
ASSERT_EQ(buffer.Initialize(device.get(), 1, kBlobfsBlockSize, "test_buffer"), ZX_OK);
block_fifo_request_t request = {
.opcode = BLOCKIO_READ,
.vmoid = buffer.vmoid(),
.length = kBlobfsBlockSize / kBlockSize,
.vmo_offset = 0,
.dev_offset = block * kBlobfsBlockSize / kBlockSize,
};
ASSERT_EQ(device->FifoTransaction(&request, 1), ZX_OK);
// Corrupt the end of the block.
static_cast<uint8_t*>(buffer.Data(0))[kBlobfsBlockSize - 1] = 1;
// Write the block back.
request.opcode = BLOCKIO_WRITE;
ASSERT_EQ(device->FifoTransaction(&request, 1), ZX_OK);
// Remount and try and read the blob.
ASSERT_EQ(Blobfs::Create(loop_.dispatcher(), std::move(device), &options, zx::resource(), &fs_),
ZX_OK);
auto root = OpenRoot();
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Lookup(&file, info->path + 1), ZX_OK);
// Trying to read from the blob should fail with an error.
size_t actual;
uint8_t data;
EXPECT_EQ(file->Read(&data, 1, 0, &actual), ZX_ERR_IO_DATA_INTEGRITY);
}
TEST_F(BlobTest, ReadWriteAllCompressionFormats) {
CompressionAlgorithm algorithms[] = {
CompressionAlgorithm::UNCOMPRESSED, CompressionAlgorithm::LZ4,
CompressionAlgorithm::ZSTD, CompressionAlgorithm::ZSTD_SEEKABLE,
CompressionAlgorithm::CHUNKED,
};
for (auto algorithm : algorithms) {
MountOptions options = {.compression_settings = {
.compression_algorithm = algorithm,
}};
// Remount with new compression algorithm
ASSERT_EQ(Blobfs::Create(loop_.dispatcher(), Blobfs::Destroy(std::move(fs_)), &options,
zx::resource(), &fs_),
ZX_OK);
auto root = OpenRoot();
std::unique_ptr<BlobInfo> info;
// Write the blob
{
GenerateRealisticBlob("", 1 << 16, &info);
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Create(&file, info->path + 1, 0), ZX_OK);
size_t out_actual = 0;
EXPECT_EQ(file->Truncate(info->size_data), ZX_OK);
EXPECT_EQ(file->Write(info->data.get(), info->size_data, 0, &out_actual), ZX_OK);
EXPECT_EQ(out_actual, info->size_data);
}
// Remount with same compression algorithm.
// This prevents us from relying on caching when we read back the blob.
ASSERT_EQ(Blobfs::Create(loop_.dispatcher(), Blobfs::Destroy(std::move(fs_)), &options,
zx::resource(), &fs_),
ZX_OK);
root = OpenRoot();
// Read back the blob
{
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Lookup(&file, info->path + 1), ZX_OK);
size_t actual;
uint8_t data[info->size_data];
EXPECT_EQ(file->Read(&data, info->size_data, 0, &actual), ZX_OK);
EXPECT_EQ(info->size_data, actual);
EXPECT_EQ(memcmp(data, info->data.get(), info->size_data), 0);
}
}
}
TEST_F(BlobTest, WriteErrorsAreFused) {
std::unique_ptr<BlobInfo> info;
GenerateRandomBlob("", kBlockSize * kNumBlocks, &info);
auto root = OpenRoot();
fbl::RefPtr<fs::Vnode> file;
ASSERT_EQ(root->Create(&file, info->path + 1, 0), ZX_OK);
ASSERT_EQ(file->Truncate(info->size_data), ZX_OK);
uint64_t out_actual;
EXPECT_EQ(file->Write(info->data.get(), info->size_data, 0, &out_actual), ZX_ERR_NO_SPACE);
// Writing just 1 byte now should see the same error returned.
EXPECT_EQ(file->Write(info->data.get(), 1, 0, &out_actual), ZX_ERR_NO_SPACE);
}
} // namespace
} // namespace blobfs