blob: af9365bd79d20e8dd362dfaa35ac24121bf6d3a4 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <lib/cbuf.h>
#include <lib/debuglog.h>
#include <reg.h>
#include <stdio.h>
#include <trace.h>
#include <zircon/boot/driver-config.h>
#include <arch/arm64/periphmap.h>
#include <dev/interrupt.h>
#include <dev/uart.h>
#include <kernel/thread.h>
#include <pdev/driver.h>
#include <pdev/uart.h>
#include <platform/debug.h>
// DW8250 implementation
// clang-format off
// UART Registers
#define UART_RBR (0x0) // RX Buffer Register (read-only)
#define UART_THR (0x0) // TX Buffer Register (write-only)
#define UART_DLL (0x0) // Divisor Latch Low (Only when LCR[7] = 1)
#define UART_DLH (0x4) // Divisor Latch High (Only when LCR[7] = 1)
#define UART_IER (0x4) // Interrupt Enable Register
#define UART_IIR (0x8) // Interrupt Identification Register (read-only)
#define UART_FCR (0x8) // FIFO Control Register (write-only)
#define UART_LCR (0xc) // Line Control Register
#define UART_MCR (0x10) // Modem Control Register
#define UART_LSR (0x14) // Line Status Register (read-only)
#define UART_MSR (0x18) // Modem Status Register (read-only)
#define UART_SCR (0x1c) // Scratch Register
#define UART_LPDLL (0x20) // Low Power Divisor Latch (Low) Register
#define UART_LPDLH (0x24) // Low Power Divisor Latch (High) Register
#define UART_SRBR (0x30) // Shadow Receive Buffer Register (read-only)
#define UART_STHR (0x34) // Shadow Transmit Holding Register
#define UART_FAR (0x70) // FIFO Access Register
#define UART_TFR (0x74) // Transmit FIFO Read Register (read-only)
#define UART_RFW (0x78) // Receive FIFO Write Register (write-only)
#define UART_USR (0x7C) // UART Status Register (read-only)
#define UART_TFL (0x80) // Transmit FIFO Level Register (read-only)
#define UART_RFL (0x84) // Receive FIFO Level Register (read-only)
#define UART_SRR (0x88) // Software Reser Register
#define UART_SRTS (0x8C) // Shadow Request to Send Register
#define UART_SBCR (0x90) // Shadow Break Control Register
#define UART_SDMAM (0x94) // Shadow DMA Mode Register
#define UART_SFE (0x98) // Shadow FIFO Enable Register
#define UART_SRT (0x9C) // Shadow RCVR Trigger Register
#define UART_STET (0xA0) // Shadow TX Empty Trigger Register
#define UART_HTX (0xA4) // Halt TX Register
#define UART_DMASA (0xA8) // DMA Software Acknowledge Register (write-only)
#define UART_CPR (0xF4) // Component Parameter Register (read-only)
#define UART_UCV (0xF8) // UART Component Version Register (read-only)
#define UART_CTR (0xFC) // Component Type Register
// IER
#define UART_IER_ERBFI (1 << 0)
#define UART_IER_ETBEI (1 << 1)
#define UART_IER_ELSI (1 << 2)
#define UART_IER_EDSSI (1 << 3)
#define UART_IER_PTIME (1 << 5)
// IIR
#define UART_IIR_RLS (0x06) // Receiver Line Status
#define UART_IIR_RDA (0x04) // Receive Data Available
#define UART_IIR_BUSY (0x07) // Busy Detect Indication
#define UART_IIR_CTI (0x0C) // Character Timeout Indicator
#define UART_IIR_THRE (0x02) // Transmit Holding Register Empty
#define UART_IIR_MS (0x00) // Check Modem Status Register
#define UART_IIR_SW_FLOW_CTRL (0x10) // Receive XOFF characters
#define UART_IIR_HW_FLOW_CTRL (0x20) // CTS or RTS Rising Edge
#define UART_IIR_FIFO_EN (0xc0)
#define UART_IIR_INT_MASK (0x1f)
// LSR
#define UART_LSR_DR (1 << 0)
#define UART_LSR_OE (1 << 1)
#define UART_LSR_PE (1 << 2)
#define UART_LSR_FE (1 << 3)
#define UART_LSR_BI (1 << 4)
#define UART_LSR_THRE (1 << 5)
#define UART_LSR_TEMT (1 << 6)
#define UART_LSR_FIFOERR (1 << 7)
// clang-format on
#define RXBUF_SIZE 32
// values read from zbi
static bool initialized = false;
static vaddr_t uart_base = 0;
static uint32_t uart_irq = 0;
static cbuf_t uart_rx_buf;
static bool uart_tx_irq_enabled = false;
static event_t uart_dputc_event =
EVENT_INITIAL_VALUE(uart_dputc_event, true, EVENT_FLAG_AUTOUNSIGNAL);
static spin_lock_t uart_spinlock = SPIN_LOCK_INITIAL_VALUE;
#define UARTREG(reg) (*(volatile uint32_t*)((uart_base) + (reg)))
static interrupt_eoi dw8250_uart_irq(void* arg) {
if ((UARTREG(UART_IIR) & UART_IIR_BUSY) == UART_IIR_BUSY) {
// To clear the USR (UART Status Register) we need to read it.
volatile uint32_t unused = UARTREG(UART_USR);
static_cast<void>(unused);
}
// read interrupt status and mask
while (UARTREG(UART_LSR) & UART_LSR_DR) {
if (cbuf_space_avail(&uart_rx_buf) == 0) {
break;
}
char c = UARTREG(UART_RBR) & 0xFF;
cbuf_write_char(&uart_rx_buf, c);
}
// Signal if anyone is waiting to TX
if (UARTREG(UART_LSR) & UART_LSR_THRE) {
UARTREG(UART_IER) &= ~UART_IER_ETBEI; // Disable TX interrupt
spin_lock(&uart_spinlock);
// TODO(andresoportus): Revisit all UART drivers usage of events, from event.h:
// 1. The reschedule flag is not supposed to be true in interrupt context.
// 2. FLAG_AUTOUNSIGNAL only wakes up one thread.
event_signal(&uart_dputc_event, true);
spin_unlock(&uart_spinlock);
}
return IRQ_EOI_DEACTIVATE;
}
/* panic-time getc/putc */
static void dw8250_uart_pputc(char c) {
// spin while fifo is full
while (!(UARTREG(UART_LSR) & UART_LSR_THRE))
;
UARTREG(UART_THR) = c;
}
static int dw8250_uart_pgetc() {
// spin while fifo is empty
while (!(UARTREG(UART_LSR) & UART_LSR_DR))
;
return UARTREG(UART_RBR);
}
static int dw8250_uart_getc(bool wait) {
if (initialized) {
char c;
if (cbuf_read_char(&uart_rx_buf, &c, wait) == 1) {
return c;
}
return ZX_ERR_INTERNAL;
} else {
// Interrupts are not enabled yet. Use panic calls for now
return dw8250_uart_pgetc();
}
}
static void dw8250_dputs(const char* str, size_t len, bool block, bool map_NL) {
spin_lock_saved_state_t state;
bool copied_CR = false;
if (!uart_tx_irq_enabled) {
block = false;
}
spin_lock_irqsave(&uart_spinlock, state);
while (len > 0) {
// is FIFO full?
while (!(UARTREG(UART_LSR) & UART_LSR_THRE)) {
spin_unlock_irqrestore(&uart_spinlock, state);
if (block) {
UARTREG(UART_IER) |= UART_IER_ETBEI; // Enable TX interrupt.
event_wait(&uart_dputc_event);
} else {
arch_spinloop_pause();
}
spin_lock_irqsave(&uart_spinlock, state);
}
if (*str == '\n' && map_NL && !copied_CR) {
copied_CR = true;
dw8250_uart_pputc('\r');
} else {
copied_CR = false;
dw8250_uart_pputc(*str++);
len--;
}
}
spin_unlock_irqrestore(&uart_spinlock, state);
}
static void dw8250_uart_init(const void* driver_data, uint32_t length) {
// create circular buffer to hold received data
cbuf_initialize(&uart_rx_buf, RXBUF_SIZE);
if (dlog_bypass() == true) {
uart_tx_irq_enabled = false;
return;
}
zx_status_t status =
configure_interrupt(uart_irq, IRQ_TRIGGER_MODE_LEVEL, IRQ_POLARITY_ACTIVE_HIGH);
if (status != ZX_OK) {
printf("UART: configure_interrupt failed %d\n", status);
return;
}
status = register_int_handler(uart_irq, &dw8250_uart_irq, NULL);
if (status != ZX_OK) {
printf("UART: register_int_handler failed %d\n", status);
return;
}
// enable interrupt
status = unmask_interrupt(uart_irq);
if (status != ZX_OK) {
printf("UART: unmask_interrupt failed %d\n", status);
return;
}
UARTREG(UART_IER) |= UART_IER_ERBFI; // Enable RX interrupt.
initialized = true;
// Start up tx driven output.
printf("UART: starting IRQ driven TX\n");
uart_tx_irq_enabled = true;
}
static void dw8250_start_panic() { uart_tx_irq_enabled = false; }
static const struct pdev_uart_ops uart_ops = {
.getc = dw8250_uart_getc,
.pputc = dw8250_uart_pputc,
.pgetc = dw8250_uart_pgetc,
.start_panic = dw8250_start_panic,
.dputs = dw8250_dputs,
};
extern "C" void uart_mark(unsigned char x);
static void dw8250_uart_init_early(const void* driver_data, uint32_t length) {
ASSERT(length >= sizeof(dcfg_simple_t));
auto driver = static_cast<const dcfg_simple_t*>(driver_data);
ASSERT(driver->mmio_phys && driver->irq);
uart_base = periph_paddr_to_vaddr(driver->mmio_phys);
ASSERT(uart_base);
uart_irq = driver->irq;
pdev_register_uart(&uart_ops);
}
LK_PDEV_INIT(dw8250_uart_init_early, KDRV_DW8250_UART, dw8250_uart_init_early,
LK_INIT_LEVEL_PLATFORM_EARLY)
LK_PDEV_INIT(dw8250_uart_init, KDRV_DW8250_UART, dw8250_uart_init, LK_INIT_LEVEL_PLATFORM)