blob: cd24d239a6797b86c63a30aeb9e1c7af8dec4cf1 [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <dirent.h>
#include <sys/stat.h>
#include <safemath/checked_math.h>
#include "src/storage/f2fs/f2fs.h"
namespace f2fs {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc99-designator"
const unsigned char kFiletypeTable[static_cast<uint8_t>(FileType::kFtMax)] = {
[static_cast<uint8_t>(FileType::kFtUnknown)] = DT_UNKNOWN,
[static_cast<uint8_t>(FileType::kFtRegFile)] = DT_REG,
[static_cast<uint8_t>(FileType::kFtDir)] = DT_DIR,
[static_cast<uint8_t>(FileType::kFtChrdev)] = DT_CHR,
[static_cast<uint8_t>(FileType::kFtBlkdev)] = DT_BLK,
[static_cast<uint8_t>(FileType::kFtFifo)] = DT_FIFO,
[static_cast<uint8_t>(FileType::kFtSock)] = DT_SOCK,
[static_cast<uint8_t>(FileType::kFtSymlink)] = DT_LNK,
};
constexpr unsigned int kStatShift = 12;
const unsigned char kTypeByMode[S_IFMT >> kStatShift] = {
[S_IFREG >> kStatShift] = static_cast<uint8_t>(FileType::kFtRegFile),
[S_IFDIR >> kStatShift] = static_cast<uint8_t>(FileType::kFtDir),
[S_IFCHR >> kStatShift] = static_cast<uint8_t>(FileType::kFtChrdev),
[S_IFBLK >> kStatShift] = static_cast<uint8_t>(FileType::kFtBlkdev),
[S_IFIFO >> kStatShift] = static_cast<uint8_t>(FileType::kFtFifo),
[S_IFSOCK >> kStatShift] = static_cast<uint8_t>(FileType::kFtSock),
[S_IFLNK >> kStatShift] = static_cast<uint8_t>(FileType::kFtSymlink),
};
#pragma GCC diagnostic pop
Dir::Dir(F2fs *fs, ino_t ino) : VnodeF2fs(fs, ino) {}
block_t Dir::DirBlocks() { return safemath::checked_cast<block_t>(GetBlockCount()); }
uint32_t Dir::DirBuckets(uint32_t level, uint8_t dir_level) {
if (level + dir_level < kMaxDirHashDepth / 2)
return 1 << (level + dir_level);
else
return 1 << ((kMaxDirHashDepth / 2) - 1);
}
uint32_t Dir::BucketBlocks(uint32_t level) {
if (level < kMaxDirHashDepth / 2)
return 2;
else
return 4;
}
void Dir::SetDeType(DirEntry *de, VnodeF2fs *vnode) {
de->file_type = kTypeByMode[(vnode->GetMode() & S_IFMT) >> kStatShift];
}
uint64_t Dir::DirBlockIndex(uint32_t level, uint8_t dir_level, uint32_t idx) {
uint64_t bidx = 0;
for (uint32_t i = 0; i < level; ++i) {
bidx += DirBuckets(i, dir_level) * BucketBlocks(i);
}
bidx += idx * BucketBlocks(level);
return bidx;
}
bool Dir::EarlyMatchName(std::string_view name, f2fs_hash_t namehash, const DirEntry &de) {
if (LeToCpu(de.name_len) != name.length())
return false;
if (LeToCpu(de.hash_code) != namehash)
return false;
return true;
}
DirEntry *Dir::FindInBlock(Page *dentry_page, std::string_view name, uint64_t *max_slots,
f2fs_hash_t namehash, Page **res_page) {
DirEntry *de;
uint32_t bit_pos, end_pos, next_pos;
#if 0 // porting needed
// f2fs_dentry_block *dentry_blk = kmap(dentry_page);
#else
DentryBlock *dentry_blk = reinterpret_cast<DentryBlock *>(dentry_page);
#endif
int slots;
bit_pos = FindNextBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, 0);
while (bit_pos < kNrDentryInBlock) {
de = &dentry_blk->dentry[bit_pos];
slots = (LeToCpu(de->name_len) + kNameLen - 1) / kNameLen;
if (EarlyMatchName(name, namehash, *de)) {
if (!memcmp(dentry_blk->filename[bit_pos], name.data(), name.length())) {
*res_page = dentry_page;
return de;
}
}
next_pos = bit_pos + slots;
bit_pos = FindNextBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, next_pos);
if (bit_pos >= kNrDentryInBlock)
end_pos = kNrDentryInBlock;
else
end_pos = bit_pos;
if (*max_slots < end_pos - next_pos)
*max_slots = end_pos - next_pos;
}
de = nullptr;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
return de;
}
DirEntry *Dir::FindInLevel(unsigned int level, std::string_view name, f2fs_hash_t namehash,
Page **res_page) {
uint64_t slot = (name.length() + kNameLen - 1) / kNameLen;
unsigned int nbucket, nblock;
uint64_t bidx, end_block;
Page *dentry_page = nullptr;
DirEntry *de = nullptr;
bool room = false;
uint64_t max_slots = 0;
ZX_ASSERT(level <= kMaxDirHashDepth);
nbucket = DirBuckets(level, GetDirLevel());
nblock = BucketBlocks(level);
bidx = DirBlockIndex(level, GetDirLevel(), namehash % nbucket);
end_block = bidx + nblock;
for (; bidx < end_block; ++bidx) {
/* no need to allocate new dentry pages to all the indices */
if (FindDataPage(bidx, &dentry_page) != ZX_OK) {
room = true;
continue;
}
if (de = FindInBlock(dentry_page, name, &max_slots, namehash, res_page); de != nullptr)
break;
if (max_slots >= slot)
room = true;
F2fsPutPage(dentry_page, 0);
}
if (!de && room && !IsSameDirHash(namehash)) {
SetDirHash(namehash, level);
}
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
DirEntry *Dir::FindEntryOnDevice(std::string_view name, Page **res_page) {
uint64_t npages = DirBlocks();
DirEntry *de = nullptr;
f2fs_hash_t name_hash;
unsigned int max_depth;
unsigned int level;
if (TestFlag(InodeInfoFlag::kInlineDentry)) {
return FindInInlineDir(name, res_page);
}
if (npages == 0)
return nullptr;
*res_page = nullptr;
name_hash = DentryHash(name);
max_depth = static_cast<unsigned int>(GetCurDirDepth());
for (level = 0; level < max_depth; ++level) {
if (de = FindInLevel(level, name, name_hash, res_page); de != nullptr)
break;
}
if (!de && !IsSameDirHash(name_hash)) {
SetDirHash(name_hash, level - 1);
}
#ifdef __Fuchsia__
if (de != nullptr) {
Vfs()->GetDirEntryCache().UpdateDirEntry(Ino(), name, *de, (*res_page)->index);
}
#endif // __Fuchsia__
return de;
}
DirEntry *Dir::FindEntry(std::string_view name, Page **res_page) {
fs::SharedLock read_lock(io_lock_);
#ifdef __Fuchsia__
if (auto cache_page_index = Vfs()->GetDirEntryCache().LookupDataPageIndex(Ino(), name);
!cache_page_index.is_error()) {
if (TestFlag(InodeInfoFlag::kInlineDentry)) {
return FindInInlineDir(name, res_page);
}
Page *dentry_page = nullptr;
if (FindDataPage(*cache_page_index, &dentry_page) != ZX_OK) {
return nullptr;
}
uint64_t max_slots = 0;
f2fs_hash_t name_hash = DentryHash(name);
return FindInBlock(dentry_page, name, &max_slots, name_hash, res_page);
}
#endif // __Fuchsia__
return FindEntryOnDevice(name, res_page);
}
zx::status<DirEntry> Dir::FindEntry(std::string_view name) {
DirEntry *de = nullptr;
fs::SharedLock read_lock(io_lock_);
#ifdef __Fuchsia__
auto element = Vfs()->GetDirEntryCache().LookupDirEntry(Ino(), name);
if (!element.is_error()) {
return zx::ok(*element);
}
#endif // __Fuchsia__
Page *page = nullptr;
de = FindEntryOnDevice(name, &page);
if (de != nullptr) {
DirEntry ret = *de;
F2fsPutPage(page, 0);
return zx::ok(ret);
}
return zx::error(ZX_ERR_NOT_FOUND);
}
DirEntry *Dir::ParentDir(Page **p) {
Page *page = nullptr;
DirEntry *de = nullptr;
DentryBlock *dentry_blk = nullptr;
if (TestFlag(InodeInfoFlag::kInlineDentry))
return ParentInlineDir(p);
if (GetLockDataPage(0, &page) != ZX_OK)
return nullptr;
#if 0 // porting needed
// dentry_blk = kmap(page);
#endif
dentry_blk = static_cast<DentryBlock *>(PageAddress(page));
de = &dentry_blk->dentry[1];
*p = page;
#if 0 // porting needed
// unlock_page(page);
#endif
return de;
}
ino_t Dir::InodeByName(std::string_view name) {
if (auto dir_entry = FindEntry(name); !dir_entry.is_error()) {
return LeToCpu((*dir_entry).ino);
}
return 0;
}
void Dir::SetLink(DirEntry *de, Page *page, VnodeF2fs *vnode) {
std::lock_guard write_lock(io_lock_);
#if 0 // porting needed
// lock_page(page);
#endif
WaitOnPageWriteback(page);
de->ino = CpuToLe(vnode->Ino());
SetDeType(de, vnode);
#if 0 // porting needed
// if (!TestFlag(InodeInfoFlag::kInlineDentry))
// kunmap(page);
// set_page_dirty(page);
#else
// If |de| is an inline dentry, the inode block should be flushed.
// Otherwise, it writes out the data block.
if (page->host == this) {
FlushDirtyDataPage(Vfs(), *page);
} else {
ZX_ASSERT(page->host == nullptr);
FlushDirtyNodePage(Vfs(), *page);
}
#endif
#ifdef __Fuchsia__
Vfs()->GetDirEntryCache().UpdateDirEntry(Ino(), vnode->GetName(), *de, page->index);
#endif // __Fuchsia__
timespec cur_time;
clock_gettime(CLOCK_REALTIME, &cur_time);
SetCTime(cur_time);
SetMTime(cur_time);
MarkInodeDirty();
}
void Dir::InitDentInode(VnodeF2fs *vnode, Page *ipage) {
#if 0 // porting needed
// inode *dir = dentry->d_parent->d_inode;
#endif
Node *rn;
if (!ipage)
return;
WaitOnPageWriteback(ipage);
/* copy dentry info. to this inode page */
rn = static_cast<Node *>(PageAddress(ipage));
rn->i.i_namelen = CpuToLe(vnode->GetNameLen());
memcpy(rn->i.i_name, vnode->GetName(), vnode->GetNameLen());
#if 0 // porting needed
// set_page_dirty(ipage);
#else
FlushDirtyNodePage(Vfs(), *ipage);
#endif
}
zx_status_t Dir::InitInodeMetadata(VnodeF2fs *vnode) {
#if 0 // porting needed
// inode *dir = dentry->d_parent->d_inode;
#endif
if (vnode->TestFlag(InodeInfoFlag::kNewInode)) {
if (zx_status_t err = Vfs()->GetNodeManager().NewInodePage(this, vnode); err != ZX_OK)
return err;
if (vnode->IsDir()) {
if (zx_status_t err = MakeEmpty(vnode); err != ZX_OK) {
Vfs()->GetNodeManager().RemoveInodePage(vnode);
return err;
}
// TODO: need to check other points for nlink
vnode->IncNlink();
}
#if 0 // porting needed
// err = f2fs_init_acl(inode, dir);
// if (err) {
// remove_inode_page(inode);
// return err;
// }
#endif
} else {
Page *ipage = nullptr;
if (zx_status_t err = Vfs()->GetNodeManager().GetNodePage(vnode->Ino(), &ipage); err != ZX_OK)
return err;
InitDentInode(vnode, ipage);
F2fsPutPage(ipage, 1);
}
if (vnode->TestFlag(InodeInfoFlag::kIncLink)) {
vnode->IncNlink();
vnode->WriteInode(nullptr);
}
return 0;
}
void Dir::UpdateParentMetadata(VnodeF2fs *vnode, unsigned int current_depth) {
bool need_dir_update = false;
if (vnode->TestFlag(InodeInfoFlag::kNewInode)) {
if (vnode->IsDir()) {
IncNlink();
need_dir_update = true;
}
vnode->ClearFlag(InodeInfoFlag::kNewInode);
}
vnode->SetParentNid(Ino());
timespec cur_time;
clock_gettime(CLOCK_REALTIME, &cur_time);
SetCTime(cur_time);
SetMTime(cur_time);
if (GetCurDirDepth() != current_depth) {
SetCurDirDepth(current_depth);
need_dir_update = true;
}
if (need_dir_update) {
WriteInode(nullptr);
} else {
MarkInodeDirty();
}
if (vnode->TestFlag(InodeInfoFlag::kIncLink)) {
vnode->ClearFlag(InodeInfoFlag::kIncLink);
}
}
int Dir::RoomForFilename(DentryBlock *dentry_blk, int slots) {
int bit_start = 0;
int zero_start, zero_end;
while (true) {
zero_start = FindNextZeroBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, bit_start);
if (zero_start >= kNrDentryInBlock)
return kNrDentryInBlock;
zero_end = FindNextBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= kNrDentryInBlock)
return kNrDentryInBlock;
}
}
zx_status_t Dir::AddLink(std::string_view name, VnodeF2fs *vnode) {
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
uint64_t bidx;
f2fs_hash_t dentry_hash;
DirEntry *de;
unsigned int nbucket, nblock;
int namelen = static_cast<int>(name.length());
Page *dentry_page = nullptr;
DentryBlock *dentry_blk = nullptr;
int slots = (namelen + kNameLen - 1) / kNameLen;
zx_status_t err = 0;
if (TestFlag(InodeInfoFlag::kInlineDentry)) {
bool is_converted = false;
std::lock_guard write_lock(io_lock_);
if (err = AddInlineEntry(name, vnode, &is_converted); err != ZX_OK)
return err;
if (!is_converted)
return ZX_OK;
}
dentry_hash = DentryHash(name);
level = 0;
current_depth = static_cast<unsigned int>(GetCurDirDepth());
if (IsSameDirHash(dentry_hash)) {
level = static_cast<unsigned int>(GetDirHashLevel());
ClearDirHash();
}
while (true) {
if (current_depth == kMaxDirHashDepth)
return ZX_ERR_OUT_OF_RANGE;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
nbucket = DirBuckets(level, GetDirLevel());
nblock = BucketBlocks(level);
bidx = DirBlockIndex(level, GetDirLevel(), (dentry_hash % nbucket));
for (uint64_t block = bidx; block <= (bidx + nblock - 1); ++block) {
std::lock_guard write_lock(io_lock_);
if (err = GetNewDataPage(safemath::checked_cast<pgoff_t>(block), true, &dentry_page);
err != ZX_OK) {
return err;
}
// porting needed
// dentry_blk = kmap(dentry_page);
dentry_blk = reinterpret_cast<DentryBlock *>(dentry_page->data);
bit_pos = RoomForFilename(dentry_blk, slots);
if (bit_pos < kNrDentryInBlock) {
// porting needed
// if (err = InitInodeMetadata(vnode, dentry); err == ZX_OK) {
if (err = InitInodeMetadata(vnode); err == ZX_OK) {
WaitOnPageWriteback(dentry_page);
de = &dentry_blk->dentry[bit_pos];
de->hash_code = CpuToLe(dentry_hash);
de->name_len = CpuToLe(static_cast<uint16_t>(namelen));
memcpy(dentry_blk->filename[bit_pos], name.data(), namelen);
de->ino = CpuToLe(vnode->Ino());
SetDeType(de, vnode);
for (int i = 0; i < slots; ++i) {
TestAndSetBit(bit_pos + i, dentry_blk->dentry_bitmap);
}
#if 0 // porting needed
// set_page_dirty(dentry_page);
#else
FlushDirtyDataPage(Vfs(), *dentry_page);
#endif
#ifdef __Fuchsia__
if (de != nullptr) {
Vfs()->GetDirEntryCache().UpdateDirEntry(Ino(), name, *de, dentry_page->index);
}
#endif // __Fuchsia__
UpdateParentMetadata(vnode, current_depth);
}
if (TestFlag(InodeInfoFlag::kUpdateDir)) {
WriteInode(nullptr);
ClearFlag(InodeInfoFlag::kUpdateDir);
}
// porting needed
// kunmap(dentry_page);
F2fsPutPage(dentry_page, 1);
return err;
}
// porting needed
// kunmap(dentry_page);
F2fsPutPage(dentry_page, 1);
}
/* Move to next level to find the empty slot for new dentry */
++level;
}
}
/**
* It only removes the dentry from the dentry page,corresponding name
* entry in name page does not need to be touched during deletion.
*/
void Dir::DeleteEntry(DirEntry *dentry, Page *page, VnodeF2fs *vnode) {
DentryBlock *dentry_blk;
unsigned int bit_pos;
#if 0 // porting needed
// address_space *mapping = page->mapping;
#endif
int slots = (LeToCpu(dentry->name_len) + kNameLen - 1) / kNameLen;
void *kaddr = PageAddress(page);
std::lock_guard write_lock(io_lock_);
if (TestFlag(InodeInfoFlag::kInlineDentry)) {
DeleteInlineEntry(dentry, page, vnode);
return;
}
#if 0 // porting needed
// lock_page(page);
#endif
WaitOnPageWriteback(page);
dentry_blk = static_cast<DentryBlock *>(kaddr);
bit_pos = static_cast<uint32_t>(dentry - dentry_blk->dentry);
for (int i = 0; i < slots; ++i) {
TestAndClearBit(bit_pos + i, dentry_blk->dentry_bitmap);
}
#if 0 // porting needed
// kunmap(page); /* kunmap - pair of f2fs_find_entry */
// set_page_dirty(page);
#else
FlushDirtyDataPage(Vfs(), *page);
#endif
#ifdef __Fuchsia__
std::string_view remove_name(reinterpret_cast<char *>(dentry_blk->filename[bit_pos]),
LeToCpu(dentry->name_len));
Vfs()->GetDirEntryCache().RemoveDirEntry(Ino(), remove_name);
#endif // __Fuchsia__
timespec cur_time;
clock_gettime(CLOCK_REALTIME, &cur_time);
SetCTime(cur_time);
SetMTime(cur_time);
if (vnode && vnode->IsDir()) {
DropNlink();
WriteInode(nullptr);
} else {
MarkInodeDirty();
}
if (vnode) {
clock_gettime(CLOCK_REALTIME, &cur_time);
SetCTime(cur_time);
SetMTime(cur_time);
vnode->SetCTime(cur_time);
vnode->DropNlink();
if (vnode->IsDir()) {
vnode->DropNlink();
vnode->InitSize();
}
vnode->WriteInode(nullptr);
if (vnode->GetNlink() == 0) {
Vfs()->AddOrphanInode(vnode);
}
}
// check and deallocate dentry page if all dentries of the page are freed
bit_pos = FindNextBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, 0);
if (bit_pos == kNrDentryInBlock) {
__UNUSED loff_t page_offset;
TruncateHole(page->index, page->index + 1);
ClearPageDirtyForIo(page);
ClearPageUptodate(page);
Vfs()->GetSuperblockInfo().SubtractPageCount(CountType::kDirtyDents);
RemoveDirtyDentry();
page_offset = page->index << kPageCacheShift;
}
}
zx_status_t Dir::MakeEmpty(VnodeF2fs *vnode) {
Page *dentry_page = nullptr;
DentryBlock *dentry_blk;
DirEntry *de;
void *kaddr;
if (vnode->TestFlag(InodeInfoFlag::kInlineDentry))
return MakeEmptyInlineDir(vnode);
if (zx_status_t err = vnode->GetNewDataPage(0, true, &dentry_page); err != ZX_OK)
return err;
#if 0 // porting needed
// kaddr = kmap_atomic(dentry_page);
#else
kaddr = dentry_page->data;
#endif
dentry_blk = static_cast<DentryBlock *>(kaddr);
de = &dentry_blk->dentry[0];
de->name_len = CpuToLe(static_cast<uint16_t>(1));
de->hash_code = 0;
de->ino = CpuToLe(vnode->Ino());
memcpy(dentry_blk->filename[0], ".", 1);
SetDeType(de, vnode);
de = &dentry_blk->dentry[1];
de->hash_code = 0;
de->name_len = CpuToLe(static_cast<uint16_t>(2));
de->ino = CpuToLe(Ino());
memcpy(dentry_blk->filename[1], "..", 2);
SetDeType(de, vnode);
TestAndSetBit(0, dentry_blk->dentry_bitmap);
TestAndSetBit(1, dentry_blk->dentry_bitmap);
#if 0 // porting needed
// kunmap_atomic(kaddr);
// set_page_dirty(dentry_page);
#else
FlushDirtyDataPage(Vfs(), *dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
return 0;
}
bool Dir::IsEmptyDir() {
Page *dentry_page = nullptr;
unsigned int bit_pos;
DentryBlock *dentry_blk;
uint64_t nblock = DirBlocks();
if (TestFlag(InodeInfoFlag::kInlineDentry))
return IsEmptyInlineDir();
for (uint64_t bidx = 0; bidx < nblock; ++bidx) {
void *kaddr;
if (zx_status_t ret = GetLockDataPage(bidx, &dentry_page); ret != ZX_OK) {
if (ret == ZX_ERR_NOT_FOUND)
continue;
else
return false;
}
#if 0 // porting needed
// kaddr = kmap_atomic(dentry_page);
#else
kaddr = dentry_page->data;
#endif
dentry_blk = static_cast<DentryBlock *>(kaddr);
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = FindNextBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, bit_pos);
#if 0 // porting needed
// kunmap_atomic(kaddr);
#endif
F2fsPutPage(dentry_page, 1);
if (bit_pos < kNrDentryInBlock)
return false;
}
return true;
}
zx_status_t Dir::Readdir(fs::VdirCookie *cookie, void *dirents, size_t len, size_t *out_actual) {
fs::DirentFiller df(dirents, len);
uint64_t *pos_cookie = reinterpret_cast<uint64_t *>(cookie);
uint64_t pos = *pos_cookie;
uint64_t npages = DirBlocks();
unsigned int bit_pos = 0, start_bit_pos = 0;
DentryBlock *dentry_blk = nullptr;
DirEntry *de = nullptr;
Page *dentry_page = nullptr;
unsigned char d_type = DT_UNKNOWN;
int slots;
zx_status_t ret = ZX_OK;
bool done = false;
fs::SharedLock read_lock(io_lock_);
if (GetSize() == 0) {
*out_actual = 0;
return ZX_OK;
}
if (TestFlag(InodeInfoFlag::kInlineDentry))
return ReadInlineDir(cookie, dirents, len, out_actual);
const unsigned char *types = kFiletypeTable;
bit_pos = (pos % kNrDentryInBlock);
for (uint64_t n = (pos / kNrDentryInBlock); n < npages; ++n) {
if (ret = GetLockDataPage(n, &dentry_page); ret != ZX_OK)
continue;
start_bit_pos = bit_pos;
#if 0 // porting needed
// dentry_blk = kmap(dentry_page);
#else
dentry_blk = reinterpret_cast<DentryBlock *>(dentry_page);
#endif
while (bit_pos < kNrDentryInBlock) {
d_type = DT_UNKNOWN;
bit_pos = FindNextBit(dentry_blk->dentry_bitmap, kNrDentryInBlock, bit_pos);
if (bit_pos >= kNrDentryInBlock)
break;
de = &dentry_blk->dentry[bit_pos];
if (types && de->file_type < static_cast<uint8_t>(FileType::kFtMax))
d_type = types[de->file_type];
std::string_view name(reinterpret_cast<char *>(dentry_blk->filename[bit_pos]),
LeToCpu(de->name_len));
if (de->ino && name != "..") {
if ((ret = df.Next(name, d_type, LeToCpu(de->ino))) != ZX_OK) {
*pos_cookie += bit_pos - start_bit_pos;
done = true;
ret = ZX_OK;
break;
}
}
slots = (LeToCpu(de->name_len) + kNameLen - 1) / kNameLen;
bit_pos += slots;
}
if (done)
break;
bit_pos = 0;
*pos_cookie = (n + 1) * kNrDentryInBlock;
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
dentry_page = nullptr;
}
if (dentry_page && ret == ZX_OK) {
#if 0 // porting needed
// kunmap(dentry_page);
#endif
F2fsPutPage(dentry_page, 1);
}
*out_actual = df.BytesFilled();
return ret;
}
} // namespace f2fs