| // Copyright 2019 The Fuchsia Authors |
| // |
| // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| // This file may not be copied, modified, or distributed except according to |
| // those terms. |
| |
| //! Byte order-aware numeric primitives. |
| //! |
| //! This module contains equivalents of the native multi-byte integer types with |
| //! no alignment requirement and supporting byte order conversions. |
| //! |
| //! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and |
| //! floating point type - `f32` and `f64` - an equivalent type is defined by |
| //! this module - [`U16`], [`I16`], [`U32`], [`F64`], etc. Unlike their native |
| //! counterparts, these types have alignment 1, and take a type parameter |
| //! specifying the byte order in which the bytes are stored in memory. Each type |
| //! implements the [`FromBytes`], [`IntoBytes`], and [`Unaligned`] traits. |
| //! |
| //! These two properties, taken together, make these types useful for defining |
| //! data structures whose memory layout matches a wire format such as that of a |
| //! network protocol or a file format. Such formats often have multi-byte values |
| //! at offsets that do not respect the alignment requirements of the equivalent |
| //! native types, and stored in a byte order not necessarily the same as that of |
| //! the target platform. |
| //! |
| //! Type aliases are provided for common byte orders in the [`big_endian`], |
| //! [`little_endian`], [`network_endian`], and [`native_endian`] submodules. |
| //! |
| //! # Example |
| //! |
| //! One use of these types is for representing network packet formats, such as |
| //! UDP: |
| //! |
| //! ```rust,edition2021 |
| //! # #[cfg(feature = "derive")] { // This example uses derives, and won't compile without them |
| //! use zerocopy::{IntoBytes, ByteSlice, FromBytes, FromZeros, NoCell, Ref, Unaligned}; |
| //! use zerocopy::byteorder::network_endian::U16; |
| //! |
| //! #[derive(FromZeros, FromBytes, IntoBytes, NoCell, Unaligned)] |
| //! #[repr(C)] |
| //! struct UdpHeader { |
| //! src_port: U16, |
| //! dst_port: U16, |
| //! length: U16, |
| //! checksum: U16, |
| //! } |
| //! |
| //! struct UdpPacket<B: ByteSlice> { |
| //! header: Ref<B, UdpHeader>, |
| //! body: B, |
| //! } |
| //! |
| //! impl<B: ByteSlice> UdpPacket<B> { |
| //! fn parse(bytes: B) -> Option<UdpPacket<B>> { |
| //! let (header, body) = Ref::new_from_prefix(bytes)?; |
| //! Some(UdpPacket { header, body }) |
| //! } |
| //! |
| //! fn src_port(&self) -> u16 { |
| //! self.header.src_port.get() |
| //! } |
| //! |
| //! // more getters... |
| //! } |
| //! # } |
| //! ``` |
| |
| use core::{ |
| convert::{TryFrom, TryInto}, |
| fmt::{self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex}, |
| marker::PhantomData, |
| mem, |
| num::TryFromIntError, |
| }; |
| |
| use super::*; |
| |
| /// A type-level representation of byte order. |
| /// |
| /// This type is implemented by [`BigEndian`] and [`LittleEndian`], which |
| /// represent big-endian and little-endian byte order respectively. This module |
| /// also provides a number of useful aliases for those types: [`NativeEndian`], |
| /// [`NetworkEndian`], [`BE`], and [`LE`]. |
| /// |
| /// `ByteOrder` types can be used to specify the byte order of the types in this |
| /// module - for example, [`U32<BigEndian>`] is a 32-bit integer stored in |
| /// big-endian byte order. |
| /// |
| /// [`U32<BigEndian>`]: U32 |
| pub trait ByteOrder: Copy + Clone + Debug + Display + Eq + PartialEq + Ord + PartialOrd { |
| #[doc(hidden)] |
| const ORDER: Order; |
| } |
| |
| #[allow(missing_copy_implementations, missing_debug_implementations)] |
| #[doc(hidden)] |
| pub enum Order { |
| BigEndian, |
| LittleEndian, |
| } |
| |
| /// Big-endian byte order. |
| /// |
| /// See [`ByteOrder`] for more details. |
| #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)] |
| pub enum BigEndian {} |
| |
| impl ByteOrder for BigEndian { |
| const ORDER: Order = Order::BigEndian; |
| } |
| |
| impl Display for BigEndian { |
| #[inline] |
| fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result { |
| match *self {} |
| } |
| } |
| |
| /// Little-endian byte order. |
| /// |
| /// See [`ByteOrder`] for more details. |
| #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)] |
| pub enum LittleEndian {} |
| |
| impl ByteOrder for LittleEndian { |
| const ORDER: Order = Order::LittleEndian; |
| } |
| |
| impl Display for LittleEndian { |
| #[inline] |
| fn fmt(&self, _: &mut Formatter<'_>) -> fmt::Result { |
| match *self {} |
| } |
| } |
| |
| /// The endianness used by this platform. |
| /// |
| /// This is a type alias for [`BigEndian`] or [`LittleEndian`] depending on the |
| /// endianness of the target platform. |
| #[cfg(target_endian = "big")] |
| pub type NativeEndian = BigEndian; |
| |
| /// The endianness used by this platform. |
| /// |
| /// This is a type alias for [`BigEndian`] or [`LittleEndian`] depending on the |
| /// endianness of the target platform. |
| #[cfg(target_endian = "little")] |
| pub type NativeEndian = LittleEndian; |
| |
| /// The endianness used in many network protocols. |
| /// |
| /// This is a type alias for [`BigEndian`]. |
| pub type NetworkEndian = BigEndian; |
| |
| /// A type alias for [`BigEndian`]. |
| pub type BE = BigEndian; |
| |
| /// A type alias for [`LittleEndian`]. |
| pub type LE = LittleEndian; |
| |
| macro_rules! impl_fmt_trait { |
| ($name:ident, $native:ident, $trait:ident) => { |
| impl<O: ByteOrder> $trait for $name<O> { |
| #[inline(always)] |
| fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| $trait::fmt(&self.get(), f) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! impl_fmt_traits { |
| ($name:ident, $native:ident, "floating point number") => { |
| impl_fmt_trait!($name, $native, Display); |
| }; |
| ($name:ident, $native:ident, "unsigned integer") => { |
| impl_fmt_traits!($name, $native, @all_types); |
| }; |
| ($name:ident, $native:ident, "signed integer") => { |
| impl_fmt_traits!($name, $native, @all_types); |
| }; |
| ($name:ident, $native:ident, @all_types) => { |
| impl_fmt_trait!($name, $native, Display); |
| impl_fmt_trait!($name, $native, Octal); |
| impl_fmt_trait!($name, $native, LowerHex); |
| impl_fmt_trait!($name, $native, UpperHex); |
| impl_fmt_trait!($name, $native, Binary); |
| }; |
| } |
| |
| macro_rules! impl_ops_traits { |
| ($name:ident, $native:ident, "floating point number") => { |
| impl_ops_traits!($name, $native, @all_types); |
| impl_ops_traits!($name, $native, @signed_integer_floating_point); |
| }; |
| ($name:ident, $native:ident, "unsigned integer") => { |
| impl_ops_traits!($name, $native, @signed_unsigned_integer); |
| impl_ops_traits!($name, $native, @all_types); |
| }; |
| ($name:ident, $native:ident, "signed integer") => { |
| impl_ops_traits!($name, $native, @signed_unsigned_integer); |
| impl_ops_traits!($name, $native, @signed_integer_floating_point); |
| impl_ops_traits!($name, $native, @all_types); |
| }; |
| ($name:ident, $native:ident, @signed_unsigned_integer) => { |
| impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign); |
| impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign); |
| impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign); |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign); |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign); |
| |
| impl<O> core::ops::Not for $name<O> { |
| type Output = $name<O>; |
| |
| #[inline(always)] |
| fn not(self) -> $name<O> { |
| let self_native = $native::from_ne_bytes(self.0); |
| $name((!self_native).to_ne_bytes(), PhantomData) |
| } |
| } |
| }; |
| ($name:ident, $native:ident, @signed_integer_floating_point) => { |
| impl<O: ByteOrder> core::ops::Neg for $name<O> { |
| type Output = $name<O>; |
| |
| #[inline(always)] |
| fn neg(self) -> $name<O> { |
| let self_native: $native = self.get(); |
| #[allow(clippy::arithmetic_side_effects)] |
| $name::<O>::new(-self_native) |
| } |
| } |
| }; |
| ($name:ident, $native:ident, @all_types) => { |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign); |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign); |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign); |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign); |
| impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign); |
| }; |
| (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
| impl<O: ByteOrder> core::ops::$trait for $name<O> { |
| type Output = $name<O>; |
| |
| #[inline(always)] |
| fn $method(self, rhs: $name<O>) -> $name<O> { |
| let self_native: $native = self.get(); |
| let rhs_native: $native = rhs.get(); |
| let result_native = core::ops::$trait::$method(self_native, rhs_native); |
| $name::<O>::new(result_native) |
| } |
| } |
| |
| impl<O: ByteOrder> core::ops::$trait_assign for $name<O> { |
| #[inline(always)] |
| fn $method_assign(&mut self, rhs: $name<O>) { |
| *self = core::ops::$trait::$method(*self, rhs); |
| } |
| } |
| }; |
| // Implement traits in terms of the same trait on the native type, but |
| // without performing a byte order swap. This only works for bitwise |
| // operations like `&`, `|`, etc. |
| (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { |
| impl<O: ByteOrder> core::ops::$trait for $name<O> { |
| type Output = $name<O>; |
| |
| #[inline(always)] |
| fn $method(self, rhs: $name<O>) -> $name<O> { |
| let self_native = $native::from_ne_bytes(self.0); |
| let rhs_native = $native::from_ne_bytes(rhs.0); |
| let result_native = core::ops::$trait::$method(self_native, rhs_native); |
| $name(result_native.to_ne_bytes(), PhantomData) |
| } |
| } |
| |
| impl<O: ByteOrder> core::ops::$trait_assign for $name<O> { |
| #[inline(always)] |
| fn $method_assign(&mut self, rhs: $name<O>) { |
| *self = core::ops::$trait::$method(*self, rhs); |
| } |
| } |
| }; |
| } |
| |
| macro_rules! doc_comment { |
| ($x:expr, $($tt:tt)*) => { |
| #[doc = $x] |
| $($tt)* |
| }; |
| } |
| |
| macro_rules! define_max_value_constant { |
| ($name:ident, $bytes:expr, "unsigned integer") => { |
| /// The maximum value. |
| /// |
| /// This constant should be preferred to constructing a new value using |
| /// `new`, as `new` may perform an endianness swap depending on the |
| /// endianness `O` and the endianness of the platform. |
| pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData); |
| }; |
| // We don't provide maximum and minimum value constants for signed values |
| // and floats because there's no way to do it generically - it would require |
| // a different value depending on the value of the `ByteOrder` type |
| // parameter. Currently, one workaround would be to provide implementations |
| // for concrete implementations of that trait. In the long term, if we are |
| // ever able to make the `new` constructor a const fn, we could use that |
| // instead. |
| ($name:ident, $bytes:expr, "signed integer") => {}; |
| ($name:ident, $bytes:expr, "floating point number") => {}; |
| } |
| |
| macro_rules! define_type { |
| ( |
| $article:ident, |
| $description:expr, |
| $name:ident, |
| $native:ident, |
| $bits:expr, |
| $bytes:expr, |
| $from_be_fn:path, |
| $to_be_fn:path, |
| $from_le_fn:path, |
| $to_le_fn:path, |
| $number_kind:tt, |
| [$($larger_native:ty),*], |
| [$($larger_native_try:ty),*], |
| [$($larger_byteorder:ident),*], |
| [$($larger_byteorder_try:ident),*] |
| ) => { |
| doc_comment! { |
| concat!($description, " stored in a given byte order. |
| |
| `", stringify!($name), "` is like the native `", stringify!($native), "` type with |
| two major differences: First, it has no alignment requirement (its alignment is 1). |
| Second, the endianness of its memory layout is given by the type parameter `O`, |
| which can be any type which implements [`ByteOrder`]. In particular, this refers |
| to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`]. |
| |
| ", stringify!($article), " `", stringify!($name), "` can be constructed using |
| the [`new`] method, and its contained value can be obtained as a native |
| `",stringify!($native), "` using the [`get`] method, or updated in place with |
| the [`set`] method. In all cases, if the endianness `O` is not the same as the |
| endianness of the current platform, an endianness swap will be performed in |
| order to uphold the invariants that a) the layout of `", stringify!($name), "` |
| has endianness `O` and that, b) the layout of `", stringify!($native), "` has |
| the platform's native endianness. |
| |
| `", stringify!($name), "` implements [`FromBytes`], [`IntoBytes`], and [`Unaligned`], |
| making it useful for parsing and serialization. See the module documentation for an |
| example of how it can be used for parsing UDP packets. |
| |
| [`new`]: crate::byteorder::", stringify!($name), "::new |
| [`get`]: crate::byteorder::", stringify!($name), "::get |
| [`set`]: crate::byteorder::", stringify!($name), "::set |
| [`FromBytes`]: crate::FromBytes |
| [`IntoBytes`]: crate::IntoBytes |
| [`Unaligned`]: crate::Unaligned"), |
| #[derive(Copy, Clone, Eq, PartialEq, Hash)] |
| #[cfg_attr(any(feature = "derive", test), derive(KnownLayout, NoCell, TryFromBytes, FromZeros, FromBytes, IntoBytes, Unaligned))] |
| #[repr(transparent)] |
| pub struct $name<O>([u8; $bytes], PhantomData<O>); |
| } |
| |
| #[cfg(not(any(feature = "derive", test)))] |
| impl_known_layout!(O => $name<O>); |
| |
| safety_comment! { |
| /// SAFETY: |
| /// `$name<O>` is `repr(transparent)`, and so it has the same layout |
| /// as its only non-zero field, which is a `u8` array. `u8` arrays |
| /// are `NoCell`, `TryFromBytes`, `FromZeros`, `FromBytes`, |
| /// `IntoBytes`, and `Unaligned`. |
| impl_or_verify!(O => NoCell for $name<O>); |
| impl_or_verify!(O => TryFromBytes for $name<O>); |
| impl_or_verify!(O => FromZeros for $name<O>); |
| impl_or_verify!(O => FromBytes for $name<O>); |
| impl_or_verify!(O => IntoBytes for $name<O>); |
| impl_or_verify!(O => Unaligned for $name<O>); |
| } |
| |
| impl<O> Default for $name<O> { |
| #[inline(always)] |
| fn default() -> $name<O> { |
| $name::ZERO |
| } |
| } |
| |
| impl<O> $name<O> { |
| /// The value zero. |
| /// |
| /// This constant should be preferred to constructing a new value |
| /// using `new`, as `new` may perform an endianness swap depending |
| /// on the endianness and platform. |
| pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData); |
| |
| define_max_value_constant!($name, $bytes, $number_kind); |
| |
| /// Constructs a new value from bytes which are already in `O` byte |
| /// order. |
| #[inline(always)] |
| pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
| $name(bytes, PhantomData) |
| } |
| |
| /// Extracts the bytes of `self` without swapping the byte order. |
| /// |
| /// The returned bytes will be in `O` byte order. |
| #[inline(always)] |
| pub const fn to_bytes(self) -> [u8; $bytes] { |
| self.0 |
| } |
| } |
| |
| impl<O: ByteOrder> $name<O> { |
| maybe_const_trait_bounded_fn! { |
| /// Constructs a new value, possibly performing an endianness |
| /// swap to guarantee that the returned value has endianness |
| /// `O`. |
| #[inline(always)] |
| pub const fn new(n: $native) -> $name<O> { |
| let bytes = match O::ORDER { |
| Order::BigEndian => $to_be_fn(n), |
| Order::LittleEndian => $to_le_fn(n), |
| }; |
| |
| $name(bytes, PhantomData) |
| } |
| } |
| |
| maybe_const_trait_bounded_fn! { |
| /// Returns the value as a primitive type, possibly performing |
| /// an endianness swap to guarantee that the return value has |
| /// the endianness of the native platform. |
| #[inline(always)] |
| pub const fn get(self) -> $native { |
| match O::ORDER { |
| Order::BigEndian => $from_be_fn(self.0), |
| Order::LittleEndian => $from_le_fn(self.0), |
| } |
| } |
| } |
| |
| /// Updates the value in place as a primitive type, possibly |
| /// performing an endianness swap to guarantee that the stored value |
| /// has the endianness `O`. |
| #[inline(always)] |
| pub fn set(&mut self, n: $native) { |
| *self = Self::new(n); |
| } |
| } |
| |
| // The reasoning behind which traits to implement here is to only |
| // implement traits which won't cause inference issues. Notably, |
| // comparison traits like PartialEq and PartialOrd tend to cause |
| // inference issues. |
| |
| impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] { |
| #[inline(always)] |
| fn from(x: $name<O>) -> [u8; $bytes] { |
| x.0 |
| } |
| } |
| |
| impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> { |
| #[inline(always)] |
| fn from(bytes: [u8; $bytes]) -> $name<O> { |
| $name(bytes, PhantomData) |
| } |
| } |
| |
| impl<O: ByteOrder> From<$name<O>> for $native { |
| #[inline(always)] |
| fn from(x: $name<O>) -> $native { |
| x.get() |
| } |
| } |
| |
| impl<O: ByteOrder> From<$native> for $name<O> { |
| #[inline(always)] |
| fn from(x: $native) -> $name<O> { |
| $name::new(x) |
| } |
| } |
| |
| $( |
| impl<O: ByteOrder> From<$name<O>> for $larger_native { |
| #[inline(always)] |
| fn from(x: $name<O>) -> $larger_native { |
| x.get().into() |
| } |
| } |
| )* |
| |
| $( |
| impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> { |
| type Error = TryFromIntError; |
| #[inline(always)] |
| fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> { |
| $native::try_from(x).map($name::new) |
| } |
| } |
| )* |
| |
| $( |
| impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> { |
| #[inline(always)] |
| fn from(x: $name<O>) -> $larger_byteorder<P> { |
| $larger_byteorder::new(x.get().into()) |
| } |
| } |
| )* |
| |
| $( |
| impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> { |
| type Error = TryFromIntError; |
| #[inline(always)] |
| fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> { |
| x.get().try_into().map($name::new) |
| } |
| } |
| )* |
| |
| impl<O: ByteOrder> AsRef<[u8; $bytes]> for $name<O> { |
| #[inline(always)] |
| fn as_ref(&self) -> &[u8; $bytes] { |
| &self.0 |
| } |
| } |
| |
| impl<O: ByteOrder> AsMut<[u8; $bytes]> for $name<O> { |
| #[inline(always)] |
| fn as_mut(&mut self) -> &mut [u8; $bytes] { |
| &mut self.0 |
| } |
| } |
| |
| impl<O: ByteOrder> PartialEq<$name<O>> for [u8; $bytes] { |
| #[inline(always)] |
| fn eq(&self, other: &$name<O>) -> bool { |
| self.eq(&other.0) |
| } |
| } |
| |
| impl<O: ByteOrder> PartialEq<[u8; $bytes]> for $name<O> { |
| #[inline(always)] |
| fn eq(&self, other: &[u8; $bytes]) -> bool { |
| self.0.eq(other) |
| } |
| } |
| |
| impl_fmt_traits!($name, $native, $number_kind); |
| impl_ops_traits!($name, $native, $number_kind); |
| |
| impl<O: ByteOrder> Debug for $name<O> { |
| #[inline] |
| fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| // This results in a format like "U16(42)". |
| f.debug_tuple(stringify!($name)).field(&self.get()).finish() |
| } |
| } |
| }; |
| } |
| |
| define_type!( |
| A, |
| "A 16-bit unsigned integer", |
| U16, |
| u16, |
| 16, |
| 2, |
| u16::from_be_bytes, |
| u16::to_be_bytes, |
| u16::from_le_bytes, |
| u16::to_le_bytes, |
| "unsigned integer", |
| [u32, u64, u128, usize], |
| [u32, u64, u128, usize], |
| [U32, U64, U128, Usize], |
| [U32, U64, U128, Usize] |
| ); |
| define_type!( |
| A, |
| "A 32-bit unsigned integer", |
| U32, |
| u32, |
| 32, |
| 4, |
| u32::from_be_bytes, |
| u32::to_be_bytes, |
| u32::from_le_bytes, |
| u32::to_le_bytes, |
| "unsigned integer", |
| [u64, u128], |
| [u64, u128], |
| [U64, U128], |
| [U64, U128] |
| ); |
| define_type!( |
| A, |
| "A 64-bit unsigned integer", |
| U64, |
| u64, |
| 64, |
| 8, |
| u64::from_be_bytes, |
| u64::to_be_bytes, |
| u64::from_le_bytes, |
| u64::to_le_bytes, |
| "unsigned integer", |
| [u128], |
| [u128], |
| [U128], |
| [U128] |
| ); |
| define_type!( |
| A, |
| "A 128-bit unsigned integer", |
| U128, |
| u128, |
| 128, |
| 16, |
| u128::from_be_bytes, |
| u128::to_be_bytes, |
| u128::from_le_bytes, |
| u128::to_le_bytes, |
| "unsigned integer", |
| [], |
| [], |
| [], |
| [] |
| ); |
| define_type!( |
| A, |
| "A word-sized unsigned integer", |
| Usize, |
| usize, |
| mem::size_of::<usize>() * 8, |
| mem::size_of::<usize>(), |
| usize::from_be_bytes, |
| usize::to_be_bytes, |
| usize::from_le_bytes, |
| usize::to_le_bytes, |
| "unsigned integer", |
| [], |
| [], |
| [], |
| [] |
| ); |
| define_type!( |
| An, |
| "A 16-bit signed integer", |
| I16, |
| i16, |
| 16, |
| 2, |
| i16::from_be_bytes, |
| i16::to_be_bytes, |
| i16::from_le_bytes, |
| i16::to_le_bytes, |
| "signed integer", |
| [i32, i64, i128, isize], |
| [i32, i64, i128, isize], |
| [I32, I64, I128, Isize], |
| [I32, I64, I128, Isize] |
| ); |
| define_type!( |
| An, |
| "A 32-bit signed integer", |
| I32, |
| i32, |
| 32, |
| 4, |
| i32::from_be_bytes, |
| i32::to_be_bytes, |
| i32::from_le_bytes, |
| i32::to_le_bytes, |
| "signed integer", |
| [i64, i128], |
| [i64, i128], |
| [I64, I128], |
| [I64, I128] |
| ); |
| define_type!( |
| An, |
| "A 64-bit signed integer", |
| I64, |
| i64, |
| 64, |
| 8, |
| i64::from_be_bytes, |
| i64::to_be_bytes, |
| i64::from_le_bytes, |
| i64::to_le_bytes, |
| "signed integer", |
| [i128], |
| [i128], |
| [I128], |
| [I128] |
| ); |
| define_type!( |
| An, |
| "A 128-bit signed integer", |
| I128, |
| i128, |
| 128, |
| 16, |
| i128::from_be_bytes, |
| i128::to_be_bytes, |
| i128::from_le_bytes, |
| i128::to_le_bytes, |
| "signed integer", |
| [], |
| [], |
| [], |
| [] |
| ); |
| define_type!( |
| An, |
| "A word-sized signed integer", |
| Isize, |
| isize, |
| mem::size_of::<isize>() * 8, |
| mem::size_of::<isize>(), |
| isize::from_be_bytes, |
| isize::to_be_bytes, |
| isize::from_le_bytes, |
| isize::to_le_bytes, |
| "signed integer", |
| [], |
| [], |
| [], |
| [] |
| ); |
| |
| // TODO(https://github.com/rust-lang/rust/issues/72447): Use the endianness |
| // conversion methods directly once those are const-stable. |
| macro_rules! define_float_conversion { |
| ($ty:ty, $bits:ident, $bytes:expr, $mod:ident) => { |
| mod $mod { |
| use super::*; |
| |
| define_float_conversion!($ty, $bits, $bytes, from_be_bytes, to_be_bytes); |
| define_float_conversion!($ty, $bits, $bytes, from_le_bytes, to_le_bytes); |
| } |
| }; |
| ($ty:ty, $bits:ident, $bytes:expr, $from:ident, $to:ident) => { |
| pub(crate) const fn $from(bytes: [u8; $bytes]) -> $ty { |
| transmute!($bits::$from(bytes)) |
| } |
| |
| pub(crate) const fn $to(f: $ty) -> [u8; $bytes] { |
| let bits: $bits = transmute!(f); |
| bits.$to() |
| } |
| }; |
| } |
| |
| define_float_conversion!(f32, u32, 4, f32_ext); |
| define_float_conversion!(f64, u64, 8, f64_ext); |
| |
| define_type!( |
| An, |
| "A 32-bit floating point number", |
| F32, |
| f32, |
| 32, |
| 4, |
| f32_ext::from_be_bytes, |
| f32_ext::to_be_bytes, |
| f32_ext::from_le_bytes, |
| f32_ext::to_le_bytes, |
| "floating point number", |
| [f64], |
| [], |
| [F64], |
| [] |
| ); |
| define_type!( |
| An, |
| "A 64-bit floating point number", |
| F64, |
| f64, |
| 64, |
| 8, |
| f64_ext::from_be_bytes, |
| f64_ext::to_be_bytes, |
| f64_ext::from_le_bytes, |
| f64_ext::to_le_bytes, |
| "floating point number", |
| [], |
| [], |
| [], |
| [] |
| ); |
| |
| macro_rules! module { |
| ($name:ident, $trait:ident, $endianness_str:expr) => { |
| /// Numeric primitives stored in |
| #[doc = $endianness_str] |
| /// byte order. |
| pub mod $name { |
| use super::$trait; |
| |
| module!(@ty U16, $trait, "16-bit unsigned integer", $endianness_str); |
| module!(@ty U32, $trait, "32-bit unsigned integer", $endianness_str); |
| module!(@ty U64, $trait, "64-bit unsigned integer", $endianness_str); |
| module!(@ty U128, $trait, "128-bit unsigned integer", $endianness_str); |
| module!(@ty I16, $trait, "16-bit signed integer", $endianness_str); |
| module!(@ty I32, $trait, "32-bit signed integer", $endianness_str); |
| module!(@ty I64, $trait, "64-bit signed integer", $endianness_str); |
| module!(@ty I128, $trait, "128-bit signed integer", $endianness_str); |
| module!(@ty F32, $trait, "32-bit floating point number", $endianness_str); |
| module!(@ty F64, $trait, "64-bit floating point number", $endianness_str); |
| } |
| }; |
| (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => { |
| /// A |
| #[doc = $desc_str] |
| /// stored in |
| #[doc = $endianness_str] |
| /// byte order. |
| pub type $ty = crate::byteorder::$ty<$trait>; |
| }; |
| } |
| |
| module!(big_endian, BigEndian, "big-endian"); |
| module!(little_endian, LittleEndian, "little-endian"); |
| module!(network_endian, NetworkEndian, "network-endian"); |
| module!(native_endian, NativeEndian, "native-endian"); |
| |
| #[cfg(any(test, kani))] |
| mod tests { |
| use { |
| super::*, |
| crate::{FromBytes, IntoBytes, Unaligned}, |
| }; |
| |
| #[cfg(not(kani))] |
| mod compatibility { |
| pub(super) use rand::{ |
| distributions::{Distribution, Standard}, |
| rngs::SmallRng, |
| Rng, SeedableRng, |
| }; |
| |
| pub(crate) trait Arbitrary {} |
| |
| impl<T> Arbitrary for T {} |
| } |
| |
| #[cfg(kani)] |
| mod compatibility { |
| pub(crate) use kani::Arbitrary; |
| |
| pub(crate) struct SmallRng; |
| |
| impl SmallRng { |
| pub(crate) fn seed_from_u64(_state: u64) -> Self { |
| Self |
| } |
| } |
| |
| pub(crate) trait Rng { |
| fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T |
| where |
| T: Arbitrary, |
| { |
| kani::any() |
| } |
| } |
| |
| impl Rng for SmallRng {} |
| |
| pub(crate) trait Distribution<T> {} |
| impl<T, U> Distribution<T> for U {} |
| |
| pub(crate) struct Standard; |
| } |
| |
| use compatibility::*; |
| |
| // A native integer type (u16, i32, etc). |
| trait Native: Arbitrary + FromBytes + IntoBytes + NoCell + Copy + PartialEq + Debug { |
| const ZERO: Self; |
| const MAX_VALUE: Self; |
| |
| type Distribution: Distribution<Self>; |
| const DIST: Self::Distribution; |
| |
| fn rand<R: Rng>(rng: &mut R) -> Self { |
| rng.sample(Self::DIST) |
| } |
| |
| #[cfg(kani)] |
| fn any() -> Self { |
| kani::any() |
| } |
| |
| fn checked_add(self, rhs: Self) -> Option<Self>; |
| fn checked_div(self, rhs: Self) -> Option<Self>; |
| fn checked_mul(self, rhs: Self) -> Option<Self>; |
| fn checked_rem(self, rhs: Self) -> Option<Self>; |
| fn checked_sub(self, rhs: Self) -> Option<Self>; |
| fn checked_shl(self, rhs: Self) -> Option<Self>; |
| fn checked_shr(self, rhs: Self) -> Option<Self>; |
| |
| fn is_nan(self) -> bool; |
| |
| /// For `f32` and `f64`, NaN values are not considered equal to |
| /// themselves. This method is like `assert_eq!`, but it treats NaN |
| /// values as equal. |
| fn assert_eq_or_nan(self, other: Self) { |
| let slf = (!self.is_nan()).then(|| self); |
| let other = (!other.is_nan()).then(|| other); |
| assert_eq!(slf, other); |
| } |
| } |
| |
| trait ByteArray: |
| FromBytes + IntoBytes + NoCell + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq |
| { |
| /// Invert the order of the bytes in the array. |
| fn invert(self) -> Self; |
| } |
| |
| trait ByteOrderType: FromBytes + IntoBytes + Unaligned + Copy + Eq + Debug { |
| type Native: Native; |
| type ByteArray: ByteArray; |
| |
| const ZERO: Self; |
| |
| fn new(native: Self::Native) -> Self; |
| fn get(self) -> Self::Native; |
| fn set(&mut self, native: Self::Native); |
| fn from_bytes(bytes: Self::ByteArray) -> Self; |
| fn into_bytes(self) -> Self::ByteArray; |
| |
| /// For `f32` and `f64`, NaN values are not considered equal to |
| /// themselves. This method is like `assert_eq!`, but it treats NaN |
| /// values as equal. |
| fn assert_eq_or_nan(self, other: Self) { |
| let slf = (!self.get().is_nan()).then(|| self); |
| let other = (!other.get().is_nan()).then(|| other); |
| assert_eq!(slf, other); |
| } |
| } |
| |
| trait ByteOrderTypeUnsigned: ByteOrderType { |
| const MAX_VALUE: Self; |
| } |
| |
| macro_rules! impl_byte_array { |
| ($bytes:expr) => { |
| impl ByteArray for [u8; $bytes] { |
| fn invert(mut self) -> [u8; $bytes] { |
| self.reverse(); |
| self |
| } |
| } |
| }; |
| } |
| |
| impl_byte_array!(2); |
| impl_byte_array!(4); |
| impl_byte_array!(8); |
| impl_byte_array!(16); |
| |
| macro_rules! impl_byte_order_type_unsigned { |
| ($name:ident, unsigned) => { |
| impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> { |
| const MAX_VALUE: $name<O> = $name::MAX_VALUE; |
| } |
| }; |
| ($name:ident, signed) => {}; |
| } |
| |
| macro_rules! impl_traits { |
| ($name:ident, $native:ident, $sign:ident $(, @$float:ident)?) => { |
| impl Native for $native { |
| // For some types, `0 as $native` is required (for example, when |
| // `$native` is a floating-point type; `0` is an integer), but |
| // for other types, it's a trivial cast. In all cases, Clippy |
| // thinks it's dangerous. |
| #[allow(trivial_numeric_casts, clippy::as_conversions)] |
| const ZERO: $native = 0 as $native; |
| const MAX_VALUE: $native = $native::MAX; |
| |
| type Distribution = Standard; |
| const DIST: Standard = Standard; |
| |
| impl_traits!(@float_dependent_methods $(@$float)?); |
| } |
| |
| impl<O: ByteOrder> ByteOrderType for $name<O> { |
| type Native = $native; |
| type ByteArray = [u8; mem::size_of::<$native>()]; |
| |
| const ZERO: $name<O> = $name::ZERO; |
| |
| fn new(native: $native) -> $name<O> { |
| $name::new(native) |
| } |
| |
| fn get(self) -> $native { |
| $name::get(self) |
| } |
| |
| fn set(&mut self, native: $native) { |
| $name::set(self, native) |
| } |
| |
| fn from_bytes(bytes: [u8; mem::size_of::<$native>()]) -> $name<O> { |
| $name::from(bytes) |
| } |
| |
| fn into_bytes(self) -> [u8; mem::size_of::<$native>()] { |
| <[u8; mem::size_of::<$native>()]>::from(self) |
| } |
| } |
| |
| impl_byte_order_type_unsigned!($name, $sign); |
| }; |
| (@float_dependent_methods) => { |
| fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) } |
| fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) } |
| fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) } |
| fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) } |
| fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) } |
| fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) } |
| fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) } |
| fn is_nan(self) -> bool { false } |
| }; |
| (@float_dependent_methods @float) => { |
| fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) } |
| fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) } |
| fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) } |
| fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) } |
| fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) } |
| fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
| fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() } |
| fn is_nan(self) -> bool { self.is_nan() } |
| }; |
| } |
| |
| impl_traits!(U16, u16, unsigned); |
| impl_traits!(U32, u32, unsigned); |
| impl_traits!(U64, u64, unsigned); |
| impl_traits!(U128, u128, unsigned); |
| impl_traits!(Usize, usize, unsigned); |
| impl_traits!(I16, i16, signed); |
| impl_traits!(I32, i32, signed); |
| impl_traits!(I64, i64, signed); |
| impl_traits!(I128, i128, signed); |
| impl_traits!(Isize, isize, unsigned); |
| impl_traits!(F32, f32, signed, @float); |
| impl_traits!(F64, f64, signed, @float); |
| |
| macro_rules! call_for_unsigned_types { |
| ($fn:ident, $byteorder:ident) => { |
| $fn::<U16<$byteorder>>(); |
| $fn::<U32<$byteorder>>(); |
| $fn::<U64<$byteorder>>(); |
| $fn::<U128<$byteorder>>(); |
| $fn::<Usize<$byteorder>>(); |
| }; |
| } |
| |
| macro_rules! call_for_signed_types { |
| ($fn:ident, $byteorder:ident) => { |
| $fn::<I16<$byteorder>>(); |
| $fn::<I32<$byteorder>>(); |
| $fn::<I64<$byteorder>>(); |
| $fn::<I128<$byteorder>>(); |
| $fn::<Isize<$byteorder>>(); |
| }; |
| } |
| |
| macro_rules! call_for_float_types { |
| ($fn:ident, $byteorder:ident) => { |
| $fn::<F32<$byteorder>>(); |
| $fn::<F64<$byteorder>>(); |
| }; |
| } |
| |
| macro_rules! call_for_all_types { |
| ($fn:ident, $byteorder:ident) => { |
| call_for_unsigned_types!($fn, $byteorder); |
| call_for_signed_types!($fn, $byteorder); |
| call_for_float_types!($fn, $byteorder); |
| }; |
| } |
| |
| #[cfg(target_endian = "big")] |
| type NonNativeEndian = LittleEndian; |
| #[cfg(target_endian = "little")] |
| type NonNativeEndian = BigEndian; |
| |
| // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`. |
| // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to |
| // call `SeedableRng::from_seed`, which takes a `Seed`, we would need |
| // conditional compilation by `target_pointer_width`. |
| const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F; |
| |
| const RAND_ITERS: usize = if cfg!(any(miri, kani)) { |
| // The tests below which use this constant used to take a very long time |
| // on Miri, which slows down local development and CI jobs. We're not |
| // using Miri to check for the correctness of our code, but rather its |
| // soundness, and at least in the context of these particular tests, a |
| // single loop iteration is just as good for surfacing UB as multiple |
| // iterations are. |
| // |
| // As of the writing of this comment, here's one set of measurements: |
| // |
| // $ # RAND_ITERS == 1 |
| // $ cargo miri test -- -Z unstable-options --report-time endian |
| // test byteorder::tests::test_native_endian ... ok <0.049s> |
| // test byteorder::tests::test_non_native_endian ... ok <0.061s> |
| // |
| // $ # RAND_ITERS == 1024 |
| // $ cargo miri test -- -Z unstable-options --report-time endian |
| // test byteorder::tests::test_native_endian ... ok <25.716s> |
| // test byteorder::tests::test_non_native_endian ... ok <38.127s> |
| 1 |
| } else { |
| 1024 |
| }; |
| |
| #[test] |
| fn test_const_methods() { |
| use big_endian::*; |
| |
| #[rustversion::since(1.61.0)] |
| const _U: U16 = U16::new(0); |
| #[rustversion::since(1.61.0)] |
| const _NATIVE: u16 = _U.get(); |
| const _FROM_BYTES: U16 = U16::from_bytes([0, 1]); |
| const _BYTES: [u8; 2] = _FROM_BYTES.to_bytes(); |
| } |
| |
| #[cfg_attr(test, test)] |
| #[cfg_attr(kani, kani::proof)] |
| fn test_zero() { |
| fn test_zero<T: ByteOrderType>() { |
| assert_eq!(T::ZERO.get(), T::Native::ZERO); |
| } |
| |
| call_for_all_types!(test_zero, NativeEndian); |
| call_for_all_types!(test_zero, NonNativeEndian); |
| } |
| |
| #[cfg_attr(test, test)] |
| #[cfg_attr(kani, kani::proof)] |
| fn test_max_value() { |
| fn test_max_value<T: ByteOrderTypeUnsigned>() { |
| assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE); |
| } |
| |
| call_for_unsigned_types!(test_max_value, NativeEndian); |
| call_for_unsigned_types!(test_max_value, NonNativeEndian); |
| } |
| |
| #[cfg_attr(test, test)] |
| #[cfg_attr(kani, kani::proof)] |
| fn test_endian() { |
| fn test<T: ByteOrderType>(invert: bool) { |
| let mut r = SmallRng::seed_from_u64(RNG_SEED); |
| for _ in 0..RAND_ITERS { |
| let native = T::Native::rand(&mut r); |
| let mut bytes = T::ByteArray::default(); |
| bytes.as_bytes_mut().copy_from_slice(native.as_bytes()); |
| if invert { |
| bytes = bytes.invert(); |
| } |
| let mut from_native = T::new(native); |
| let from_bytes = T::from_bytes(bytes); |
| |
| from_native.assert_eq_or_nan(from_bytes); |
| from_native.get().assert_eq_or_nan(native); |
| from_bytes.get().assert_eq_or_nan(native); |
| |
| assert_eq!(from_native.into_bytes(), bytes); |
| assert_eq!(from_bytes.into_bytes(), bytes); |
| |
| let updated = T::Native::rand(&mut r); |
| from_native.set(updated); |
| from_native.get().assert_eq_or_nan(updated); |
| } |
| } |
| |
| fn test_native<T: ByteOrderType>() { |
| test::<T>(false); |
| } |
| |
| fn test_non_native<T: ByteOrderType>() { |
| test::<T>(true); |
| } |
| |
| call_for_all_types!(test_native, NativeEndian); |
| call_for_all_types!(test_non_native, NonNativeEndian); |
| } |
| |
| #[test] |
| fn test_ops_impls() { |
| // Test implementations of traits in `core::ops`. Some of these are |
| // fairly banal, but some are optimized to perform the operation without |
| // swapping byte order (namely, bit-wise operations which are identical |
| // regardless of byte order). These are important to test, and while |
| // we're testing those anyway, it's trivial to test all of the impls. |
| |
| fn test<T, F, G, H>(op: F, op_native: G, op_native_checked: Option<H>) |
| where |
| T: ByteOrderType, |
| F: Fn(T, T) -> T, |
| G: Fn(T::Native, T::Native) -> T::Native, |
| H: Fn(T::Native, T::Native) -> Option<T::Native>, |
| { |
| let mut r = SmallRng::seed_from_u64(RNG_SEED); |
| for _ in 0..RAND_ITERS { |
| let n0 = T::Native::rand(&mut r); |
| let n1 = T::Native::rand(&mut r); |
| let t0 = T::new(n0); |
| let t1 = T::new(n1); |
| |
| // If this operation would overflow/underflow, skip it rather |
| // than attempt to catch and recover from panics. |
| if matches!(&op_native_checked, Some(checked) if checked(n0, n1).is_none()) { |
| continue; |
| } |
| |
| let n_res = op_native(n0, n1); |
| let t_res = op(t0, t1); |
| |
| // For `f32` and `f64`, NaN values are not considered equal to |
| // themselves. We store `Option<f32>`/`Option<f64>` and store |
| // NaN as `None` so they can still be compared. |
| let n_res = (!T::Native::is_nan(n_res)).then(|| n_res); |
| let t_res = (!T::Native::is_nan(t_res.get())).then(|| t_res.get()); |
| assert_eq!(n_res, t_res); |
| } |
| } |
| |
| macro_rules! test { |
| (@binary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{ |
| test!( |
| @inner $trait, |
| core::ops::$trait::$method, |
| core::ops::$trait::$method, |
| { |
| #[allow(unused_mut, unused_assignments)] |
| let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; |
| $( |
| op_native_checked = Some(T::Native::$checked_method); |
| )? |
| op_native_checked |
| }, |
| $($call_for_macros),* |
| ); |
| }}; |
| (@unary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{ |
| test!( |
| @inner $trait, |
| |slf, _rhs| core::ops::$trait::$method(slf), |
| |slf, _rhs| core::ops::$trait::$method(slf), |
| { |
| #[allow(unused_mut, unused_assignments)] |
| let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; |
| $( |
| op_native_checked = Some(|slf, _rhs| T::Native::$checked_method(slf)); |
| )? |
| op_native_checked |
| }, |
| $($call_for_macros),* |
| ); |
| }}; |
| (@inner $trait:ident, $op:expr, $op_native:expr, $op_native_checked:expr, $($call_for_macros:ident),*) => {{ |
| fn t<T: ByteOrderType + core::ops::$trait<Output = T>>() |
| where |
| T::Native: core::ops::$trait<Output = T::Native>, |
| { |
| test::<T, _, _, _>( |
| $op, |
| $op_native, |
| $op_native_checked, |
| ); |
| } |
| |
| $( |
| $call_for_macros!(t, NativeEndian); |
| $call_for_macros!(t, NonNativeEndian); |
| )* |
| }}; |
| } |
| |
| test!(@binary Add, add[checked_add], call_for_all_types); |
| test!(@binary Div, div[checked_div], call_for_all_types); |
| test!(@binary Mul, mul[checked_mul], call_for_all_types); |
| test!(@binary Rem, rem[checked_rem], call_for_all_types); |
| test!(@binary Sub, sub[checked_sub], call_for_all_types); |
| |
| test!(@binary BitAnd, bitand, call_for_unsigned_types, call_for_signed_types); |
| test!(@binary BitOr, bitor, call_for_unsigned_types, call_for_signed_types); |
| test!(@binary BitXor, bitxor, call_for_unsigned_types, call_for_signed_types); |
| test!(@binary Shl, shl[checked_shl], call_for_unsigned_types, call_for_signed_types); |
| test!(@binary Shr, shr[checked_shr], call_for_unsigned_types, call_for_signed_types); |
| |
| test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types); |
| test!(@unary Neg, neg, call_for_signed_types, call_for_float_types); |
| } |
| |
| #[test] |
| fn test_debug_impl() { |
| // Ensure that Debug applies format options to the inner value. |
| let val = U16::<LE>::new(10); |
| assert_eq!(format!("{:?}", val), "U16(10)"); |
| assert_eq!(format!("{:03?}", val), "U16(010)"); |
| assert_eq!(format!("{:x?}", val), "U16(a)"); |
| } |
| } |