blob: f61afdcb9c30e0f84a55aaffb2dc7ea43e94ddb8 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors
// Copyright (c) 2014-2015 Travis Geiselbrecht
//
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT
#include <arch/arm64/periphmap.h>
#include <dev/interrupt.h>
#include <dev/uart.h>
#include <kernel/thread.h>
#include <lib/cbuf.h>
#include <lib/debuglog.h>
#include <pdev/driver.h>
#include <pdev/uart.h>
#include <platform/debug.h>
#include <reg.h>
#include <stdio.h>
#include <trace.h>
#include <zircon/boot/driver-config.h>
// PL011 implementation
// clang-format off
#define UART_DR (0x00)
#define UART_RSR (0x04)
#define UART_FR (0x18)
#define UART_ILPR (0x20)
#define UART_IBRD (0x24)
#define UART_FBRD (0x28)
#define UART_LCRH (0x2c)
#define UART_CR (0x30)
#define UART_IFLS (0x34)
#define UART_IMSC (0x38)
#define UART_TRIS (0x3c)
#define UART_TMIS (0x40)
#define UART_ICR (0x44)
#define UART_DMACR (0x48)
// clang-format on
#define UARTREG(base, reg) (*REG32((base) + (reg)))
#define RXBUF_SIZE 16
// values read from zbi
static vaddr_t uart_base = 0;
static uint32_t uart_irq = 0;
static cbuf_t uart_rx_buf;
/*
* Tx driven irq:
* NOTE: For the pl011, txim is the "ready to transmit" interrupt. So we must
* mask it when we no longer care about it and unmask it when we start
* xmitting.
*/
static bool uart_tx_irq_enabled = false;
static event_t uart_dputc_event = EVENT_INITIAL_VALUE(uart_dputc_event,
true,
EVENT_FLAG_AUTOUNSIGNAL);
static spin_lock_t uart_spinlock = SPIN_LOCK_INITIAL_VALUE;
static inline void pl011_mask_tx() {
UARTREG(uart_base, UART_IMSC) &= ~(1 << 5);
}
static inline void pl011_unmask_tx() {
UARTREG(uart_base, UART_IMSC) |= (1 << 5);
}
static interrupt_eoi pl011_uart_irq(void* arg) {
/* read interrupt status and mask */
uint32_t isr = UARTREG(uart_base, UART_TMIS);
if (isr & ((1 << 4) | (1 << 6))) { // rxmis
/* while fifo is not empty, read chars out of it */
while ((UARTREG(uart_base, UART_FR) & (1 << 4)) == 0) {
/* if we're out of rx buffer, mask the irq instead of handling it */
if (cbuf_space_avail(&uart_rx_buf) == 0) {
UARTREG(uart_base, UART_IMSC) &= ~((1 << 4) | (1 << 6)); // !rxim
break;
}
char c = static_cast<char>(UARTREG(uart_base, UART_DR));
cbuf_write_char(&uart_rx_buf, c);
}
}
spin_lock(&uart_spinlock);
if (isr & (1 << 5)) {
/*
* Signal any waiting Tx and mask Tx interrupts once we
* wakeup any blocked threads
*/
event_signal(&uart_dputc_event, true);
pl011_mask_tx();
}
spin_unlock(&uart_spinlock);
return IRQ_EOI_DEACTIVATE;
}
static void pl011_uart_init(const void* driver_data, uint32_t length) {
// create circular buffer to hold received data
cbuf_initialize(&uart_rx_buf, RXBUF_SIZE);
// assumes interrupts are contiguous
zx_status_t status = register_int_handler(uart_irq, &pl011_uart_irq, NULL);
DEBUG_ASSERT(status == ZX_OK);
// clear all irqs
UARTREG(uart_base, UART_ICR) = 0x3ff;
// set fifo trigger level
UARTREG(uart_base, UART_IFLS) = 0; // 1/8 rxfifo, 1/8 txfifo
// enable rx interrupt
UARTREG(uart_base, UART_IMSC) = (1 << 4) | // rxim
(1 << 6); // rtim
// enable receive
UARTREG(uart_base, UART_CR) |= (1 << 9); // rxen
// enable interrupt
unmask_interrupt(uart_irq);
if (dlog_bypass() == true) {
uart_tx_irq_enabled = false;
} else {
/* start up tx driven output */
printf("UART: started IRQ driven TX\n");
uart_tx_irq_enabled = true;
}
}
static int pl011_uart_getc(bool wait) {
char c;
if (cbuf_read_char(&uart_rx_buf, &c, wait) == 1) {
UARTREG(uart_base, UART_IMSC) |= ((1 << 4) | (1 << 6)); // rxim
return c;
}
return ZX_ERR_INTERNAL;
}
/* panic-time getc/putc */
static int pl011_uart_pputc(char c) {
/* spin while fifo is full */
while (UARTREG(uart_base, UART_FR) & (1 << 5))
;
UARTREG(uart_base, UART_DR) = c;
return 1;
}
static int pl011_uart_pgetc() {
if ((UARTREG(uart_base, UART_FR) & (1 << 4)) == 0) {
return UARTREG(uart_base, UART_DR);
} else {
return -1;
}
}
static void pl011_dputs(const char* str, size_t len,
bool block, bool map_NL) {
spin_lock_saved_state_t state;
bool copied_CR = false;
if (!uart_tx_irq_enabled) {
block = false;
}
spin_lock_irqsave(&uart_spinlock, state);
while (len > 0) {
// Is FIFO Full ?
while (UARTREG(uart_base, UART_FR) & (1 << 5)) {
if (block) {
/* Unmask Tx interrupts before we block on the event */
pl011_unmask_tx();
spin_unlock_irqrestore(&uart_spinlock, state);
event_wait(&uart_dputc_event);
} else {
spin_unlock_irqrestore(&uart_spinlock, state);
arch_spinloop_pause();
}
spin_lock_irqsave(&uart_spinlock, state);
}
if (!copied_CR && map_NL && *str == '\n') {
copied_CR = true;
UARTREG(uart_base, UART_DR) = '\r';
} else {
copied_CR = false;
UARTREG(uart_base, UART_DR) = *str++;
len--;
}
}
spin_unlock_irqrestore(&uart_spinlock, state);
}
static void pl011_start_panic() {
uart_tx_irq_enabled = false;
}
static const struct pdev_uart_ops uart_ops = {
.getc = pl011_uart_getc,
.pputc = pl011_uart_pputc,
.pgetc = pl011_uart_pgetc,
.start_panic = pl011_start_panic,
.dputs = pl011_dputs,
};
static void pl011_uart_init_early(const void* driver_data, uint32_t length) {
ASSERT(length >= sizeof(dcfg_simple_t));
auto driver = static_cast<const dcfg_simple_t*>(driver_data);
ASSERT(driver->mmio_phys && driver->irq);
uart_base = periph_paddr_to_vaddr(driver->mmio_phys);
ASSERT(uart_base);
uart_irq = driver->irq;
UARTREG(uart_base, UART_CR) = (1 << 8) | (1 << 0); // tx_enable, uarten
pdev_register_uart(&uart_ops);
}
LK_PDEV_INIT(pl011_uart_init_early, KDRV_PL011_UART, pl011_uart_init_early, LK_INIT_LEVEL_PLATFORM_EARLY);
LK_PDEV_INIT(pl011_uart_init, KDRV_PL011_UART, pl011_uart_init, LK_INIT_LEVEL_PLATFORM);