blob: 2efd91fec25f901e401797900058f06553c5efe7 [file] [log] [blame]
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/connectivity/bluetooth/core/bt-host/gap/bredr_connection_manager.h"
#include "src/connectivity/bluetooth/core/bt-host/common/test_helpers.h"
#include "src/connectivity/bluetooth/core/bt-host/data/fake_domain.h"
#include "src/connectivity/bluetooth/core/bt-host/gap/peer_cache.h"
#include "src/connectivity/bluetooth/core/bt-host/hci/hci.h"
#include "src/connectivity/bluetooth/core/bt-host/hci/util.h"
#include "src/connectivity/bluetooth/core/bt-host/l2cap/fake_channel.h"
#include "src/connectivity/bluetooth/core/bt-host/testing/fake_controller_test.h"
#include "src/connectivity/bluetooth/core/bt-host/testing/fake_peer.h"
#include "src/connectivity/bluetooth/core/bt-host/testing/test_controller.h"
#include "src/connectivity/bluetooth/core/bt-host/testing/test_packets.h"
namespace bt {
namespace gap {
namespace {
using bt::testing::CommandTransaction;
using TestingBase =
bt::testing::FakeControllerTest<bt::testing::TestController>;
constexpr hci::ConnectionHandle kConnectionHandle = 0x0BAA;
const DeviceAddress kLocalDevAddr(DeviceAddress::Type::kBREDR,
"00:00:00:00:00:00");
const DeviceAddress kTestDevAddr(DeviceAddress::Type::kBREDR,
"00:00:00:00:00:01");
const DeviceAddress kTestDevAddrLe(DeviceAddress::Type::kLEPublic,
"00:00:00:00:00:02");
const DeviceAddress kTestDevAddr2(DeviceAddress::Type::kBREDR,
"00:00:00:00:00:03");
#define TEST_DEV_ADDR_BYTES_LE 0x01, 0x00, 0x00, 0x00, 0x00, 0x00
// clang-format off
const auto kReadScanEnable = CreateStaticByteBuffer(
LowerBits(hci::kReadScanEnable), UpperBits(hci::kReadScanEnable),
0x00 // No parameters
);
#define READ_SCAN_ENABLE_RSP(scan_enable) \
CreateStaticByteBuffer(hci::kCommandCompleteEventCode, 0x05, 0xF0, \
LowerBits(hci::kReadScanEnable), \
UpperBits(hci::kReadScanEnable), \
hci::kSuccess, (scan_enable))
const auto kReadScanEnableRspNone = READ_SCAN_ENABLE_RSP(0x00);
const auto kReadScanEnableRspInquiry = READ_SCAN_ENABLE_RSP(0x01);
const auto kReadScanEnableRspPage = READ_SCAN_ENABLE_RSP(0x02);
const auto kReadScanEnableRspBoth = READ_SCAN_ENABLE_RSP(0x03);
#undef READ_SCAN_ENABLE_RSP
#define WRITE_SCAN_ENABLE_CMD(scan_enable) \
CreateStaticByteBuffer(LowerBits(hci::kWriteScanEnable), \
UpperBits(hci::kWriteScanEnable), 0x01, \
(scan_enable))
const auto kWriteScanEnableNone = WRITE_SCAN_ENABLE_CMD(0x00);
const auto kWriteScanEnableInq = WRITE_SCAN_ENABLE_CMD(0x01);
const auto kWriteScanEnablePage = WRITE_SCAN_ENABLE_CMD(0x02);
const auto kWriteScanEnableBoth = WRITE_SCAN_ENABLE_CMD(0x03);
#undef WRITE_SCAN_ENABLE_CMD
#define COMMAND_COMPLETE_RSP(opcode) \
CreateStaticByteBuffer(hci::kCommandCompleteEventCode, 0x04, 0xF0, \
LowerBits((opcode)), UpperBits((opcode)), \
hci::kSuccess);
const auto kWriteScanEnableRsp = COMMAND_COMPLETE_RSP(hci::kWriteScanEnable);
const auto kWritePageScanActivity = CreateStaticByteBuffer(
LowerBits(hci::kWritePageScanActivity),
UpperBits(hci::kWritePageScanActivity),
0x04, // parameter_total_size (4 bytes)
0x00, 0x08, // 1.28s interval (R1)
0x11, 0x00 // 10.625ms window (R1)
);
const auto kWritePageScanActivityRsp =
COMMAND_COMPLETE_RSP(hci::kWritePageScanActivity);
const auto kWritePageScanType = CreateStaticByteBuffer(
LowerBits(hci::kWritePageScanType), UpperBits(hci::kWritePageScanType),
0x01, // parameter_total_size (1 byte)
0x01 // Interlaced scan
);
const auto kWritePageScanTypeRsp =
COMMAND_COMPLETE_RSP(hci::kWritePageScanType);
#define COMMAND_STATUS_RSP(opcode, statuscode) \
CreateStaticByteBuffer(hci::kCommandStatusEventCode, 0x04, \
(statuscode), 0xF0, \
LowerBits((opcode)), UpperBits((opcode)));
// clang-format on
const auto kConnectionRequest =
CreateStaticByteBuffer(hci::kConnectionRequestEventCode,
0x0A, // parameter_total_size (10 byte payload)
TEST_DEV_ADDR_BYTES_LE, // peer address
0x00, 0x1F, 0x00, // class_of_device (unspecified)
0x01 // link_type (ACL)
);
const auto kAcceptConnectionRequest =
CreateStaticByteBuffer(LowerBits(hci::kAcceptConnectionRequest),
UpperBits(hci::kAcceptConnectionRequest),
0x07, // parameter_total_size (7 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0x00 // role (become master)
);
const auto kAcceptConnectionRequestRsp = COMMAND_STATUS_RSP(
hci::kAcceptConnectionRequest, hci::StatusCode::kSuccess);
const auto kConnectionComplete =
CreateStaticByteBuffer(hci::kConnectionCompleteEventCode,
0x0B, // parameter_total_size (11 byte payload)
hci::StatusCode::kSuccess, // status
0xAA, 0x0B, // connection_handle
TEST_DEV_ADDR_BYTES_LE, // peer address
0x01, // link_type (ACL)
0x00 // encryption not enabled
);
const auto kConnectionCompleteError = CreateStaticByteBuffer(
hci::kConnectionCompleteEventCode,
0x0B, // parameter_total_size (11 byte payload)
hci::StatusCode::kConnectionFailedToBeEstablished, // status
0x00, 0x00, // connection_handle
TEST_DEV_ADDR_BYTES_LE, // peer address
0x01, // link_type (ACL)
0x00 // encryption not enabled
);
const auto kConnectionCompleteCanceled =
CreateStaticByteBuffer(hci::kConnectionCompleteEventCode,
0x0B, // parameter_total_size (11 byte payload)
hci::StatusCode::kUnknownConnectionId, // status
0x00, 0x00, // connection_handle
TEST_DEV_ADDR_BYTES_LE, // peer address
0x01, // link_type (ACL)
0x00 // encryption not enabled
);
const auto kCreateConnection = CreateStaticByteBuffer(
LowerBits(hci::kCreateConnection), UpperBits(hci::kCreateConnection),
0x0d, // parameter_total_size (13 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
LowerBits(hci::kEnableAllPacketTypes), // allowable packet types
UpperBits(hci::kEnableAllPacketTypes), // allowable packet types
0x02, // page_scan_repetition_mode (R2)
0x00, // reserved
0x00, 0x00, // clock_offset
0x00 // allow_role_switch (don't)
);
const auto kCreateConnectionRsp =
COMMAND_STATUS_RSP(hci::kCreateConnection, hci::StatusCode::kSuccess);
const auto kCreateConnectionRspError = COMMAND_STATUS_RSP(
hci::kCreateConnection, hci::StatusCode::kConnectionFailedToBeEstablished);
const auto kCreateConnectionCancel =
CreateStaticByteBuffer(LowerBits(hci::kCreateConnectionCancel),
UpperBits(hci::kCreateConnectionCancel),
0x06, // parameter_total_size (6 bytes)
TEST_DEV_ADDR_BYTES_LE // peer address
);
const auto kCreateConnectionCancelRsp =
COMMAND_COMPLETE_RSP(hci::kCreateConnectionCancel);
const auto kRemoteNameRequest = CreateStaticByteBuffer(
LowerBits(hci::kRemoteNameRequest), UpperBits(hci::kRemoteNameRequest),
0x0a, // parameter_total_size (10 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0x00, // page_scan_repetition_mode (R0)
0x00, // reserved
0x00, 0x00 // clock_offset
);
const auto kRemoteNameRequestRsp =
COMMAND_STATUS_RSP(hci::kRemoteNameRequest, hci::StatusCode::kSuccess);
const auto kRemoteNameRequestComplete = CreateStaticByteBuffer(
hci::kRemoteNameRequestCompleteEventCode,
0x20, // parameter_total_size (32)
hci::StatusCode::kSuccess, // status
TEST_DEV_ADDR_BYTES_LE, // peer address
'F', 'u', 'c', 'h', 's', 'i', 'a', 0xF0, 0x9F, 0x92, 0x96, 0x00, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20
// remote name (Fuchsia 💖)
// Everything after the 0x00 should be ignored.
);
const auto kReadRemoteVersionInfo =
CreateStaticByteBuffer(LowerBits(hci::kReadRemoteVersionInfo),
UpperBits(hci::kReadRemoteVersionInfo),
0x02, // Parameter_total_size (2 bytes)
0xAA, 0x0B // connection_handle
);
const auto kReadRemoteVersionInfoRsp =
COMMAND_STATUS_RSP(hci::kReadRemoteVersionInfo, hci::StatusCode::kSuccess);
const auto kRemoteVersionInfoComplete =
CreateStaticByteBuffer(hci::kReadRemoteVersionInfoCompleteEventCode,
0x08, // parameter_total_size (8 bytes)
hci::StatusCode::kSuccess, // status
0xAA, 0x0B, // connection_handle
hci::HCIVersion::k4_2, // lmp_version
0xE0, 0x00, // manufacturer_name (Google)
0xAD, 0xDE // lmp_subversion (anything)
);
const auto kReadRemoteSupportedFeatures =
CreateStaticByteBuffer(LowerBits(hci::kReadRemoteSupportedFeatures),
UpperBits(hci::kReadRemoteSupportedFeatures),
0x02, // parameter_total_size (2 bytes)
0xAA, 0x0B // connection_handle
);
const auto kReadRemoteSupportedFeaturesRsp = COMMAND_STATUS_RSP(
hci::kReadRemoteSupportedFeatures, hci::StatusCode::kSuccess);
const auto kReadRemoteSupportedFeaturesComplete = CreateStaticByteBuffer(
hci::kReadRemoteSupportedFeaturesCompleteEventCode,
0x0B, // parameter_total_size (11 bytes)
hci::StatusCode::kSuccess, // status
0xAA, 0x0B, // connection_handle,
0xFF, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x80
// lmp_features
// Set: 3 slot packets, 5 slot packets, Encryption, Timing Accuracy,
// Role Switch, Hold Mode, Sniff Mode, LE Supported, Extended Features
);
const auto kReadRemoteExtended1 =
CreateStaticByteBuffer(LowerBits(hci::kReadRemoteExtendedFeatures),
UpperBits(hci::kReadRemoteExtendedFeatures),
0x03, // parameter_total_size (3 bytes)
0xAA, 0x0B, // connection_handle
0x01 // page_number (1)
);
const auto kReadRemoteExtendedFeaturesRsp = COMMAND_STATUS_RSP(
hci::kReadRemoteExtendedFeatures, hci::StatusCode::kSuccess);
const auto kReadRemoteExtended1Complete = CreateStaticByteBuffer(
hci::kReadRemoteExtendedFeaturesCompleteEventCode,
0x0D, // parameter_total_size (13 bytes)
hci::StatusCode::kSuccess, // status
0xAA, 0x0B, // connection_handle,
0x01, // page_number
0x03, // max_page_number (3 pages)
0x0F, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00
// lmp_features
// Set: Secure Simple Pairing (Host Support), LE Supported (Host),
// SimultaneousLEAndBREDR, Secure Connections (Host Support)
);
const auto kReadRemoteExtended2 =
CreateStaticByteBuffer(LowerBits(hci::kReadRemoteExtendedFeatures),
UpperBits(hci::kReadRemoteExtendedFeatures),
0x03, // parameter_total_size (3 bytes)
0xAA, 0x0B, // connection_handle
0x02 // page_number (2)
);
const auto kReadRemoteExtended2Complete =
CreateStaticByteBuffer(hci::kReadRemoteExtendedFeaturesCompleteEventCode,
0x0D, // parameter_total_size (13 bytes)
hci::StatusCode::kSuccess, // status
0xAA, 0x0B, // connection_handle,
0x02, // page_number
0x03, // max_page_number (3 pages)
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0xFF, 0x00
// lmp_features - All the bits should be ignored.
);
const auto kDisconnect = CreateStaticByteBuffer(
LowerBits(hci::kDisconnect), UpperBits(hci::kDisconnect),
0x03, // parameter_total_size (3 bytes)
0xAA, 0x0B, // connection_handle
0x13 // Reason (Remote User Terminated Connection)
);
const auto kDisconnectRsp =
COMMAND_STATUS_RSP(hci::kDisconnect, hci::StatusCode::kSuccess);
const auto kDisconnectionComplete =
CreateStaticByteBuffer(hci::kDisconnectionCompleteEventCode,
0x04, // parameter_total_size (4 bytes)
hci::StatusCode::kSuccess, // status
0xAA, 0x0B, // connection_handle
0x13 // Reason (Remote User Terminated Connection)
);
class BrEdrConnectionManagerTest : public TestingBase {
public:
BrEdrConnectionManagerTest() = default;
~BrEdrConnectionManagerTest() override = default;
void SetUp() override {
TestingBase::SetUp();
InitializeACLDataChannel();
peer_cache_ = std::make_unique<PeerCache>();
data_domain_ = data::testing::FakeDomain::Create();
data_domain_->Initialize();
auto hci = transport();
connection_manager_ = std::make_unique<BrEdrConnectionManager>(
hci, peer_cache_.get(), kLocalDevAddr, data_domain_, true);
StartTestDevice();
test_device()->SetTransactionCallback([this] { transaction_count_++; },
async_get_default_dispatcher());
}
void TearDown() override {
// Don't trigger the transaction callback when cleaning up the manager.
test_device()->ClearTransactionCallback();
if (connection_manager_ != nullptr) {
// deallocating the connection manager disables connectivity.
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspBoth}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableInq, {&kWriteScanEnableRsp}));
connection_manager_ = nullptr;
}
RunLoopUntilIdle();
test_device()->Stop();
data_domain_ = nullptr;
peer_cache_ = nullptr;
TestingBase::TearDown();
}
protected:
static constexpr const int kIncomingConnTransactions = 6;
BrEdrConnectionManager* connmgr() const { return connection_manager_.get(); }
void SetConnectionManager(std::unique_ptr<BrEdrConnectionManager> mgr) {
connection_manager_ = std::move(mgr);
}
PeerCache* peer_cache() const { return peer_cache_.get(); }
data::testing::FakeDomain* data_domain() const { return data_domain_.get(); }
int transaction_count() const { return transaction_count_; }
// Add expectations and simulated responses for the outbound commands sent
// after an inbound Connection Request Event is received. Results in
// |kIncomingConnTransactions| transactions.
void QueueSuccessfulIncomingConn() const {
test_device()->QueueCommandTransaction(CommandTransaction(
kAcceptConnectionRequest,
{&kAcceptConnectionRequestRsp, &kConnectionComplete}));
QueueSuccessfulInterrogation(kTestDevAddr, kConnectionHandle);
}
void QueueSuccessfulCreateConnection(Peer* peer,
hci::ConnectionHandle conn) const {
const DynamicByteBuffer complete_packet =
testing::ConnectionCompletePacket(peer->address(), conn);
test_device()->QueueCommandTransaction(
CommandTransaction(testing::CreateConnectionPacket(peer->address()),
{&kCreateConnectionRsp, &complete_packet}));
}
void QueueSuccessfulInterrogation(DeviceAddress addr,
hci::ConnectionHandle conn) const {
const DynamicByteBuffer remote_name_complete_packet =
testing::RemoteNameRequestCompletePacket(addr);
const DynamicByteBuffer remote_version_complete_packet =
testing::ReadRemoteVersionInfoCompletePacket(conn);
const DynamicByteBuffer remote_supported_complete_packet =
testing::ReadRemoteSupportedFeaturesCompletePacket(conn);
const DynamicByteBuffer remote_extended1_complete_packet =
testing::ReadRemoteExtended1CompletePacket(conn);
const DynamicByteBuffer remote_extended2_complete_packet =
testing::ReadRemoteExtended2CompletePacket(conn);
test_device()->QueueCommandTransaction(CommandTransaction(
testing::RemoteNameRequestPacket(addr),
{&kRemoteNameRequestRsp, &remote_name_complete_packet}));
test_device()->QueueCommandTransaction(CommandTransaction(
testing::ReadRemoteVersionInfoPacket(conn),
{&kReadRemoteVersionInfoRsp, &remote_version_complete_packet}));
test_device()->QueueCommandTransaction(CommandTransaction(
testing::ReadRemoteSupportedFeaturesPacket(conn),
{&kReadRemoteSupportedFeaturesRsp, &remote_supported_complete_packet}));
test_device()->QueueCommandTransaction(CommandTransaction(
testing::ReadRemoteExtended1Packet(conn),
{&kReadRemoteExtendedFeaturesRsp, &remote_extended1_complete_packet}));
test_device()->QueueCommandTransaction(CommandTransaction(
testing::ReadRemoteExtended2Packet(conn),
{&kReadRemoteExtendedFeaturesRsp, &remote_extended2_complete_packet}));
}
void QueueDisconnection(hci::ConnectionHandle conn) const {
const DynamicByteBuffer disconnect_complete =
testing::DisconnectionCompletePacket(conn);
test_device()->QueueCommandTransaction(
CommandTransaction(testing::DisconnectPacket(conn),
{&kDisconnectRsp, &disconnect_complete}));
}
private:
std::unique_ptr<BrEdrConnectionManager> connection_manager_;
std::unique_ptr<PeerCache> peer_cache_;
fbl::RefPtr<data::testing::FakeDomain> data_domain_;
int transaction_count_ = 0;
DISALLOW_COPY_AND_ASSIGN_ALLOW_MOVE(BrEdrConnectionManagerTest);
};
using GAP_BrEdrConnectionManagerTest = BrEdrConnectionManagerTest;
TEST_F(GAP_BrEdrConnectionManagerTest, DisableConnectivity) {
size_t cb_count = 0;
auto cb = [&cb_count](const auto& status) {
cb_count++;
EXPECT_TRUE(status);
};
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspPage}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableNone, {&kWriteScanEnableRsp}));
connmgr()->SetConnectable(false, cb);
RunLoopUntilIdle();
EXPECT_EQ(1u, cb_count);
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspBoth}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableInq, {&kWriteScanEnableRsp}));
connmgr()->SetConnectable(false, cb);
RunLoopUntilIdle();
EXPECT_EQ(2u, cb_count);
}
TEST_F(GAP_BrEdrConnectionManagerTest, EnableConnectivity) {
size_t cb_count = 0;
auto cb = [&cb_count](const auto& status) {
cb_count++;
EXPECT_TRUE(status);
};
test_device()->QueueCommandTransaction(
CommandTransaction(kWritePageScanActivity, {&kWritePageScanActivityRsp}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWritePageScanType, {&kWritePageScanTypeRsp}));
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspNone}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnablePage, {&kWriteScanEnableRsp}));
connmgr()->SetConnectable(true, cb);
RunLoopUntilIdle();
EXPECT_EQ(1u, cb_count);
test_device()->QueueCommandTransaction(
CommandTransaction(kWritePageScanActivity, {&kWritePageScanActivityRsp}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWritePageScanType, {&kWritePageScanTypeRsp}));
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspInquiry}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableBoth, {&kWriteScanEnableRsp}));
connmgr()->SetConnectable(true, cb);
RunLoopUntilIdle();
EXPECT_EQ(2u, cb_count);
}
// Test: An incoming connection request should trigger an acceptance and
// interrogation should allow a peer that only report the first Extended
// Features page.
TEST_F(GAP_BrEdrConnectionManagerTest,
IncomingConnection_BrokenExtendedPageResponse) {
test_device()->QueueCommandTransaction(
CommandTransaction(kAcceptConnectionRequest,
{&kAcceptConnectionRequestRsp, &kConnectionComplete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kRemoteNameRequest,
{&kRemoteNameRequestRsp, &kRemoteNameRequestComplete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteVersionInfo,
{&kReadRemoteVersionInfoRsp, &kRemoteVersionInfoComplete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteSupportedFeatures, {&kReadRemoteSupportedFeaturesRsp,
&kReadRemoteSupportedFeaturesComplete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteExtended1,
{&kReadRemoteExtendedFeaturesRsp, &kReadRemoteExtended1Complete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteExtended2,
{&kReadRemoteExtendedFeaturesRsp, &kReadRemoteExtended1Complete}));
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(6, transaction_count());
// When we deallocate the connection manager next, we should disconnect.
test_device()->QueueCommandTransaction(CommandTransaction(
kDisconnect, {&kDisconnectRsp, &kDisconnectionComplete}));
// deallocating the connection manager disables connectivity.
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspBoth}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableInq, {&kWriteScanEnableRsp}));
SetConnectionManager(nullptr);
RunLoopUntilIdle();
EXPECT_EQ(9, transaction_count());
}
// Test: An incoming connection request should trigger an acceptance and an
// interrogation to discover capabilities.
TEST_F(GAP_BrEdrConnectionManagerTest, IncomingConnectionSuccess) {
EXPECT_EQ(kInvalidPeerId, connmgr()->GetPeerId(kConnectionHandle));
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
auto* dev = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(dev);
EXPECT_EQ(dev->identifier(), connmgr()->GetPeerId(kConnectionHandle));
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
// When we deallocate the connection manager next, we should disconnect.
test_device()->QueueCommandTransaction(CommandTransaction(
kDisconnect, {&kDisconnectRsp, &kDisconnectionComplete}));
// deallocating the connection manager disables connectivity.
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspBoth}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableInq, {&kWriteScanEnableRsp}));
SetConnectionManager(nullptr);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 3, transaction_count());
}
// Test: An incoming connection request should upgrade a known LE peer with a
// matching address to a dual mode peer.
TEST_F(GAP_BrEdrConnectionManagerTest,
IncomingConnectionUpgradesKnownLowEnergyPeerToDualMode) {
const DeviceAddress le_alias_addr(DeviceAddress::Type::kLEPublic,
kTestDevAddr.value());
Peer* const dev = peer_cache()->NewPeer(le_alias_addr, true);
ASSERT_TRUE(dev);
ASSERT_EQ(TechnologyType::kLowEnergy, dev->technology());
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
ASSERT_EQ(dev, peer_cache()->FindByAddress(kTestDevAddr));
EXPECT_EQ(dev->identifier(), connmgr()->GetPeerId(kConnectionHandle));
EXPECT_EQ(TechnologyType::kDualMode, dev->technology());
// Prepare for disconnection upon teardown.
QueueDisconnection(kConnectionHandle);
}
// Test: A remote disconnect should correctly remove the connection.
TEST_F(GAP_BrEdrConnectionManagerTest, RemoteDisconnect) {
EXPECT_EQ(kInvalidPeerId, connmgr()->GetPeerId(kConnectionHandle));
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
EXPECT_EQ(peer->identifier(), connmgr()->GetPeerId(kConnectionHandle));
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
// Remote end disconnects.
test_device()->SendCommandChannelPacket(kDisconnectionComplete);
RunLoopUntilIdle();
EXPECT_EQ(kInvalidPeerId, connmgr()->GetPeerId(kConnectionHandle));
// deallocating the connection manager disables connectivity.
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspBoth}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableInq, {&kWriteScanEnableRsp}));
SetConnectionManager(nullptr);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 2, transaction_count());
}
const auto kRemoteNameRequestCompleteFailed =
CreateStaticByteBuffer(hci::kRemoteNameRequestCompleteEventCode,
0x01, // parameter_total_size (1 bytes)
hci::StatusCode::kHardwareFailure);
const auto kReadRemoteSupportedFeaturesCompleteFailed =
CreateStaticByteBuffer(hci::kRemoteNameRequestCompleteEventCode,
0x01, // parameter_total_size (1 bytes)
hci::StatusCode::kHardwareFailure);
// Test: if the interrogation fails, we disconnect.
// - Receiving extra responses after a command fails will not fail
// - We don't query extended features if we don't receive an answer.
TEST_F(GAP_BrEdrConnectionManagerTest, IncommingConnectionFailedInterrogation) {
test_device()->QueueCommandTransaction(
CommandTransaction(kAcceptConnectionRequest,
{&kAcceptConnectionRequestRsp, &kConnectionComplete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kRemoteNameRequest,
{&kRemoteNameRequestRsp, &kRemoteNameRequestCompleteFailed}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteVersionInfo,
{&kReadRemoteVersionInfoRsp, &kRemoteVersionInfoComplete}));
test_device()->QueueCommandTransaction(
CommandTransaction(kReadRemoteSupportedFeatures,
{&kReadRemoteSupportedFeaturesRsp,
&kReadRemoteSupportedFeaturesCompleteFailed}));
test_device()->QueueCommandTransaction(CommandTransaction(
kDisconnect, {&kDisconnectRsp, &kDisconnectionComplete}));
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(5, transaction_count());
}
const auto kCapabilitiesRequest =
CreateStaticByteBuffer(hci::kIOCapabilityRequestEventCode,
0x06, // parameter_total_size (6 bytes)
TEST_DEV_ADDR_BYTES_LE // address
);
const auto kCapabilitiesRequestReply = CreateStaticByteBuffer(
LowerBits(hci::kIOCapabilityRequestReply),
UpperBits(hci::kIOCapabilityRequestReply),
0x09, // parameter_total_size (9 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0x03, // No input, No output
0x00, // No OOB data present
0x04 // MITM Protection Not Required – General Bonding
);
const auto kCapabilitiesRequestReplyRsp =
CreateStaticByteBuffer(hci::kCommandCompleteEventCode, 0x0A, 0xF0,
LowerBits(hci::kIOCapabilityRequestReply),
UpperBits(hci::kIOCapabilityRequestReply),
hci::kSuccess, // status
TEST_DEV_ADDR_BYTES_LE // peer address
);
// Test: sends replies to Capability Requests
// TODO(jamuraa): returns correct capabilities when we have different
// requirements.
TEST_F(GAP_BrEdrConnectionManagerTest, CapabilityRequest) {
test_device()->QueueCommandTransaction(kCapabilitiesRequestReply,
{&kCapabilitiesRequestReplyRsp});
test_device()->SendCommandChannelPacket(kCapabilitiesRequest);
RunLoopUntilIdle();
EXPECT_EQ(1, transaction_count());
}
const auto kUserConfirmationRequest =
CreateStaticByteBuffer(hci::kUserConfirmationRequestEventCode,
0x0A, // parameter_total_size (10 byte payload)
TEST_DEV_ADDR_BYTES_LE, // peer address
0x00, 0x00, 0x00, 0x00 // numeric value 000000
);
const auto kConfirmationRequestReply =
CreateStaticByteBuffer(LowerBits(hci::kUserConfirmationRequestReply),
UpperBits(hci::kUserConfirmationRequestReply),
0x06, // parameter_total_size (6 bytes)
TEST_DEV_ADDR_BYTES_LE // peer address
);
const auto kConfirmationRequestReplyRsp =
COMMAND_COMPLETE_RSP(hci::kUserConfirmationRequestReply);
// Test: sends replies to Confirmation Requests
TEST_F(GAP_BrEdrConnectionManagerTest, ConfirmationRequest) {
test_device()->QueueCommandTransaction(kConfirmationRequestReply,
{&kConfirmationRequestReplyRsp});
test_device()->SendCommandChannelPacket(kUserConfirmationRequest);
RunLoopUntilIdle();
EXPECT_EQ(1, transaction_count());
}
const auto kLinkKeyRequest =
CreateStaticByteBuffer(hci::kLinkKeyRequestEventCode,
0x06, // parameter_total_size (6 bytes)
TEST_DEV_ADDR_BYTES_LE // peer address
);
const auto kLinkKeyRequestNegativeReply =
CreateStaticByteBuffer(LowerBits(hci::kLinkKeyRequestNegativeReply),
UpperBits(hci::kLinkKeyRequestNegativeReply),
0x06, // parameter_total_size (6 bytes)
TEST_DEV_ADDR_BYTES_LE // peer address
);
const auto kLinkKeyRequestNegativeReplyRsp =
CreateStaticByteBuffer(hci::kCommandCompleteEventCode, 0x0A, 0xF0,
LowerBits(hci::kLinkKeyRequestNegativeReply),
UpperBits(hci::kLinkKeyRequestNegativeReply),
hci::kSuccess, // status
TEST_DEV_ADDR_BYTES_LE // peer address
);
// Test: replies negative to Link Key Requests for unknown and unbonded peers
TEST_F(GAP_BrEdrConnectionManagerTest, LinkKeyRequestAndNegativeReply) {
test_device()->QueueCommandTransaction(kLinkKeyRequestNegativeReply,
{&kLinkKeyRequestNegativeReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_EQ(1, transaction_count());
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_TRUE(peer->connected());
ASSERT_FALSE(peer->bonded());
test_device()->QueueCommandTransaction(kLinkKeyRequestNegativeReply,
{&kLinkKeyRequestNegativeReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 2, transaction_count());
QueueDisconnection(kConnectionHandle);
}
const hci::LinkKey kRawKey({0xc0, 0xde, 0xfa, 0x57, 0x4b, 0xad, 0xf0, 0x0d,
0xa7, 0x60, 0x06, 0x1e, 0xca, 0x1e, 0xca, 0xfe},
0, 0);
const sm::LTK kLinkKey(
sm::SecurityProperties(hci::LinkKeyType::kAuthenticatedCombination192),
kRawKey);
const auto kLinkKeyNotification = CreateStaticByteBuffer(
hci::kLinkKeyNotificationEventCode,
0x17, // parameter_total_size (17 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0xc0, 0xde, 0xfa, 0x57, 0x4b, 0xad, 0xf0, 0x0d, 0xa7, 0x60, 0x06, 0x1e,
0xca, 0x1e, 0xca, 0xfe, // link key
0x04 // key type (Unauthenticated Combination Key generated from P-192)
);
const auto kLinkKeyRequestReply = CreateStaticByteBuffer(
LowerBits(hci::kLinkKeyRequestReply), UpperBits(hci::kLinkKeyRequestReply),
0x16, // parameter_total_size (22 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0xc0, 0xde, 0xfa, 0x57, 0x4b, 0xad, 0xf0, 0x0d, 0xa7, 0x60, 0x06, 0x1e,
0xca, 0x1e, 0xca, 0xfe // link key
);
const auto kLinkKeyRequestReplyRsp = CreateStaticByteBuffer(
hci::kCommandCompleteEventCode, 0x0A, 0xF0,
LowerBits(hci::kLinkKeyRequestReply), UpperBits(hci::kLinkKeyRequestReply),
hci::kSuccess, // status
TEST_DEV_ADDR_BYTES_LE // peer address
);
// Test: replies to Link Key Requests for bonded peer
TEST_F(GAP_BrEdrConnectionManagerTest, RecallLinkKeyForBondedPeer) {
ASSERT_TRUE(
peer_cache()->AddBondedPeer(BondingData{PeerId(999), kTestDevAddr, {},
{}, kLinkKey}));
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_FALSE(peer->connected());
ASSERT_TRUE(peer->bonded());
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
ASSERT_TRUE(peer->connected());
test_device()->QueueCommandTransaction(kLinkKeyRequestReply,
{&kLinkKeyRequestReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
QueueDisconnection(kConnectionHandle);
}
const auto kLinkKeyNotificationChanged = CreateStaticByteBuffer(
hci::kLinkKeyNotificationEventCode,
0x17, // parameter_total_size (17 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0xfa, 0xce, 0xb0, 0x0c, 0xa5, 0x1c, 0xcd, 0x15, 0xea, 0x5e, 0xfe, 0xdb,
0x1d, 0x0d, 0x0a, 0xd5, // link key
0x06 // key type (Changed Combination Key)
);
const auto kLinkKeyRequestReplyChanged = CreateStaticByteBuffer(
LowerBits(hci::kLinkKeyRequestReply), UpperBits(hci::kLinkKeyRequestReply),
0x16, // parameter_total_size (22 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0xfa, 0xce, 0xb0, 0x0c, 0xa5, 0x1c, 0xcd, 0x15, 0xea, 0x5e, 0xfe, 0xdb,
0x1d, 0x0d, 0x0a, 0xd5 // link key
);
// Test: stores and recalls link key for a remote peer
TEST_F(GAP_BrEdrConnectionManagerTest, BondPeer) {
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_TRUE(peer->connected());
ASSERT_FALSE(peer->bonded());
test_device()->SendCommandChannelPacket(kLinkKeyNotification);
RunLoopUntilIdle();
EXPECT_TRUE(peer->bonded());
test_device()->QueueCommandTransaction(kLinkKeyRequestReply,
{&kLinkKeyRequestReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
// Change the link key.
test_device()->SendCommandChannelPacket(kLinkKeyNotificationChanged);
RunLoopUntilIdle();
EXPECT_TRUE(peer->bonded());
test_device()->QueueCommandTransaction(kLinkKeyRequestReplyChanged,
{&kLinkKeyRequestReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_TRUE(peer->bonded());
EXPECT_EQ(kIncomingConnTransactions + 2, transaction_count());
QueueDisconnection(kConnectionHandle);
}
// Test: can't change the link key of an unbonded peer
TEST_F(GAP_BrEdrConnectionManagerTest, UnbondedPeerChangeLinkKey) {
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_TRUE(peer->connected());
ASSERT_FALSE(peer->bonded());
// Change the link key.
test_device()->SendCommandChannelPacket(kLinkKeyNotificationChanged);
RunLoopUntilIdle();
EXPECT_FALSE(peer->bonded());
test_device()->QueueCommandTransaction(kLinkKeyRequestNegativeReply,
{&kLinkKeyRequestReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_FALSE(peer->bonded());
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
QueueDisconnection(kConnectionHandle);
}
const auto kLinkKeyNotificationLegacy = CreateStaticByteBuffer(
hci::kLinkKeyNotificationEventCode,
0x17, // parameter_total_size (17 bytes)
TEST_DEV_ADDR_BYTES_LE, // peer address
0x41, 0x33, 0x7c, 0x0d, 0xef, 0xee, 0xda, 0xda, 0xba, 0xad, 0x0f, 0xf1,
0xce, 0xc0, 0xff, 0xee, // link key
0x00 // key type (Combination Key)
);
// Test: don't bond if the link key resulted from legacy pairing
TEST_F(GAP_BrEdrConnectionManagerTest, LegacyLinkKeyNotBonded) {
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_TRUE(peer->connected());
ASSERT_FALSE(peer->bonded());
test_device()->SendCommandChannelPacket(kLinkKeyNotificationLegacy);
RunLoopUntilIdle();
EXPECT_FALSE(peer->bonded());
test_device()->QueueCommandTransaction(kLinkKeyRequestNegativeReply,
{&kLinkKeyRequestReplyRsp});
test_device()->SendCommandChannelPacket(kLinkKeyRequest);
RunLoopUntilIdle();
EXPECT_FALSE(peer->bonded());
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
QueueDisconnection(kConnectionHandle);
}
// Test: if L2CAP gets a link error, we disconnect the connection
TEST_F(GAP_BrEdrConnectionManagerTest, DisconnectOnLinkError) {
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
// When we deallocate the connection manager next, we should disconnect.
QueueDisconnection(kConnectionHandle);
data_domain()->TriggerLinkError(kConnectionHandle);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
test_device()->QueueCommandTransaction(
CommandTransaction(kReadScanEnable, {&kReadScanEnableRspBoth}));
test_device()->QueueCommandTransaction(
CommandTransaction(kWriteScanEnableInq, {&kWriteScanEnableRsp}));
SetConnectionManager(nullptr);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 3, transaction_count());
}
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectedPeerTimeout) {
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
EXPECT_TRUE(peer->connected());
// We want to make sure the connection doesn't expire.
RunLoopFor(zx::sec(600));
// Remote end disconnects.
test_device()->SendCommandChannelPacket(kDisconnectionComplete);
RunLoopUntilIdle();
// Peer should still be there, but not connected anymore
peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
EXPECT_FALSE(peer->connected());
EXPECT_EQ(kInvalidPeerId, connmgr()->GetPeerId(kConnectionHandle));
}
TEST_F(GAP_BrEdrConnectionManagerTest, ServiceSearch) {
size_t search_cb_count = 0;
auto search_cb = [&](auto id, const auto& attributes) {
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_EQ(id, peer->identifier());
ASSERT_EQ(1u, attributes.count(sdp::kServiceId));
search_cb_count++;
};
auto search_id = connmgr()->AddServiceSearch(sdp::profile::kAudioSink,
{sdp::kServiceId}, search_cb);
fbl::RefPtr<l2cap::testing::FakeChannel> sdp_chan;
std::optional<uint32_t> sdp_request_tid;
data_domain()->set_channel_callback(
[&sdp_chan, &sdp_request_tid](auto new_chan) {
new_chan->SetSendCallback(
[&sdp_request_tid](auto packet) {
const auto kSearchExpectedParams = CreateStaticByteBuffer(
// ServiceSearchPattern
0x35, 0x03, // Sequence uint8 3 bytes
0x19, 0x11, 0x0B, // UUID (kAudioSink)
0xFF, 0xFF, // MaxAttributeByteCount (no max)
// Attribute ID list
0x35, 0x03, // Sequence uint8 3 bytes
0x09, 0x00, 0x03, // uint16_t (kServiceId)
0x00 // No continuation state
);
// First byte should be type.
ASSERT_LE(3u, packet->size());
ASSERT_EQ(sdp::kServiceSearchAttributeRequest, (*packet)[0]);
ASSERT_EQ(kSearchExpectedParams, packet->view(5));
sdp_request_tid = (*packet)[1] << 8 || (*packet)[2];
},
async_get_default_dispatcher());
sdp_chan = std::move(new_chan);
});
QueueSuccessfulIncomingConn();
data_domain()->ExpectOutboundL2capChannel(kConnectionHandle, l2cap::kSDP,
0x40, 0x41);
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
ASSERT_TRUE(sdp_chan);
ASSERT_TRUE(sdp_request_tid);
ASSERT_EQ(0u, search_cb_count);
sdp::ServiceSearchAttributeResponse rsp;
rsp.SetAttribute(0, sdp::kServiceId, sdp::DataElement(UUID()));
auto rsp_ptr = rsp.GetPDU(0xFFFF /* max attribute bytes */, *sdp_request_tid,
BufferView());
sdp_chan->Receive(*rsp_ptr);
RunLoopUntilIdle();
ASSERT_EQ(1u, search_cb_count);
// Remote end disconnects.
test_device()->SendCommandChannelPacket(kDisconnectionComplete);
RunLoopUntilIdle();
sdp_request_tid.reset();
EXPECT_TRUE(connmgr()->RemoveServiceSearch(search_id));
EXPECT_FALSE(connmgr()->RemoveServiceSearch(search_id));
// Second connection is shortened because we have already interrogated,
// and we don't search for SDP services because none are registered
test_device()->QueueCommandTransaction(
CommandTransaction(kAcceptConnectionRequest,
{&kAcceptConnectionRequestRsp, &kConnectionComplete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteExtended1,
{&kReadRemoteExtendedFeaturesRsp, &kReadRemoteExtended1Complete}));
test_device()->QueueCommandTransaction(CommandTransaction(
kReadRemoteExtended2,
{&kReadRemoteExtendedFeaturesRsp, &kReadRemoteExtended2Complete}));
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
// We shouldn't have searched for anything.
ASSERT_FALSE(sdp_request_tid);
ASSERT_EQ(1u, search_cb_count);
QueueDisconnection(kConnectionHandle);
}
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectUnknownPeer) {
EXPECT_FALSE(connmgr()->Connect(PeerId(456), {}));
}
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectLowEnergyPeer) {
auto* peer = peer_cache()->NewPeer(kTestDevAddrLe, true);
EXPECT_FALSE(connmgr()->Connect(peer->identifier(), {}));
}
// Test: user-initiated disconnection
TEST_F(GAP_BrEdrConnectionManagerTest, DisconnectClosesHciConnection) {
QueueSuccessfulIncomingConn();
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
// Disconnecting an unknown peer should do nothing.
EXPECT_FALSE(connmgr()->Disconnect(PeerId(999)));
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions, transaction_count());
auto* const peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_TRUE(peer->bredr()->connected());
QueueDisconnection(kConnectionHandle);
EXPECT_TRUE(connmgr()->Disconnect(peer->identifier()));
RunLoopUntilIdle();
EXPECT_EQ(kIncomingConnTransactions + 1, transaction_count());
EXPECT_FALSE(peer->bredr()->connected());
// Disconnecting a closed connection returns false.
EXPECT_FALSE(connmgr()->Disconnect(peer->identifier()));
}
TEST_F(GAP_BrEdrConnectionManagerTest, AddServiceSearchAll) {
size_t search_cb_count = 0;
auto search_cb = [&](auto id, const auto&) {
auto* peer = peer_cache()->FindByAddress(kTestDevAddr);
ASSERT_TRUE(peer);
ASSERT_EQ(id, peer->identifier());
search_cb_count++;
};
connmgr()->AddServiceSearch(sdp::profile::kAudioSink, {}, search_cb);
fbl::RefPtr<l2cap::testing::FakeChannel> sdp_chan;
std::optional<uint32_t> sdp_request_tid;
data_domain()->set_channel_callback(
[&sdp_chan, &sdp_request_tid](auto new_chan) {
new_chan->SetSendCallback(
[&sdp_request_tid](auto packet) {
const auto kSearchExpectedParams = CreateStaticByteBuffer(
// ServiceSearchPattern
0x35, 0x03, // Sequence uint8 3 bytes
0x19, 0x11, 0x0B, // UUID (kAudioSink)
0xFF, 0xFF, // MaxAttributeByteCount (none)
// Attribute ID list
0x35, 0x05, // Sequence uint8 5 bytes
0x0A, 0x00, 0x00, 0xFF, 0xFF, // uint32_t (all attributes)
0x00 // No continuation state
);
// First byte should be type.
ASSERT_LE(3u, packet->size());
ASSERT_EQ(sdp::kServiceSearchAttributeRequest, (*packet)[0]);
ASSERT_EQ(kSearchExpectedParams, packet->view(5));
sdp_request_tid = (*packet)[1] << 8 || (*packet)[2];
},
async_get_default_dispatcher());
sdp_chan = std::move(new_chan);
});
QueueSuccessfulIncomingConn();
data_domain()->ExpectOutboundL2capChannel(kConnectionHandle, l2cap::kSDP,
0x40, 0x41);
test_device()->SendCommandChannelPacket(kConnectionRequest);
RunLoopUntilIdle();
ASSERT_TRUE(sdp_chan);
ASSERT_TRUE(sdp_request_tid);
ASSERT_EQ(0u, search_cb_count);
sdp::ServiceSearchAttributeResponse rsp;
rsp.SetAttribute(0, sdp::kServiceId, sdp::DataElement(UUID()));
auto rsp_ptr = rsp.GetPDU(0xFFFF /* max attribute bytes */, *sdp_request_tid,
BufferView());
sdp_chan->Receive(*rsp_ptr);
RunLoopUntilIdle();
ASSERT_EQ(1u, search_cb_count);
QueueDisconnection(kConnectionHandle);
}
std::string FormatConnectionState(Peer::ConnectionState s) {
switch (s) {
case Peer::ConnectionState::kConnected:
return "kConnected";
case Peer::ConnectionState::kInitializing:
return "kInitializing";
case Peer::ConnectionState::kNotConnected:
return "kNotConnected";
}
return "<Invalid state>";
}
::testing::AssertionResult IsInitializing(Peer* peer) {
if (Peer::ConnectionState::kInitializing !=
peer->bredr()->connection_state()) {
return ::testing::AssertionFailure()
<< "Expected peer connection_state: kInitializing, found "
<< FormatConnectionState(peer->bredr()->connection_state());
}
return ::testing::AssertionSuccess();
}
::testing::AssertionResult IsConnected(Peer* peer) {
if (Peer::ConnectionState::kConnected != peer->bredr()->connection_state()) {
return ::testing::AssertionFailure()
<< "Expected peer connection_state: kConnected, found "
<< FormatConnectionState(peer->bredr()->connection_state());
}
if (peer->temporary()) {
return ::testing::AssertionFailure()
<< "Expected peer to be non-temporary, but found temporary";
}
return ::testing::AssertionSuccess();
}
::testing::AssertionResult NotConnected(Peer* peer) {
if (Peer::ConnectionState::kNotConnected !=
peer->bredr()->connection_state()) {
return ::testing::AssertionFailure()
<< "Expected peer connection_state: kNotConnected, found "
<< FormatConnectionState(peer->bredr()->connection_state());
}
return ::testing::AssertionSuccess();
}
::testing::AssertionResult HasConnectionTo(Peer* peer, BrEdrConnection* conn) {
if (!conn) {
return ::testing::AssertionFailure()
<< "Expected BrEdrConnection, but found nullptr";
}
if (peer->identifier() != conn->peer_id()) {
return ::testing::AssertionFailure()
<< "Expected connection peer_id " << bt_str(peer->identifier())
<< " but found " << bt_str(conn->peer_id());
}
return ::testing::AssertionSuccess();
}
#define CALLBACK_EXPECT_FAILURE(status_param) \
([&status_param](auto cb_status, auto conn_ref) { \
EXPECT_FALSE(conn_ref); \
status_param = cb_status; \
})
// An error is received via the HCI Command cb_status event
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSinglePeerErrorStatus) {
auto* peer = peer_cache()->NewPeer(kTestDevAddr, true);
test_device()->QueueCommandTransaction(
CommandTransaction(kCreateConnection, {&kCreateConnectionRspError}));
ASSERT_TRUE(peer->bredr());
EXPECT_TRUE(NotConnected(peer));
hci::Status status;
EXPECT_TRUE(
connmgr()->Connect(peer->identifier(), CALLBACK_EXPECT_FAILURE(status)));
EXPECT_TRUE(IsInitializing(peer));
RunLoopUntilIdle();
EXPECT_TRUE(status.is_protocol_error());
EXPECT_EQ(hci::StatusCode::kConnectionFailedToBeEstablished,
status.protocol_error());
EXPECT_TRUE(NotConnected(peer));
}
::testing::AssertionResult StatusEqual(hci::StatusCode expected,
hci::StatusCode actual) {
if (expected == actual)
return ::testing::AssertionSuccess();
else
return ::testing::AssertionFailure()
<< expected << " is '" << StatusCodeToString(expected) << "', "
<< actual << " is '" << StatusCodeToString(actual) << "'";
}
// Connection Complete event reports error
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSinglePeerFailure) {
auto* peer = peer_cache()->NewPeer(kTestDevAddr, true);
test_device()->QueueCommandTransaction(CommandTransaction(
kCreateConnection, {&kCreateConnectionRsp, &kConnectionCompleteError}));
hci::Status status(HostError::kFailed);
bool callback_run = false;
auto callback = [&status, &callback_run](auto cb_status, auto conn_ref) {
EXPECT_FALSE(conn_ref);
status = cb_status;
callback_run = true;
};
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
ASSERT_TRUE(peer->bredr());
EXPECT_TRUE(IsInitializing(peer));
RunLoopUntilIdle();
EXPECT_TRUE(callback_run);
EXPECT_TRUE(status.is_protocol_error());
EXPECT_TRUE(StatusEqual(hci::StatusCode::kConnectionFailedToBeEstablished,
status.protocol_error()));
EXPECT_TRUE(NotConnected(peer));
}
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSinglePeerTimeout) {
auto* peer = peer_cache()->NewPeer(kTestDevAddr, true);
test_device()->QueueCommandTransaction(
CommandTransaction(kCreateConnection, {&kCreateConnectionRsp}));
test_device()->QueueCommandTransaction(CommandTransaction(
kCreateConnectionCancel,
{&kCreateConnectionCancelRsp, &kConnectionCompleteCanceled}));
hci::Status status;
auto callback = [&status](auto cb_status, auto conn_ref) {
EXPECT_FALSE(conn_ref);
status = cb_status;
};
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
ASSERT_TRUE(peer->bredr());
EXPECT_TRUE(IsInitializing(peer));
RunLoopFor(kBrEdrCreateConnectionTimeout);
RunLoopFor(kBrEdrCreateConnectionTimeout);
EXPECT_FALSE(status);
EXPECT_EQ(HostError::kTimedOut, status.error()) << status.ToString();
EXPECT_TRUE(NotConnected(peer));
}
// Successful connection to single peer
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSinglePeer) {
auto* peer = peer_cache()->NewPeer(kTestDevAddr, true);
EXPECT_TRUE(peer->temporary());
// Queue up the connection
test_device()->QueueCommandTransaction(CommandTransaction(
kCreateConnection, {&kCreateConnectionRsp, &kConnectionComplete}));
QueueSuccessfulInterrogation(peer->address(), kConnectionHandle);
QueueDisconnection(kConnectionHandle);
// Initialize as error to verify that |callback| assigns success.
hci::Status status(HostError::kFailed);
BrEdrConnection* conn_ref;
auto callback = [&status, &conn_ref](auto cb_status, auto cb_conn_ref) {
EXPECT_TRUE(cb_conn_ref);
status = cb_status;
conn_ref = std::move(cb_conn_ref);
};
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
ASSERT_TRUE(peer->bredr());
EXPECT_TRUE(IsInitializing(peer));
RunLoopUntilIdle();
EXPECT_TRUE(status);
EXPECT_EQ(status.ToString(), hci::Status().ToString());
EXPECT_TRUE(HasConnectionTo(peer, conn_ref));
EXPECT_TRUE(IsConnected(peer));
}
// Connecting to an already connected peer should complete instantly
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSinglePeerAlreadyConnected) {
auto* peer = peer_cache()->NewPeer(kTestDevAddr, true);
EXPECT_TRUE(peer->temporary());
// Queue up the connection
test_device()->QueueCommandTransaction(CommandTransaction(
kCreateConnection, {&kCreateConnectionRsp, &kConnectionComplete}));
QueueSuccessfulInterrogation(peer->address(), kConnectionHandle);
QueueDisconnection(kConnectionHandle);
// Initialize as error to verify that |callback| assigns success.
hci::Status status(HostError::kFailed);
int num_callbacks = 0;
BrEdrConnection* conn_ref;
auto callback = [&status, &conn_ref, &num_callbacks](auto cb_status,
auto cb_conn_ref) {
EXPECT_TRUE(cb_conn_ref);
status = cb_status;
conn_ref = std::move(cb_conn_ref);
++num_callbacks;
};
// Connect to the peer for the first time
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
ASSERT_TRUE(peer->bredr());
EXPECT_TRUE(IsInitializing(peer));
RunLoopUntilIdle();
EXPECT_TRUE(status);
EXPECT_EQ(status.ToString(), hci::Status().ToString());
EXPECT_TRUE(HasConnectionTo(peer, conn_ref));
EXPECT_TRUE(IsConnected(peer));
EXPECT_EQ(num_callbacks, 1);
// Attempt to connect again to the already connected peer
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
RunLoopUntilIdle();
EXPECT_EQ(num_callbacks, 2);
EXPECT_TRUE(status);
EXPECT_EQ(status.ToString(), hci::Status().ToString());
EXPECT_TRUE(HasConnectionTo(peer, conn_ref));
EXPECT_TRUE(IsConnected(peer));
}
// Initiating Two Connections to the same (currently unconnected) peer should
// successfully establish both
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSinglePeerTwoInFlight) {
auto* peer = peer_cache()->NewPeer(kTestDevAddr, true);
EXPECT_TRUE(peer->temporary());
// Queue up the connection
test_device()->QueueCommandTransaction(CommandTransaction(
kCreateConnection, {&kCreateConnectionRsp, &kConnectionComplete}));
QueueSuccessfulInterrogation(peer->address(), kConnectionHandle);
QueueDisconnection(kConnectionHandle);
// Initialize as error to verify that |callback| assigns success.
hci::Status status(HostError::kFailed);
int num_callbacks = 0;
BrEdrConnection* conn_ref;
auto callback = [&status, &conn_ref, &num_callbacks](auto cb_status,
auto cb_conn_ref) {
EXPECT_TRUE(cb_conn_ref);
status = cb_status;
conn_ref = std::move(cb_conn_ref);
++num_callbacks;
};
// Launch one request, but don't run the loop
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
ASSERT_TRUE(peer->bredr());
EXPECT_TRUE(IsInitializing(peer));
// Launch second inflight request
EXPECT_TRUE(connmgr()->Connect(peer->identifier(), callback));
// Run the loop which should complete both requests
RunLoopUntilIdle();
EXPECT_TRUE(status);
EXPECT_EQ(status.ToString(), hci::Status().ToString());
EXPECT_TRUE(HasConnectionTo(peer, conn_ref));
EXPECT_TRUE(IsConnected(peer));
EXPECT_EQ(num_callbacks, 2);
}
TEST_F(GAP_BrEdrConnectionManagerTest, ConnectSecondPeerFirstTimesOut) {
auto* peer_a = peer_cache()->NewPeer(kTestDevAddr, true);
auto* peer_b = peer_cache()->NewPeer(kTestDevAddr2, true);
// Enqueue first connection request (which will timeout and be cancelled)
test_device()->QueueCommandTransaction(
CommandTransaction(kCreateConnection, {&kCreateConnectionRsp}));
test_device()->QueueCommandTransaction(CommandTransaction(
kCreateConnectionCancel,
{&kCreateConnectionCancelRsp, &kConnectionCompleteCanceled}));
// Enqueue second connection (which will succeed once previous has ended)
const hci::ConnectionHandle conn = 0x0BAB;
QueueSuccessfulCreateConnection(peer_b, conn);
QueueSuccessfulInterrogation(peer_b->address(), conn);
QueueDisconnection(conn);
// Initialize as success to verify that |callback_a| assigns failure.
hci::Status status_a;
auto callback_a = [&status_a](auto cb_status, auto cb_conn_ref) {
status_a = cb_status;
EXPECT_FALSE(cb_conn_ref);
};
// Initialize as error to verify that |callback_b| assigns success.
hci::Status status_b(HostError::kFailed);
BrEdrConnection* connection;
auto callback_b = [&status_b, &connection](auto cb_status, auto cb_conn_ref) {
EXPECT_TRUE(cb_conn_ref);
status_b = cb_status;
connection = std::move(cb_conn_ref);
};
// Launch one request (this will timeout)
EXPECT_TRUE(connmgr()->Connect(peer_a->identifier(), callback_a));
ASSERT_TRUE(peer_a->bredr());
EXPECT_TRUE(IsInitializing(peer_a));
RunLoopUntilIdle();
// Launch second inflight request (this will wait for the first)
EXPECT_TRUE(connmgr()->Connect(peer_b->identifier(), callback_b));
ASSERT_TRUE(peer_b->bredr());
// Run the loop which should complete both requests
RunLoopFor(kBrEdrCreateConnectionTimeout);
RunLoopFor(kBrEdrCreateConnectionTimeout);
EXPECT_FALSE(status_a);
EXPECT_TRUE(status_b);
EXPECT_EQ(status_b.ToString(), hci::Status().ToString());
EXPECT_TRUE(HasConnectionTo(peer_b, connection));
EXPECT_TRUE(NotConnected(peer_a));
EXPECT_TRUE(IsConnected(peer_b));
}
// TODO(BT-819) Connecting a peer that's being interrogated
#undef COMMAND_COMPLETE_RSP
#undef COMMAND_STATUS_RSP
} // namespace
} // namespace gap
} // namespace bt