blob: 083764a8ab591249fc94f262c0b9fa886eff9e96 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <atomic>
#include <limits>
#include <memory>
#include <inttypes.h>
#include <threads.h>
#include <ddk/driver.h>
#include <fbl/auto_lock.h>
#include <lib/fzl/owned-vmo-mapper.h>
#include <lib/zx/vmo.h>
#include <zircon/assert.h>
#include <zircon/boot/image.h>
#include <zircon/device/block.h>
#include <zircon/types.h>
#include "ramdisk.h"
namespace ramdisk {
namespace {
using Transaction = block::UnownedOperation<>;
constexpr uint64_t kMaxTransferSize = 1LLU << 19;
static std::atomic<uint64_t> g_ramdisk_count = 0;
} // namespace
Ramdisk::Ramdisk(zx_device_t* parent, uint64_t block_size, uint64_t block_count,
const uint8_t* type_guid, fzl::ResizeableVmoMapper mapping)
: RamdiskDeviceType(parent), block_size_(block_size), block_count_(block_count),
mapping_(std::move(mapping)) {
if (type_guid) {
memcpy(type_guid_, type_guid, ZBI_PARTITION_GUID_LEN);
} else {
memset(type_guid_, 0, ZBI_PARTITION_GUID_LEN);
}
snprintf(name_, sizeof(name_), "ramdisk-%" PRIu64, g_ramdisk_count.fetch_add(1));
}
zx_status_t Ramdisk::Create(zx_device_t* parent, zx::vmo vmo, uint64_t block_size,
uint64_t block_count, const uint8_t* type_guid,
std::unique_ptr<Ramdisk>* out) {
fzl::ResizeableVmoMapper mapping;
zx_status_t status = mapping.Map(std::move(vmo), block_size * block_count);
if (status != ZX_OK) {
return status;
}
auto ramdev = std::unique_ptr<Ramdisk>(
new Ramdisk(parent, block_size, block_count, type_guid, std::move(mapping)));
if (thrd_create(&ramdev->worker_, WorkerThunk, ramdev.get()) != thrd_success) {
return ZX_ERR_NO_MEMORY;
}
*out = std::move(ramdev);
return ZX_OK;
}
zx_status_t Ramdisk::DdkGetProtocol(uint32_t proto_id, void* out_protocol) {
auto* proto = static_cast<ddk::AnyProtocol*>(out_protocol);
proto->ctx = this;
switch (proto_id) {
case ZX_PROTOCOL_BLOCK_IMPL: {
proto->ops = &block_impl_protocol_ops_;
return ZX_OK;
}
case ZX_PROTOCOL_BLOCK_PARTITION: {
proto->ops = &block_partition_protocol_ops_;
return ZX_OK;
}
default:
return ZX_ERR_NOT_SUPPORTED;
}
}
zx_off_t Ramdisk::DdkGetSize() {
return block_size_ * block_count_;
}
void Ramdisk::DdkUnbind() {
{
fbl::AutoLock lock(&lock_);
dead_ = true;
}
sync_completion_signal(&signal_);
DdkRemove();
}
zx_status_t Ramdisk::DdkMessage(fidl_msg_t* msg, fidl_txn_t* txn) {
return fuchsia_hardware_ramdisk_Ramdisk_dispatch(this, txn, msg, Ops());
}
void Ramdisk::DdkRelease() {
// Wake up the worker thread, in case it is sleeping
sync_completion_signal(&signal_);
thrd_join(worker_, nullptr);
delete this;
}
void Ramdisk::BlockImplQuery(block_info_t* info, size_t* bopsz) {
memset(info, 0, sizeof(*info));
info->block_size = static_cast<uint32_t>(block_size_);
info->block_count = block_count_;
// Arbitrarily set, but matches the SATA driver for testing
info->max_transfer_size = kMaxTransferSize;
fbl::AutoLock lock(&lock_);
info->flags = flags_;
*bopsz = Transaction::OperationSize(sizeof(block_op_t));
}
void Ramdisk::BlockImplQueue(block_op_t* bop, block_impl_queue_callback completion_cb,
void* cookie) {
Transaction txn(bop, completion_cb, cookie, sizeof(block_op_t));
bool dead;
bool read = false;
switch ((txn.operation()->command &= BLOCK_OP_MASK)) {
case BLOCK_OP_READ:
read = true;
__FALLTHROUGH;
case BLOCK_OP_WRITE:
if ((txn.operation()->rw.offset_dev >= block_count_) ||
((block_count_ - txn.operation()->rw.offset_dev) < txn.operation()->rw.length)) {
txn.Complete(ZX_ERR_OUT_OF_RANGE);
return;
}
{
fbl::AutoLock lock(&lock_);
if (!(dead = dead_)) {
if (!read) {
block_counts_.received += txn.operation()->rw.length;
}
txn_list_.push(std::move(txn));
}
}
if (dead) {
txn.Complete(ZX_ERR_BAD_STATE);
} else {
sync_completion_signal(&signal_);
}
break;
case BLOCK_OP_FLUSH:
txn.Complete(ZX_OK);
break;
default:
txn.Complete(ZX_ERR_NOT_SUPPORTED);
break;
}
}
zx_status_t Ramdisk::FidlSetFlags(uint32_t flags, fidl_txn_t* txn) {
{
fbl::AutoLock lock(&lock_);
flags_ = flags;
}
return fuchsia_hardware_ramdisk_RamdiskSetFlags_reply(txn, ZX_OK);
}
zx_status_t Ramdisk::FidlWake(fidl_txn_t* txn) {
{
fbl::AutoLock lock(&lock_);
asleep_ = false;
memset(&block_counts_, 0, sizeof(block_counts_));
pre_sleep_write_block_count_ = 0;
sync_completion_signal(&signal_);
}
return fuchsia_hardware_ramdisk_RamdiskWake_reply(txn, ZX_OK);
}
zx_status_t Ramdisk::FidlSleepAfter(uint64_t block_count, fidl_txn_t* txn) {
{
fbl::AutoLock lock(&lock_);
asleep_ = false;
memset(&block_counts_, 0, sizeof(block_counts_));
pre_sleep_write_block_count_ = block_count;
if (block_count == 0) {
asleep_ = true;
}
}
return fuchsia_hardware_ramdisk_RamdiskSleepAfter_reply(txn, ZX_OK);
}
zx_status_t Ramdisk::FidlGetBlockCounts(fidl_txn_t* txn) {
fuchsia_hardware_ramdisk_BlockWriteCounts block_counts;
{
fbl::AutoLock lock(&lock_);
memcpy(&block_counts, &block_counts_, sizeof(block_counts_));
}
return fuchsia_hardware_ramdisk_RamdiskGetBlockCounts_reply(txn, ZX_OK, &block_counts);
}
zx_status_t Ramdisk::BlockPartitionGetGuid(guidtype_t guid_type, guid_t* out_guid) {
if (guid_type != GUIDTYPE_TYPE) {
return ZX_ERR_NOT_SUPPORTED;
}
static_assert(ZBI_PARTITION_GUID_LEN == GUID_LENGTH, "GUID length mismatch");
memcpy(out_guid, type_guid_, ZBI_PARTITION_GUID_LEN);
return ZX_OK;
}
zx_status_t Ramdisk::BlockPartitionGetName(char* out_name, size_t capacity) {
if (capacity < ZBI_PARTITION_NAME_LEN) {
return ZX_ERR_BUFFER_TOO_SMALL;
}
static_assert(ZBI_PARTITION_NAME_LEN <= MAX_PARTITION_NAME_LENGTH, "Name length mismatch");
strlcpy(out_name, name_, ZBI_PARTITION_NAME_LEN);
return ZX_OK;
}
zx_status_t Ramdisk::FidlGrow(uint64_t required_size, fidl_txn_t* txn) {
fbl::AutoLock lock(&lock_);
if (required_size < block_size_ * block_count_) {
return fuchsia_hardware_ramdisk_RamdiskGrow_reply(txn, ZX_ERR_INVALID_ARGS);
}
if (required_size % block_size_ != 0) {
return fuchsia_hardware_ramdisk_RamdiskGrow_reply(txn, ZX_ERR_INVALID_ARGS);
}
zx_status_t status = mapping_.Grow(required_size);
if (status != ZX_OK) {
return fuchsia_hardware_ramdisk_RamdiskGrow_reply(txn, status);
}
block_count_ = required_size / block_size_;
return fuchsia_hardware_ramdisk_RamdiskGrow_reply(txn, ZX_OK);
}
void Ramdisk::ProcessRequests() {
zx_status_t status = ZX_OK;
std::optional<Transaction> txn;
bool dead, asleep, defer;
uint64_t blocks = 0;
block::UnownedOperationQueue<> deferred_list;
for (;;) {
for (;;) {
{
fbl::AutoLock lock(&lock_);
txn = std::nullopt;
dead = dead_;
asleep = asleep_;
defer = (flags_ & fuchsia_hardware_ramdisk_RAMDISK_FLAG_RESUME_ON_WAKE) != 0;
blocks = pre_sleep_write_block_count_;
if (!asleep) {
// If we are awake, try grabbing pending transactions from the deferred list.
txn = deferred_list.pop();
}
if (!txn) {
// If no transactions were available in the deferred list (or we are asleep),
// grab one from the regular txn_list.
txn = txn_list_.pop();
}
}
if (dead) {
return;
}
if (!txn) {
sync_completion_wait(&signal_, ZX_TIME_INFINITE);
} else {
sync_completion_reset(&signal_);
break;
}
}
uint64_t txn_blocks = txn->operation()->rw.length;
if (txn->operation()->command == BLOCK_OP_READ || blocks == 0 || blocks > txn_blocks) {
// If the ramdisk is not configured to sleep after x blocks, or the number of blocks in
// this transaction does not exceed the pre_sleep_write_block_count, or we are
// performing a read operation, use the current transaction length.
blocks = txn_blocks;
}
size_t length = blocks * block_size_;
size_t dev_offset = txn->operation()->rw.offset_dev * block_size_;
size_t vmo_offset = txn->operation()->rw.offset_vmo * block_size_;
void* addr = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(mapping_.start()) +
dev_offset);
auto command = txn->operation()->command;
if (length > kMaxTransferSize) {
status = ZX_ERR_OUT_OF_RANGE;
} else if (command == BLOCK_OP_READ) {
// A read operation should always succeed, even if the ramdisk is "asleep".
status = zx_vmo_write(txn->operation()->rw.vmo, addr, vmo_offset, length);
} else if (asleep) {
if (defer) {
// If we are asleep but resuming on wake, add txn to the deferred_list.
// deferred_list is only accessed by the worker_thread, so a lock is not needed.
deferred_list.push(std::move(*txn));
continue;
} else {
status = ZX_ERR_UNAVAILABLE;
}
} else { // BLOCK_OP_WRITE
status = zx_vmo_read(txn->operation()->rw.vmo, addr, vmo_offset, length);
if (status == ZX_OK && blocks < txn->operation()->rw.length && defer) {
// If the first part of the transaction succeeded but the entire transaction is not
// complete, we need to address the remainder.
// If we are deferring after this block count, update the transaction to
// reflect the blocks that have already been written, and add it to the
// deferred queue.
ZX_DEBUG_ASSERT_MSG(blocks <= std::numeric_limits<uint32_t>::max(),
"Block count overflow");
txn->operation()->rw.length -= static_cast<uint32_t>(blocks);
txn->operation()->rw.offset_vmo += blocks;
txn->operation()->rw.offset_dev += blocks;
// Add the remaining blocks to the deferred list.
deferred_list.push(std::move(*txn));
}
}
if (command == BLOCK_OP_WRITE) {
{
// Update the ramdisk block counts. Since we aren't failing read transactions,
// only include write transaction counts.
fbl::AutoLock lock(&lock_);
// Increment the count based on the result of the last transaction.
if (status == ZX_OK) {
block_counts_.successful += blocks;
if (blocks != txn_blocks && !defer) {
// If we are not deferring, then any excess blocks have failed.
block_counts_.failed += txn_blocks - blocks;
status = ZX_ERR_UNAVAILABLE;
}
} else {
block_counts_.failed += txn_blocks;
}
// Put the ramdisk to sleep if we have reached the required # of blocks.
if (pre_sleep_write_block_count_ > 0) {
pre_sleep_write_block_count_ -= blocks;
asleep_ = (pre_sleep_write_block_count_ == 0);
}
}
if (defer && blocks != txn_blocks && status == ZX_OK) {
// If we deferred partway through a transaction, hold off on returning the
// result until the remainder of the transaction is completed.
continue;
}
}
txn->Complete(status);
}
}
} // namespace ramdisk