blob: 101a78cfd1c6f45110df6c5a7f3390e57376795e [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/channel.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace protocolrequest {
class Parent;
class Child;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentGetChildRequestTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentGetChildResponseTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentGetChildRequestRequestTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentGetChildRequestResponseTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentTakeChildRequestTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentTakeChildResponseTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentTakeChildRequestRequestTable;
extern "C" const fidl_type_t
fidl_test_protocolrequest_ParentTakeChildRequestResponseTable;
class Parent final {
Parent() = delete;
public:
struct GetChildResponse final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::zx::channel c;
explicit GetChildResponse(::zx::channel& c) : c(std::move(c)) {
_InitHeader();
}
GetChildResponse() { _InitHeader(); }
static constexpr const fidl_type_t* Type =
&fidl_test_protocolrequest_ParentGetChildResponseTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kResponse;
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
::zx::channel& c)
: message_(_bytes, _byte_size, sizeof(GetChildResponse), handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
FIDL_ALIGNDECL GetChildResponse _response{c};
message_.LinearizeAndEncode<GetChildResponse>(&_response);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
GetChildResponse* response)
: message_(bytes, byte_size, sizeof(GetChildResponse), handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<GetChildResponse>(response);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
GetChildResponse& Message() {
return *reinterpret_cast<GetChildResponse*>(message_.bytes());
}
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(::zx::channel& c)
: message_(bytes_, sizeof(bytes_), c) {}
explicit OwnedEncodedMessage(GetChildResponse* response)
: message_(bytes_, sizeof(bytes_), response) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<GetChildResponse>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<GetChildResponse>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
GetChildResponse* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildResponse*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<GetChildResponse>();
}
}
};
private:
void _InitHeader();
};
struct GetChildRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
explicit GetChildRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&::fidl::_llcpp_coding_AnyZeroArgMessageTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 16;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
using ResponseType = GetChildResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid)
: message_(_bytes, _byte_size, sizeof(GetChildRequest), nullptr, 0,
0) {
FIDL_ALIGNDECL GetChildRequest _request(_txid);
message_.LinearizeAndEncode<GetChildRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
GetChildRequest* request)
: message_(bytes, byte_size, sizeof(GetChildRequest), nullptr, 0, 0) {
message_.LinearizeAndEncode<GetChildRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
GetChildRequest& Message() {
return *reinterpret_cast<GetChildRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid)
: message_(bytes_, sizeof(bytes_), _txid) {}
explicit OwnedEncodedMessage(GetChildRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<GetChildRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<GetChildRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
GetChildRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<GetChildRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
struct GetChildRequestResponse final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::zx::channel r;
explicit GetChildRequestResponse(::zx::channel& r) : r(std::move(r)) {
_InitHeader();
}
GetChildRequestResponse() { _InitHeader(); }
static constexpr const fidl_type_t* Type =
&fidl_test_protocolrequest_ParentGetChildRequestResponseTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kResponse;
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
::zx::channel& r)
: message_(_bytes, _byte_size, sizeof(GetChildRequestResponse),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
FIDL_ALIGNDECL GetChildRequestResponse _response{r};
message_.LinearizeAndEncode<GetChildRequestResponse>(&_response);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
GetChildRequestResponse* response)
: message_(bytes, byte_size, sizeof(GetChildRequestResponse),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<GetChildRequestResponse>(response);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
GetChildRequestResponse& Message() {
return *reinterpret_cast<GetChildRequestResponse*>(message_.bytes());
}
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(::zx::channel& r)
: message_(bytes_, sizeof(bytes_), r) {}
explicit OwnedEncodedMessage(GetChildRequestResponse* response)
: message_(bytes_, sizeof(bytes_), response) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<GetChildRequestResponse>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<GetChildRequestResponse>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
GetChildRequestResponse* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildRequestResponse*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<GetChildRequestResponse>();
}
}
};
private:
void _InitHeader();
};
struct GetChildRequestRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
explicit GetChildRequestRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&::fidl::_llcpp_coding_AnyZeroArgMessageTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 16;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
using ResponseType = GetChildRequestResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid)
: message_(_bytes, _byte_size, sizeof(GetChildRequestRequest),
nullptr, 0, 0) {
FIDL_ALIGNDECL GetChildRequestRequest _request(_txid);
message_.LinearizeAndEncode<GetChildRequestRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
GetChildRequestRequest* request)
: message_(bytes, byte_size, sizeof(GetChildRequestRequest), nullptr,
0, 0) {
message_.LinearizeAndEncode<GetChildRequestRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
GetChildRequestRequest& Message() {
return *reinterpret_cast<GetChildRequestRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid)
: message_(bytes_, sizeof(bytes_), _txid) {}
explicit OwnedEncodedMessage(GetChildRequestRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<GetChildRequestRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<GetChildRequestRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
GetChildRequestRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildRequestRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<GetChildRequestRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
struct TakeChildRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::zx::channel c;
explicit TakeChildRequest(zx_txid_t _txid, ::zx::channel& c)
: c(std::move(c)) {
_InitHeader(_txid);
}
explicit TakeChildRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&fidl_test_protocolrequest_ParentTakeChildRequestTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 24;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid, ::zx::channel& c)
: message_(_bytes, _byte_size, sizeof(TakeChildRequest), handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
FIDL_ALIGNDECL TakeChildRequest _request(_txid, c);
message_.LinearizeAndEncode<TakeChildRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
TakeChildRequest* request)
: message_(bytes, byte_size, sizeof(TakeChildRequest), handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<TakeChildRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
TakeChildRequest& Message() {
return *reinterpret_cast<TakeChildRequest*>(message_.bytes());
}
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid, ::zx::channel& c)
: message_(bytes_, sizeof(bytes_), _txid, c) {}
explicit OwnedEncodedMessage(TakeChildRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<TakeChildRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<TakeChildRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
TakeChildRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<TakeChildRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<TakeChildRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
struct TakeChildRequestRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::zx::channel r;
explicit TakeChildRequestRequest(zx_txid_t _txid, ::zx::channel& r)
: r(std::move(r)) {
_InitHeader(_txid);
}
explicit TakeChildRequestRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&fidl_test_protocolrequest_ParentTakeChildRequestRequestTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 24;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid, ::zx::channel& r)
: message_(_bytes, _byte_size, sizeof(TakeChildRequestRequest),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
FIDL_ALIGNDECL TakeChildRequestRequest _request(_txid, r);
message_.LinearizeAndEncode<TakeChildRequestRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
TakeChildRequestRequest* request)
: message_(bytes, byte_size, sizeof(TakeChildRequestRequest),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<TakeChildRequestRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
TakeChildRequestRequest& Message() {
return *reinterpret_cast<TakeChildRequestRequest*>(message_.bytes());
}
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid, ::zx::channel& r)
: message_(bytes_, sizeof(bytes_), _txid, r) {}
explicit OwnedEncodedMessage(TakeChildRequestRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<TakeChildRequestRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<TakeChildRequestRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
TakeChildRequestRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<TakeChildRequestRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<TakeChildRequestRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
class GetChild final : public ::fidl::Result {
public:
explicit GetChild(zx_handle_t _client);
GetChild(zx_handle_t _client, zx_time_t _deadline);
explicit GetChild(const ::fidl::Result& result)
: ::fidl::Result(result) {}
GetChild(GetChild&&) = delete;
GetChild(const GetChild&) = delete;
GetChild* operator=(GetChild&&) = delete;
GetChild* operator=(const GetChild&) = delete;
~GetChild() {
if (ok()) {
Unwrap()->_CloseHandles();
}
}
GetChildResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildResponse*>(bytes_);
}
const GetChildResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const GetChildResponse*>(bytes_);
}
GetChildResponse& value() { return *Unwrap(); }
const GetChildResponse& value() const { return *Unwrap(); }
GetChildResponse* operator->() { return &value(); }
const GetChildResponse* operator->() const { return &value(); }
GetChildResponse& operator*() { return value(); }
const GetChildResponse& operator*() const { return value(); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[GetChildResponse::PrimarySize +
GetChildResponse::MaxOutOfLine];
};
class GetChildRequest final : public ::fidl::Result {
public:
explicit GetChildRequest(zx_handle_t _client);
GetChildRequest(zx_handle_t _client, zx_time_t _deadline);
explicit GetChildRequest(const ::fidl::Result& result)
: ::fidl::Result(result) {}
GetChildRequest(GetChildRequest&&) = delete;
GetChildRequest(const GetChildRequest&) = delete;
GetChildRequest* operator=(GetChildRequest&&) = delete;
GetChildRequest* operator=(const GetChildRequest&) = delete;
~GetChildRequest() {
if (ok()) {
Unwrap()->_CloseHandles();
}
}
GetChildRequestResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildRequestResponse*>(bytes_);
}
const GetChildRequestResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const GetChildRequestResponse*>(bytes_);
}
GetChildRequestResponse& value() { return *Unwrap(); }
const GetChildRequestResponse& value() const { return *Unwrap(); }
GetChildRequestResponse* operator->() { return &value(); }
const GetChildRequestResponse* operator->() const { return &value(); }
GetChildRequestResponse& operator*() { return value(); }
const GetChildRequestResponse& operator*() const { return value(); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[GetChildRequestResponse::PrimarySize +
GetChildRequestResponse::MaxOutOfLine];
};
class TakeChild final : public ::fidl::Result {
public:
explicit TakeChild(zx_handle_t _client, ::zx::channel& c);
explicit TakeChild(const ::fidl::Result& result)
: ::fidl::Result(result) {}
TakeChild(TakeChild&&) = delete;
TakeChild(const TakeChild&) = delete;
TakeChild* operator=(TakeChild&&) = delete;
TakeChild* operator=(const TakeChild&) = delete;
~TakeChild() = default;
private:
};
class TakeChildRequest final : public ::fidl::Result {
public:
explicit TakeChildRequest(zx_handle_t _client, ::zx::channel& r);
explicit TakeChildRequest(const ::fidl::Result& result)
: ::fidl::Result(result) {}
TakeChildRequest(TakeChildRequest&&) = delete;
TakeChildRequest(const TakeChildRequest&) = delete;
TakeChildRequest* operator=(TakeChildRequest&&) = delete;
TakeChildRequest* operator=(const TakeChildRequest&) = delete;
~TakeChildRequest() = default;
private:
};
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
class GetChild final : public ::fidl::Result {
public:
explicit GetChild(zx_handle_t _client, uint8_t* _response_bytes,
uint32_t _response_byte_capacity);
explicit GetChild(const ::fidl::Result& result)
: ::fidl::Result(result) {}
GetChild(GetChild&&) = delete;
GetChild(const GetChild&) = delete;
GetChild* operator=(GetChild&&) = delete;
GetChild* operator=(const GetChild&) = delete;
~GetChild() {
if (ok()) {
Unwrap()->_CloseHandles();
}
}
GetChildResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildResponse*>(bytes_);
}
const GetChildResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const GetChildResponse*>(bytes_);
}
GetChildResponse& value() { return *Unwrap(); }
const GetChildResponse& value() const { return *Unwrap(); }
GetChildResponse* operator->() { return &value(); }
const GetChildResponse* operator->() const { return &value(); }
GetChildResponse& operator*() { return value(); }
const GetChildResponse& operator*() const { return value(); }
private:
uint8_t* bytes_;
};
class GetChildRequest final : public ::fidl::Result {
public:
explicit GetChildRequest(zx_handle_t _client, uint8_t* _response_bytes,
uint32_t _response_byte_capacity);
explicit GetChildRequest(const ::fidl::Result& result)
: ::fidl::Result(result) {}
GetChildRequest(GetChildRequest&&) = delete;
GetChildRequest(const GetChildRequest&) = delete;
GetChildRequest* operator=(GetChildRequest&&) = delete;
GetChildRequest* operator=(const GetChildRequest&) = delete;
~GetChildRequest() {
if (ok()) {
Unwrap()->_CloseHandles();
}
}
GetChildRequestResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<GetChildRequestResponse*>(bytes_);
}
const GetChildRequestResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const GetChildRequestResponse*>(bytes_);
}
GetChildRequestResponse& value() { return *Unwrap(); }
const GetChildRequestResponse& value() const { return *Unwrap(); }
GetChildRequestResponse* operator->() { return &value(); }
const GetChildRequestResponse* operator->() const { return &value(); }
GetChildRequestResponse& operator*() { return value(); }
const GetChildRequestResponse& operator*() const { return value(); }
private:
uint8_t* bytes_;
};
class TakeChild final : public ::fidl::Result {
public:
explicit TakeChild(zx_handle_t _client, uint8_t* _request_bytes,
uint32_t _request_byte_capacity, ::zx::channel& c);
explicit TakeChild(const ::fidl::Result& result)
: ::fidl::Result(result) {}
TakeChild(TakeChild&&) = delete;
TakeChild(const TakeChild&) = delete;
TakeChild* operator=(TakeChild&&) = delete;
TakeChild* operator=(const TakeChild&) = delete;
~TakeChild() = default;
};
class TakeChildRequest final : public ::fidl::Result {
public:
explicit TakeChildRequest(zx_handle_t _client, uint8_t* _request_bytes,
uint32_t _request_byte_capacity,
::zx::channel& r);
explicit TakeChildRequest(const ::fidl::Result& result)
: ::fidl::Result(result) {}
TakeChildRequest(TakeChildRequest&&) = delete;
TakeChildRequest(const TakeChildRequest&) = delete;
TakeChildRequest* operator=(TakeChildRequest&&) = delete;
TakeChildRequest* operator=(const TakeChildRequest&) = delete;
~TakeChildRequest() = default;
};
};
// Methods to make a sync FIDL call directly on an unowned channel, avoiding
// setting up a client.
class Call final {
Call() = delete;
public:
// Allocates 40 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::GetChild GetChild(::zx::unowned_channel _client_end) {
return ResultOf::GetChild(_client_end->get());
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::GetChild GetChild(
::zx::unowned_channel _client_end
,
::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::GetChild(
_client_end->get(), _response_buffer.data, _response_buffer.capacity);
}
// Allocates 40 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::GetChildRequest GetChildRequest(
::zx::unowned_channel _client_end) {
return ResultOf::GetChildRequest(_client_end->get());
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::GetChildRequest GetChildRequest(
::zx::unowned_channel _client_end
,
::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::GetChildRequest(
_client_end->get(), _response_buffer.data, _response_buffer.capacity);
}
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::TakeChild TakeChild(::zx::unowned_channel _client_end,
::zx::channel c) {
return ResultOf::TakeChild(_client_end->get(), c);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::TakeChild TakeChild(
::zx::unowned_channel _client_end, ::fidl::BufferSpan _request_buffer,
::zx::channel c) {
return UnownedResultOf::TakeChild(_client_end->get(),
_request_buffer.data,
_request_buffer.capacity, c);
}
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::TakeChildRequest TakeChildRequest(
::zx::unowned_channel _client_end, ::zx::channel r) {
return ResultOf::TakeChildRequest(_client_end->get(), r);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::TakeChildRequest TakeChildRequest(
::zx::unowned_channel _client_end, ::fidl::BufferSpan _request_buffer,
::zx::channel r) {
return UnownedResultOf::TakeChildRequest(_client_end->get(),
_request_buffer.data,
_request_buffer.capacity, r);
}
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::zx::channel channel) : channel_(std::move(channel)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::zx::channel& channel() const { return channel_; }
::zx::channel* mutable_channel() { return &channel_; }
// Allocates 40 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::GetChild GetChild() {
return ResultOf::GetChild(this->channel().get());
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::GetChild GetChild(::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::GetChild(this->channel().get(),
_response_buffer.data,
_response_buffer.capacity);
}
// Allocates 40 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::GetChildRequest GetChildRequest() {
return ResultOf::GetChildRequest(this->channel().get());
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::GetChildRequest GetChildRequest(
::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::GetChildRequest(this->channel().get(),
_response_buffer.data,
_response_buffer.capacity);
}
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::TakeChild TakeChild(::zx::channel c) {
return ResultOf::TakeChild(this->channel().get(), c);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::TakeChild TakeChild(::fidl::BufferSpan _request_buffer,
::zx::channel c) {
return UnownedResultOf::TakeChild(this->channel().get(),
_request_buffer.data,
_request_buffer.capacity, c);
}
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::TakeChildRequest TakeChildRequest(::zx::channel r) {
return ResultOf::TakeChildRequest(this->channel().get(), r);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::TakeChildRequest TakeChildRequest(
::fidl::BufferSpan _request_buffer, ::zx::channel r) {
return UnownedResultOf::TakeChildRequest(this->channel().get(),
_request_buffer.data,
_request_buffer.capacity, r);
}
private:
::zx::channel channel_;
};
struct AsyncEventHandlers;
class GetChildResponseContext;
class GetChildRequestResponseContext;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
class Interface : public ::fidl::internal::IncomingMessageDispatcher {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using _EnclosingProtocol = Parent;
class GetChildCompleterBase : public ::fidl::CompleterBase {
public:
// In the following methods, the return value indicates internal errors
// during the reply, such as encoding or writing to the transport. Note
// that any error will automatically lead to the destruction of the
// binding, after which the |on_unbound| callback will be triggered with a
// detailed reason.
//
// See //zircon/system/ulib/fidl/include/lib/fidl/llcpp/server.h.
//
// Because the reply status is identical to the unbinding status, it can
// be safely ignored.
::fidl::Result Reply(::zx::channel c);
::fidl::Result Reply(::fidl::BufferSpan _buffer, ::zx::channel c);
protected:
using ::fidl::CompleterBase::CompleterBase;
};
using GetChildCompleter = ::fidl::Completer<GetChildCompleterBase>;
virtual void GetChild(GetChildCompleter::Sync& _completer) = 0;
class GetChildRequestCompleterBase : public ::fidl::CompleterBase {
public:
// In the following methods, the return value indicates internal errors
// during the reply, such as encoding or writing to the transport. Note
// that any error will automatically lead to the destruction of the
// binding, after which the |on_unbound| callback will be triggered with a
// detailed reason.
//
// See //zircon/system/ulib/fidl/include/lib/fidl/llcpp/server.h.
//
// Because the reply status is identical to the unbinding status, it can
// be safely ignored.
::fidl::Result Reply(::zx::channel r);
::fidl::Result Reply(::fidl::BufferSpan _buffer, ::zx::channel r);
protected:
using ::fidl::CompleterBase::CompleterBase;
};
using GetChildRequestCompleter =
::fidl::Completer<GetChildRequestCompleterBase>;
virtual void GetChildRequest(
GetChildRequestCompleter::Sync& _completer) = 0;
using TakeChildCompleter = ::fidl::Completer<>;
virtual void TakeChild(::zx::channel c,
TakeChildCompleter::Sync& _completer) = 0;
using TakeChildRequestCompleter = ::fidl::Completer<>;
virtual void TakeChildRequest(
::zx::channel r, TakeChildRequestCompleter::Sync& _completer) = 0;
private:
::fidl::DispatchResult dispatch_message(fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) final;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of |Interface*|.
// Only used with |fidl::BindServer| to reduce template expansion.
// Do not call this method manually. Use |Dispatch| instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<Interface*>(impl), msg, txn);
}
class EventSender;
class WeakEventSender;
};
class Child final {
Child() = delete;
public:
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
};
// Methods to make a sync FIDL call directly on an unowned channel, avoiding
// setting up a client.
class Call final {
Call() = delete;
public:
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::zx::channel channel) : channel_(std::move(channel)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::zx::channel& channel() const { return channel_; }
::zx::channel* mutable_channel() { return &channel_; }
private:
::zx::channel channel_;
};
struct AsyncEventHandlers;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
class Interface : public ::fidl::internal::IncomingMessageDispatcher {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using _EnclosingProtocol = Child;
private:
::fidl::DispatchResult dispatch_message(fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) final;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of |Interface*|.
// Only used with |fidl::BindServer| to reduce template expansion.
// Do not call this method manually. Use |Dispatch| instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<Interface*>(impl), msg, txn);
}
class EventSender;
class WeakEventSender;
};
} // namespace protocolrequest
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::protocolrequest::Parent::GetChildRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequest>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::protocolrequest::Parent::GetChildRequest) ==
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequest::PrimarySize);
template <>
struct IsFidlType<
::llcpp::fidl::test::protocolrequest::Parent::GetChildResponse>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::protocolrequest::Parent::GetChildResponse>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::protocolrequest::Parent::GetChildResponse) ==
::llcpp::fidl::test::protocolrequest::Parent::GetChildResponse::
PrimarySize);
static_assert(
offsetof(::llcpp::fidl::test::protocolrequest::Parent::GetChildResponse,
c) == 16);
template <>
struct IsFidlType<
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestRequest>
: public std::true_type {};
static_assert(
sizeof(
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestRequest) ==
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestRequest::
PrimarySize);
template <>
struct IsFidlType<
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestResponse>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestResponse>
: public std::true_type {};
static_assert(sizeof(::llcpp::fidl::test::protocolrequest::Parent::
GetChildRequestResponse) ==
::llcpp::fidl::test::protocolrequest::Parent::
GetChildRequestResponse::PrimarySize);
static_assert(
offsetof(
::llcpp::fidl::test::protocolrequest::Parent::GetChildRequestResponse,
r) == 16);
template <>
struct IsFidlType<
::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequest>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequest) ==
::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequest::
PrimarySize);
static_assert(
offsetof(::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequest,
c) == 16);
template <>
struct IsFidlType<
::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequestRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<
::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequestRequest>
: public std::true_type {};
static_assert(sizeof(::llcpp::fidl::test::protocolrequest::Parent::
TakeChildRequestRequest) ==
::llcpp::fidl::test::protocolrequest::Parent::
TakeChildRequestRequest::PrimarySize);
static_assert(
offsetof(
::llcpp::fidl::test::protocolrequest::Parent::TakeChildRequestRequest,
r) == 16);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace protocolrequest {
struct Parent::AsyncEventHandlers {};
class Parent::GetChildResponseContext
: public ::fidl::internal::ResponseContext {
public:
GetChildResponseContext();
virtual void OnReply(Parent::GetChildResponse* message) = 0;
private:
void OnReply(uint8_t* reply) override;
};
class Parent::GetChildRequestResponseContext
: public ::fidl::internal::ResponseContext {
public:
GetChildRequestResponseContext();
virtual void OnReply(Parent::GetChildRequestResponse* message) = 0;
private:
void OnReply(uint8_t* reply) override;
};
class Parent::ClientImpl final : private ::fidl::internal::ClientBase {
public:
// Asynchronous variant of |Parent.GetChild()|. Allocates 16 bytes of request
// buffer on the stack. The callback is stored on the heap.
::fidl::Result GetChild(
::fit::callback<void(GetChildResponse* response)> _cb);
// Asynchronous variant of |Parent.GetChild()|. Caller provides the backing
// storage for FIDL message via request buffer. Ownership of _context is given
// unsafely to the binding until OnError() or OnReply() are called on it.
::fidl::Result GetChild(GetChildResponseContext* _context);
// Synchronous variant of |Parent.GetChild()|. Allocates 40 bytes of message
// buffer on the stack. No heap allocation necessary.
ResultOf::GetChild GetChild_Sync();
// Synchronous variant of |Parent.GetChild()|. Caller provides the backing
// storage for FIDL message via request and response buffers.
UnownedResultOf::GetChild GetChild_Sync(::fidl::BufferSpan _response_buffer);
// Asynchronous variant of |Parent.GetChildRequest()|. Allocates 16 bytes of
// request buffer on the stack. The callback is stored on the heap.
::fidl::Result GetChildRequest(
::fit::callback<void(GetChildRequestResponse* response)> _cb);
// Asynchronous variant of |Parent.GetChildRequest()|. Caller provides the
// backing storage for FIDL message via request buffer. Ownership of _context
// is given unsafely to the binding until OnError() or OnReply() are called on
// it.
::fidl::Result GetChildRequest(GetChildRequestResponseContext* _context);
// Synchronous variant of |Parent.GetChildRequest()|. Allocates 40 bytes of
// message buffer on the stack. No heap allocation necessary.
ResultOf::GetChildRequest GetChildRequest_Sync();
// Synchronous variant of |Parent.GetChildRequest()|. Caller provides the
// backing storage for FIDL message via request and response buffers.
UnownedResultOf::GetChildRequest GetChildRequest_Sync(
::fidl::BufferSpan _response_buffer);
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
::fidl::Result TakeChild(::zx::channel c);
// Caller provides the backing storage for FIDL message via request and
// response buffers.
::fidl::Result TakeChild(::fidl::BufferSpan _request_buffer, ::zx::channel c);
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
::fidl::Result TakeChildRequest(::zx::channel r);
// Caller provides the backing storage for FIDL message via request and
// response buffers.
::fidl::Result TakeChildRequest(::fidl::BufferSpan _request_buffer,
::zx::channel r);
private:
friend class ::fidl::Client<Parent>;
explicit ClientImpl(AsyncEventHandlers handlers)
: handlers_(std::move(handlers)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(
fidl_incoming_msg_t* msg) override;
AsyncEventHandlers handlers_;
};
// |EventSender| owns a server endpoint of a channel speaking
// the Parent protocol, and can send events in that protocol.
class Parent::EventSender {
public:
// Constructs an event sender with an invalid channel.
EventSender() = default;
// TODO(fxbug.dev/65212): EventSender should take a ::fidl::ServerEnd.
explicit EventSender(::zx::channel server_end)
: server_end_(std::move(server_end)) {}
// The underlying server channel endpoint, which may be replaced at run-time.
const ::zx::channel& channel() const { return server_end_; }
::zx::channel& channel() { return server_end_; }
// Whether the underlying channel is valid.
bool is_valid() const { return server_end_.is_valid(); }
private:
::zx::channel server_end_;
};
class Parent::WeakEventSender {
public:
private:
friend class ::fidl::ServerBindingRef<Parent>;
explicit WeakEventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding<Parent>> binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding<Parent>> binding_;
};
struct Child::AsyncEventHandlers {};
class Child::ClientImpl final : private ::fidl::internal::ClientBase {
public:
private:
friend class ::fidl::Client<Child>;
explicit ClientImpl(AsyncEventHandlers handlers)
: handlers_(std::move(handlers)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(
fidl_incoming_msg_t* msg) override;
AsyncEventHandlers handlers_;
};
// |EventSender| owns a server endpoint of a channel speaking
// the Child protocol, and can send events in that protocol.
class Child::EventSender {
public:
// Constructs an event sender with an invalid channel.
EventSender() = default;
// TODO(fxbug.dev/65212): EventSender should take a ::fidl::ServerEnd.
explicit EventSender(::zx::channel server_end)
: server_end_(std::move(server_end)) {}
// The underlying server channel endpoint, which may be replaced at run-time.
const ::zx::channel& channel() const { return server_end_; }
::zx::channel& channel() { return server_end_; }
// Whether the underlying channel is valid.
bool is_valid() const { return server_end_.is_valid(); }
private:
::zx::channel server_end_;
};
class Child::WeakEventSender {
public:
private:
friend class ::fidl::ServerBindingRef<Child>;
explicit WeakEventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding<Child>> binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding<Child>> binding_;
};
} // namespace protocolrequest
} // namespace test
} // namespace fidl
} // namespace llcpp