blob: 46b4e3c4b98edb343405def1ac5a1d7241a5b14a [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/message_storage.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/channel.h>
#include <lib/zx/vmo.h>
#endif // __Fuchsia__
#include <zircon/fidl.h>
#include <zx/llcpp/fidl.h>
namespace llcpp {
namespace fidl {
namespace test {
namespace nullable {
struct StructWithNullableVector;
struct StructWithNullableUnion;
struct StructWithNullableStruct;
struct StructWithNullableString;
struct StructWithNullableRequest;
struct StructWithNullableProtocol;
struct StructWithNullableHandle;
class SimpleProtocol;
class SimpleUnion;
struct Int32Wrapper;
extern "C" const fidl_type_t fidl_test_nullable_SimpleUnionTable;
class SimpleUnion {
public:
SimpleUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
SimpleUnion(SimpleUnion&&) = default;
SimpleUnion& operator=(SimpleUnion&&) = default;
~SimpleUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kA = 1, // 0x1
kB = 2, // 0x2
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_a() const { return ordinal_ == Ordinal::kA; }
static SimpleUnion WithA(::fidl::tracking_ptr<int32_t>&& val) {
SimpleUnion result;
result.set_a(std::move(val));
return result;
}
void set_a(::fidl::tracking_ptr<int32_t>&& elem) {
ordinal_ = Ordinal::kA;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
int32_t& mutable_a() {
ZX_ASSERT(ordinal_ == Ordinal::kA);
return *static_cast<int32_t*>(envelope_.data.get());
}
const int32_t& a() const {
ZX_ASSERT(ordinal_ == Ordinal::kA);
return *static_cast<int32_t*>(envelope_.data.get());
}
bool is_b() const { return ordinal_ == Ordinal::kB; }
static SimpleUnion WithB(::fidl::tracking_ptr<float>&& val) {
SimpleUnion result;
result.set_b(std::move(val));
return result;
}
void set_b(::fidl::tracking_ptr<float>&& elem) {
ordinal_ = Ordinal::kB;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
float& mutable_b() {
ZX_ASSERT(ordinal_ == Ordinal::kB);
return *static_cast<float*>(envelope_.data.get());
}
const float& b() const {
ZX_ASSERT(ordinal_ == Ordinal::kB);
return *static_cast<float*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_SimpleUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kA = 1, // 0x1
kB = 2, // 0x2
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<int32_t> to_destroy =
static_cast<::fidl::tracking_ptr<int32_t>>(
std::move(envelope_.data));
break;
}
case 2: {
::fidl::tracking_ptr<float> to_destroy =
static_cast<::fidl::tracking_ptr<float>>(std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableVectorTable;
struct StructWithNullableVector {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableVectorTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 4294967295;
static constexpr bool HasPointer = true;
::fidl::VectorView<int32_t> val = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableVector* value)
: message_(bytes, byte_size, sizeof(StructWithNullableVector), nullptr,
0, 0) {
message_.LinearizeAndEncode<StructWithNullableVector>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableVector* value)
: bytes_(std::make_unique<
::fidl::internal::AlignedBuffer<ZX_CHANNEL_MAX_MSG_BYTES>>()),
message_(bytes_->data(), ZX_CHANNEL_MAX_MSG_BYTES, value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
std::unique_ptr<::fidl::internal::AlignedBuffer<ZX_CHANNEL_MAX_MSG_BYTES>>
bytes_;
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableVector>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableVector>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructWithNullableVector* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableVector*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructWithNullableVector>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableUnionTable;
struct StructWithNullableUnion {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
::llcpp::fidl::test::nullable::SimpleUnion val = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableUnion* value)
: message_(bytes, byte_size, sizeof(StructWithNullableUnion), nullptr,
0, 0) {
message_.LinearizeAndEncode<StructWithNullableUnion>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableUnion* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableUnion>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableUnion>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructWithNullableUnion* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableUnion*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructWithNullableUnion>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableStructTable;
struct StructWithNullableStruct {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableStructTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 8;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
::fidl::tracking_ptr<::llcpp::fidl::test::nullable::Int32Wrapper> val = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableStruct* value)
: message_(bytes, byte_size, sizeof(StructWithNullableStruct), nullptr,
0, 0) {
message_.LinearizeAndEncode<StructWithNullableStruct>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableStruct* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableStruct>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableStruct>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructWithNullableStruct* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableStruct*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructWithNullableStruct>();
}
}
};
};
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableStringTable;
struct StructWithNullableString {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableStringTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 4294967295;
static constexpr bool HasPointer = true;
::fidl::StringView val = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableString* value)
: message_(bytes, byte_size, sizeof(StructWithNullableString), nullptr,
0, 0) {
message_.LinearizeAndEncode<StructWithNullableString>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableString* value)
: bytes_(std::make_unique<
::fidl::internal::AlignedBuffer<ZX_CHANNEL_MAX_MSG_BYTES>>()),
message_(bytes_->data(), ZX_CHANNEL_MAX_MSG_BYTES, value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
std::unique_ptr<::fidl::internal::AlignedBuffer<ZX_CHANNEL_MAX_MSG_BYTES>>
bytes_;
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableString>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableString>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct StructWithNullableString* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableString*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct StructWithNullableString>();
}
}
};
};
#ifdef __Fuchsia__
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableRequestTable;
struct StructWithNullableRequest {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableRequestTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::zx::channel val = {};
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableRequest* value)
: message_(bytes, byte_size, sizeof(StructWithNullableRequest),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<StructWithNullableRequest>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableRequest* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
struct StructWithNullableRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<struct StructWithNullableRequest>();
}
}
};
};
#endif // __Fuchsia__
#ifdef __Fuchsia__
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableProtocolTable;
struct StructWithNullableProtocol {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableProtocolTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::zx::channel val = {};
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableProtocol* value)
: message_(bytes, byte_size, sizeof(StructWithNullableProtocol),
handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<StructWithNullableProtocol>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableProtocol* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableProtocol>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableProtocol>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
struct StructWithNullableProtocol* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableProtocol*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<struct StructWithNullableProtocol>();
}
}
};
};
#endif // __Fuchsia__
#ifdef __Fuchsia__
extern "C" const fidl_type_t fidl_test_nullable_StructWithNullableHandleTable;
struct StructWithNullableHandle {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_StructWithNullableHandleTable;
static constexpr uint32_t MaxNumHandles = 1;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
::zx::vmo val = {};
void _CloseHandles();
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
StructWithNullableHandle* value)
: message_(bytes, byte_size, sizeof(StructWithNullableHandle), handles_,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles), 0) {
message_.LinearizeAndEncode<StructWithNullableHandle>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
zx_handle_disposition_t
handles_[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(StructWithNullableHandle* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct StructWithNullableHandle>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct StructWithNullableHandle>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
~DecodedMessage() {
if (ok() && (PrimaryObject() != nullptr)) {
PrimaryObject()->_CloseHandles();
}
}
struct StructWithNullableHandle* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct StructWithNullableHandle*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
zx_handle_info_t
handles[std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles)];
Init(outgoing_message, handles,
std::min(ZX_CHANNEL_MAX_MSG_HANDLES, MaxNumHandles));
if (ok()) {
Decode<struct StructWithNullableHandle>();
}
}
};
};
#endif // __Fuchsia__
extern "C" const fidl_type_t fidl_test_nullable_SimpleProtocolAddRequestTable;
extern "C" const fidl_type_t fidl_test_nullable_SimpleProtocolAddResponseTable;
class SimpleProtocol final {
SimpleProtocol() = delete;
public:
struct AddResponse final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
int32_t sum;
explicit AddResponse(int32_t sum) : sum(sum) { _InitHeader(); }
AddResponse() { _InitHeader(); }
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_SimpleProtocolAddResponseTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size, int32_t sum)
: message_(_bytes, _byte_size, sizeof(AddResponse), nullptr, 0, 0) {
FIDL_ALIGNDECL AddResponse _response{sum};
message_.LinearizeAndEncode<AddResponse>(&_response);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
AddResponse* response)
: message_(bytes, byte_size, sizeof(AddResponse), nullptr, 0, 0) {
message_.LinearizeAndEncode<AddResponse>(response);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
AddResponse& Message() {
return *reinterpret_cast<AddResponse*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(int32_t sum)
: message_(bytes_, sizeof(bytes_), sum) {}
explicit OwnedEncodedMessage(AddResponse* response)
: message_(bytes_, sizeof(bytes_), response) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<AddResponse>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<AddResponse>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
AddResponse* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<AddResponse*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* outgoing_message) {
return DecodedMessage(outgoing_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<AddResponse>();
}
}
};
private:
void _InitHeader();
};
struct AddRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
int32_t a;
int32_t b;
explicit AddRequest(zx_txid_t _txid, int32_t a, int32_t b) : a(a), b(b) {
_InitHeader(_txid);
}
explicit AddRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_SimpleProtocolAddRequestTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 24;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
using ResponseType = AddResponse;
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid, int32_t a, int32_t b)
: message_(_bytes, _byte_size, sizeof(AddRequest), nullptr, 0, 0) {
FIDL_ALIGNDECL AddRequest _request(_txid, a, b);
message_.LinearizeAndEncode<AddRequest>(&_request);
}
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
AddRequest* request)
: message_(bytes, byte_size, sizeof(AddRequest), nullptr, 0, 0) {
message_.LinearizeAndEncode<AddRequest>(request);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
AddRequest& Message() {
return *reinterpret_cast<AddRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(zx_txid_t _txid, int32_t a, int32_t b)
: message_(bytes_, sizeof(bytes_), _txid, a, b) {}
explicit OwnedEncodedMessage(AddRequest* request)
: message_(bytes_, sizeof(bytes_), request) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[PrimarySize + MaxOutOfLine];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<AddRequest>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<AddRequest>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
AddRequest* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<AddRequest*>(bytes());
}
// Release the ownership of the decoded message. That means that the
// handles won't be closed When the object is destroyed. After calling
// this method, the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message
// and copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<AddRequest>();
}
}
};
private:
void _InitHeader(zx_txid_t _txid);
};
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
class Add final : public ::fidl::Result {
public:
explicit Add(zx_handle_t _client, int32_t a, int32_t b);
Add(zx_handle_t _client, int32_t a, int32_t b, zx_time_t _deadline);
explicit Add(const ::fidl::Result& result) : ::fidl::Result(result) {}
Add(Add&&) = delete;
Add(const Add&) = delete;
Add* operator=(Add&&) = delete;
Add* operator=(const Add&) = delete;
~Add() = default;
AddResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<AddResponse*>(bytes_);
}
const AddResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const AddResponse*>(bytes_);
}
AddResponse& value() { return *Unwrap(); }
const AddResponse& value() const { return *Unwrap(); }
AddResponse* operator->() { return &value(); }
const AddResponse* operator->() const { return &value(); }
AddResponse& operator*() { return value(); }
const AddResponse& operator*() const { return value(); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[AddResponse::PrimarySize + AddResponse::MaxOutOfLine];
};
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
class Add final : public ::fidl::Result {
public:
explicit Add(zx_handle_t _client, uint8_t* _request_bytes,
uint32_t _request_byte_capacity, int32_t a, int32_t b,
uint8_t* _response_bytes, uint32_t _response_byte_capacity);
explicit Add(const ::fidl::Result& result) : ::fidl::Result(result) {}
Add(Add&&) = delete;
Add(const Add&) = delete;
Add* operator=(Add&&) = delete;
Add* operator=(const Add&) = delete;
~Add() = default;
AddResponse* Unwrap() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<AddResponse*>(bytes_);
}
const AddResponse* Unwrap() const {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<const AddResponse*>(bytes_);
}
AddResponse& value() { return *Unwrap(); }
const AddResponse& value() const { return *Unwrap(); }
AddResponse* operator->() { return &value(); }
const AddResponse* operator->() const { return &value(); }
AddResponse& operator*() { return value(); }
const AddResponse& operator*() const { return value(); }
private:
uint8_t* bytes_;
};
};
// Methods to make a sync FIDL call directly on an unowned channel, avoiding
// setting up a client.
class Call final {
Call() = delete;
public:
// Allocates 48 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::Add Add(::zx::unowned_channel _client_end, int32_t a,
int32_t b) {
return ResultOf::Add(_client_end->get(), a, b);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::Add Add(::zx::unowned_channel _client_end,
::fidl::BufferSpan _request_buffer,
int32_t a, int32_t b,
::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::Add(
_client_end->get(), _request_buffer.data, _request_buffer.capacity, a,
b, _response_buffer.data, _response_buffer.capacity);
}
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::zx::channel channel) : channel_(std::move(channel)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::zx::channel& channel() const { return channel_; }
::zx::channel* mutable_channel() { return &channel_; }
// Allocates 48 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::Add Add(int32_t a, int32_t b) {
return ResultOf::Add(this->channel().get(), a, b);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::Add Add(::fidl::BufferSpan _request_buffer, int32_t a,
int32_t b, ::fidl::BufferSpan _response_buffer) {
return UnownedResultOf::Add(
this->channel().get(), _request_buffer.data, _request_buffer.capacity,
a, b, _response_buffer.data, _response_buffer.capacity);
}
private:
::zx::channel channel_;
};
struct AsyncEventHandlers;
class AddResponseContext;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
class Interface : public ::fidl::internal::IncomingMessageDispatcher {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using _EnclosingProtocol = SimpleProtocol;
class AddCompleterBase : public ::fidl::CompleterBase {
public:
// In the following methods, the return value indicates internal errors
// during the reply, such as encoding or writing to the transport. Note
// that any error will automatically lead to the destruction of the
// binding, after which the |on_unbound| callback will be triggered with a
// detailed reason.
//
// See //zircon/system/ulib/fidl/include/lib/fidl/llcpp/server.h.
//
// Because the reply status is identical to the unbinding status, it can
// be safely ignored.
::fidl::Result Reply(int32_t sum);
::fidl::Result Reply(::fidl::BufferSpan _buffer, int32_t sum);
protected:
using ::fidl::CompleterBase::CompleterBase;
};
using AddCompleter = ::fidl::Completer<AddCompleterBase>;
virtual void Add(int32_t a, int32_t b, AddCompleter::Sync& _completer) = 0;
private:
::fidl::DispatchResult dispatch_message(fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) final;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(Interface* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of |Interface*|.
// Only used with |fidl::BindServer| to reduce template expansion.
// Do not call this method manually. Use |Dispatch| instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl,
fidl_incoming_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<Interface*>(impl), msg, txn);
}
class EventSender;
class WeakEventSender;
};
extern "C" const fidl_type_t fidl_test_nullable_Int32WrapperTable;
struct Int32Wrapper {
static constexpr const fidl_type_t* Type =
&fidl_test_nullable_Int32WrapperTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
int32_t val = {};
class UnownedEncodedMessage final {
public:
UnownedEncodedMessage(uint8_t* bytes, uint32_t byte_size,
Int32Wrapper* value)
: message_(bytes, byte_size, sizeof(Int32Wrapper), nullptr, 0, 0) {
message_.LinearizeAndEncode<Int32Wrapper>(value);
}
UnownedEncodedMessage(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage(UnownedEncodedMessage&&) = delete;
UnownedEncodedMessage* operator=(const UnownedEncodedMessage&) = delete;
UnownedEncodedMessage* operator=(UnownedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
private:
::fidl::OutgoingMessage message_;
};
class OwnedEncodedMessage final {
public:
explicit OwnedEncodedMessage(Int32Wrapper* value)
: message_(bytes_, sizeof(bytes_), value) {}
OwnedEncodedMessage(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage(OwnedEncodedMessage&&) = delete;
OwnedEncodedMessage* operator=(const OwnedEncodedMessage&) = delete;
OwnedEncodedMessage* operator=(OwnedEncodedMessage&&) = delete;
zx_status_t status() const { return message_.status(); }
#ifdef __Fuchsia__
const char* status_string() const { return message_.status_string(); }
#endif
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
private:
FIDL_ALIGNDECL
uint8_t bytes_[FIDL_ALIGN(PrimarySize + MaxOutOfLine)];
UnownedEncodedMessage message_;
};
class DecodedMessage final : public ::fidl::internal::IncomingMessage {
public:
DecodedMessage(uint8_t* bytes, uint32_t byte_actual,
zx_handle_info_t* handles = nullptr,
uint32_t handle_actual = 0)
: ::fidl::internal::IncomingMessage(bytes, byte_actual, handles,
handle_actual) {
Decode<struct Int32Wrapper>();
}
DecodedMessage(fidl_incoming_msg_t* msg)
: ::fidl::internal::IncomingMessage(msg) {
Decode<struct Int32Wrapper>();
}
DecodedMessage(const DecodedMessage&) = delete;
DecodedMessage(DecodedMessage&&) = delete;
DecodedMessage* operator=(const DecodedMessage&) = delete;
DecodedMessage* operator=(DecodedMessage&&) = delete;
struct Int32Wrapper* PrimaryObject() {
ZX_DEBUG_ASSERT(ok());
return reinterpret_cast<struct Int32Wrapper*>(bytes());
}
// Release the ownership of the decoded message. That means that the handles
// won't be closed When the object is destroyed. After calling this method,
// the DecodedMessage object should not be used anymore.
void ReleasePrimaryObject() { ResetBytes(); }
// These methods should only be used for testing purpose.
// They create an DecodedMessage using the bytes of an outgoing message and
// copying the handles.
static DecodedMessage FromOutgoingWithRawHandleCopy(
UnownedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
static DecodedMessage FromOutgoingWithRawHandleCopy(
OwnedEncodedMessage* encoded_message) {
return DecodedMessage(encoded_message->GetOutgoingMessage());
}
private:
DecodedMessage(::fidl::OutgoingMessage& outgoing_message) {
Init(outgoing_message, nullptr, 0);
if (ok()) {
Decode<struct Int32Wrapper>();
}
}
};
};
} // namespace nullable
} // namespace test
} // namespace fidl
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableVector>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableVector>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableVector>);
static_assert(offsetof(::llcpp::fidl::test::nullable::StructWithNullableVector,
val) == 0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableVector) ==
::llcpp::fidl::test::nullable::StructWithNullableVector::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableUnion>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableUnion>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableUnion>);
static_assert(offsetof(::llcpp::fidl::test::nullable::StructWithNullableUnion,
val) == 0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableUnion) ==
::llcpp::fidl::test::nullable::StructWithNullableUnion::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableStruct>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableStruct>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableStruct>);
static_assert(offsetof(::llcpp::fidl::test::nullable::StructWithNullableStruct,
val) == 0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableStruct) ==
::llcpp::fidl::test::nullable::StructWithNullableStruct::PrimarySize);
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableString>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableString>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableString>);
static_assert(offsetof(::llcpp::fidl::test::nullable::StructWithNullableString,
val) == 0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableString) ==
::llcpp::fidl::test::nullable::StructWithNullableString::PrimarySize);
#ifdef __Fuchsia__
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableRequest>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableRequest>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableRequest>);
static_assert(offsetof(::llcpp::fidl::test::nullable::StructWithNullableRequest,
val) == 0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableRequest) ==
::llcpp::fidl::test::nullable::StructWithNullableRequest::PrimarySize);
#endif // __Fuchsia__
#ifdef __Fuchsia__
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableProtocol>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableProtocol>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableProtocol>);
static_assert(
offsetof(::llcpp::fidl::test::nullable::StructWithNullableProtocol, val) ==
0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableProtocol) ==
::llcpp::fidl::test::nullable::StructWithNullableProtocol::PrimarySize);
#endif // __Fuchsia__
#ifdef __Fuchsia__
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::StructWithNullableHandle>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::StructWithNullableHandle>
: public std::true_type {};
static_assert(std::is_standard_layout_v<
::llcpp::fidl::test::nullable::StructWithNullableHandle>);
static_assert(offsetof(::llcpp::fidl::test::nullable::StructWithNullableHandle,
val) == 0);
static_assert(
sizeof(::llcpp::fidl::test::nullable::StructWithNullableHandle) ==
::llcpp::fidl::test::nullable::StructWithNullableHandle::PrimarySize);
#endif // __Fuchsia__
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::SimpleProtocol::AddRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<::llcpp::fidl::test::nullable::SimpleProtocol::AddRequest>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::nullable::SimpleProtocol::AddRequest) ==
::llcpp::fidl::test::nullable::SimpleProtocol::AddRequest::PrimarySize);
static_assert(
offsetof(::llcpp::fidl::test::nullable::SimpleProtocol::AddRequest, a) ==
16);
static_assert(
offsetof(::llcpp::fidl::test::nullable::SimpleProtocol::AddRequest, b) ==
20);
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::SimpleProtocol::AddResponse>
: public std::true_type {};
template <>
struct IsFidlMessage<::llcpp::fidl::test::nullable::SimpleProtocol::AddResponse>
: public std::true_type {};
static_assert(
sizeof(::llcpp::fidl::test::nullable::SimpleProtocol::AddResponse) ==
::llcpp::fidl::test::nullable::SimpleProtocol::AddResponse::PrimarySize);
static_assert(
offsetof(::llcpp::fidl::test::nullable::SimpleProtocol::AddResponse, sum) ==
16);
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::SimpleUnion>
: public std::true_type {};
template <>
struct IsUnion<::llcpp::fidl::test::nullable::SimpleUnion>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::nullable::SimpleUnion>);
template <>
struct IsFidlType<::llcpp::fidl::test::nullable::Int32Wrapper>
: public std::true_type {};
template <>
struct IsStruct<::llcpp::fidl::test::nullable::Int32Wrapper>
: public std::true_type {};
static_assert(
std::is_standard_layout_v<::llcpp::fidl::test::nullable::Int32Wrapper>);
static_assert(offsetof(::llcpp::fidl::test::nullable::Int32Wrapper, val) == 0);
static_assert(sizeof(::llcpp::fidl::test::nullable::Int32Wrapper) ==
::llcpp::fidl::test::nullable::Int32Wrapper::PrimarySize);
} // namespace fidl
namespace llcpp {
namespace fidl {
namespace test {
namespace nullable {
struct SimpleProtocol::AsyncEventHandlers {};
class SimpleProtocol::AddResponseContext
: public ::fidl::internal::ResponseContext {
public:
AddResponseContext();
virtual void OnReply(SimpleProtocol::AddResponse* message) = 0;
private:
void OnReply(uint8_t* reply) override;
};
class SimpleProtocol::ClientImpl final : private ::fidl::internal::ClientBase {
public:
// Asynchronous variant of |SimpleProtocol.Add()|. Allocates 24 bytes of
// request buffer on the stack. The callback is stored on the heap.
::fidl::Result Add(int32_t a, int32_t b,
::fit::callback<void(AddResponse* response)> _cb);
// Asynchronous variant of |SimpleProtocol.Add()|. Caller provides the backing
// storage for FIDL message via request buffer. Ownership of _context is given
// unsafely to the binding until OnError() or OnReply() are called on it.
::fidl::Result Add(::fidl::BufferSpan _request_buffer, int32_t a, int32_t b,
AddResponseContext* _context);
// Synchronous variant of |SimpleProtocol.Add()|. Allocates 48 bytes of
// message buffer on the stack. No heap allocation necessary.
ResultOf::Add Add_Sync(int32_t a, int32_t b);
// Synchronous variant of |SimpleProtocol.Add()|. Caller provides the backing
// storage for FIDL message via request and response buffers.
UnownedResultOf::Add Add_Sync(::fidl::BufferSpan _request_buffer, int32_t a,
int32_t b, ::fidl::BufferSpan _response_buffer);
private:
friend class ::fidl::Client<SimpleProtocol>;
explicit ClientImpl(AsyncEventHandlers handlers)
: handlers_(std::move(handlers)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(
fidl_incoming_msg_t* msg) override;
AsyncEventHandlers handlers_;
};
// |EventSender| owns a server endpoint of a channel speaking
// the SimpleProtocol protocol, and can send events in that protocol.
class SimpleProtocol::EventSender {
public:
// Constructs an event sender with an invalid channel.
EventSender() = default;
// TODO(fxbug.dev/65212): EventSender should take a ::fidl::ServerEnd.
explicit EventSender(::zx::channel server_end)
: server_end_(std::move(server_end)) {}
// The underlying server channel endpoint, which may be replaced at run-time.
const ::zx::channel& channel() const { return server_end_; }
::zx::channel& channel() { return server_end_; }
// Whether the underlying channel is valid.
bool is_valid() const { return server_end_.is_valid(); }
private:
::zx::channel server_end_;
};
class SimpleProtocol::WeakEventSender {
public:
private:
friend class ::fidl::ServerBindingRef<SimpleProtocol>;
explicit WeakEventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding<SimpleProtocol>>
binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding<SimpleProtocol>> binding_;
};
} // namespace nullable
} // namespace test
} // namespace fidl
} // namespace llcpp