blob: 1fab5c1fae49648dad00865ca301d98744d326fa [file] [log] [blame]
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <lib/async/cpp/time.h>
#include <lib/fidl/cpp/clone.h>
#include <lib/trace/event.h>
#include <lib/zx/clock.h>
#include <zircon/status.h>
#include <algorithm>
#include <cstdio>
#include <iomanip>
#include <audio-proto-utils/format-utils.h>
#include "fbl/algorithm.h"
#include "src/media/audio/audio_core/audio_driver.h"
#include "src/media/audio/lib/clock/clone_mono.h"
#include "src/media/audio/lib/clock/utils.h"
#include "src/media/audio/lib/format/driver_format.h"
#include "src/media/audio/lib/logging/logging.h"
namespace media::audio {
namespace {
// For non-zero value N, log every Nth position notification. If 0, don't log any.
static constexpr uint16_t kPositionNotificationDisplayInterval = 0;
// TODO(fxbug.dev/39092): Log a cobalt metric for this.
void LogMissedCommandDeadline(zx::duration delay) {
FX_LOGS(WARNING) << "Driver command missed deadline by " << delay.to_nsecs() << "ns";
}
} // namespace
AudioDriverV2::AudioDriverV2(AudioDevice* owner) : AudioDriverV2(owner, LogMissedCommandDeadline) {}
AudioDriverV2::AudioDriverV2(AudioDevice* owner, DriverTimeoutHandler timeout_handler)
: owner_(owner),
timeout_handler_(std::move(timeout_handler)),
versioned_ref_time_to_frac_presentation_frame_(
fbl::MakeRefCounted<VersionedTimelineFunction>()) {
FX_DCHECK(owner_ != nullptr);
}
zx_status_t AudioDriverV2::Init(zx::channel stream_channel) {
TRACE_DURATION("audio", "AudioDriverV2::Init");
// TODO(fxbug.dev/13665): Figure out a better way to assert this!
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
FX_DCHECK(state_ == State::Uninitialized);
// Fetch the KOID of our stream channel. We use this unique ID as our device's device token.
zx_status_t res;
zx_info_handle_basic_t sc_info;
res = stream_channel.get_info(ZX_INFO_HANDLE_BASIC, &sc_info, sizeof(sc_info), nullptr, nullptr);
if (res != ZX_OK) {
FX_PLOGS(ERROR, res) << "Failed to to fetch stream channel KOID";
return res;
}
stream_channel_koid_ = sc_info.koid;
stream_config_fidl_ =
fidl::InterfaceHandle<fuchsia::hardware::audio::StreamConfig>(std::move(stream_channel))
.Bind();
if (!stream_config_fidl_.is_bound()) {
FX_LOGS(ERROR) << "Failed to get stream channel";
return ZX_ERR_INTERNAL;
}
stream_config_fidl_.set_error_handler([this](zx_status_t status) -> void {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
ShutdownSelf("Stream channel closed", status);
});
cmd_timeout_.set_handler([this] {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
DriverCommandTimedOut();
});
// We are now initialized, but we don't know any fundamental driver level info, such as:
//
// 1) This device's persistent unique ID.
// 2) The list of formats supported by this device.
// 3) The user-visible strings for this device (manufacturer, product, etc...).
state_ = State::MissingDriverInfo;
return ZX_OK;
}
void AudioDriverV2::Cleanup() {
TRACE_DURATION("audio", "AudioDriverV2::Cleanup");
// TODO(fxbug.dev/13665): Figure out a better way to assert this!
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
std::shared_ptr<ReadableRingBuffer> readable_ring_buffer;
std::shared_ptr<WritableRingBuffer> writable_ring_buffer;
{
std::lock_guard<std::mutex> lock(ring_buffer_state_lock_);
readable_ring_buffer = std::move(readable_ring_buffer_);
writable_ring_buffer = std::move(writable_ring_buffer_);
}
versioned_ref_time_to_frac_presentation_frame_->Update({});
readable_ring_buffer = nullptr;
writable_ring_buffer = nullptr;
cmd_timeout_.Cancel();
stream_config_fidl_ = nullptr;
ring_buffer_fidl_ = nullptr;
}
std::optional<Format> AudioDriverV2::GetFormat() const {
TRACE_DURATION("audio", "AudioDriverV2::GetFormat");
std::lock_guard<std::mutex> lock(configured_format_lock_);
return configured_format_;
}
zx_status_t AudioDriverV2::GetDriverInfo() {
TRACE_DURATION("audio", "AudioDriverV2::GetDriverInfo");
// TODO(fxbug.dev/13665): Figure out a better way to assert this!
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
// We have to be operational in order to fetch supported formats.
if (!operational()) {
FX_LOGS(ERROR) << "Cannot fetch supported formats while non-operational (state = "
<< static_cast<uint32_t>(state_) << ")";
return ZX_ERR_BAD_STATE;
}
// If already fetching initial driver info, get out now and inform our owner when this completes.
if (fetching_driver_info()) {
return ZX_OK;
}
// Send the commands to get:
// - persistent unique ID.
// - manufacturer string.
// - product string.
// - gain capabilities.
// - current gain state.
// - supported format list.
// - clock domain.
// Get unique IDs, strings and gain capabilites.
stream_config_fidl_->GetProperties([this](fuchsia::hardware::audio::StreamProperties props) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
if (state_ != State::MissingDriverInfo) {
FX_LOGS(ERROR) << "Bad state (" << static_cast<uint32_t>(state_)
<< ") while handling get string response.";
ShutdownSelf("Bad state.", ZX_ERR_INTERNAL);
}
hw_gain_state_.can_mute = props.has_can_mute() && props.can_mute();
hw_gain_state_.can_agc = props.has_can_agc() && props.can_agc();
hw_gain_state_.min_gain = props.min_gain_db();
hw_gain_state_.max_gain = props.max_gain_db();
hw_gain_state_.gain_step = props.gain_step_db();
if (props.has_unique_id()) {
std::memcpy(persistent_unique_id_.data, props.unique_id().data(),
sizeof(persistent_unique_id_.data));
}
if (props.has_manufacturer()) {
manufacturer_name_ = props.manufacturer();
}
if (props.has_product()) {
product_name_ = props.product();
}
clock_domain_ = props.clock_domain();
AUDIO_LOG(DEBUG) << "Received clock domain " << clock_domain_;
// Now that we have our clock domain, we can establish our audio device clock
SetUpClocks();
auto res = OnDriverInfoFetched(kDriverInfoHasUniqueId | kDriverInfoHasMfrStr |
kDriverInfoHasProdStr | kDriverInfoHasClockDomain);
if (res != ZX_OK) {
ShutdownSelf("Failed to update info fetched.", res);
}
pd_hardwired_ = (props.plug_detect_capabilities() ==
fuchsia::hardware::audio::PlugDetectCapabilities::HARDWIRED);
});
// Get current gain state.
// We only fetch once per OnDriverInfoFetched, the we are guaranteed by the
// audio driver interface definition that the driver will reply to the first watch request, we
// can get the gain state by issuing a watch FIDL call.
stream_config_fidl_->WatchGainState([this](fuchsia::hardware::audio::GainState state) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
hw_gain_state_.cur_mute = state.has_muted() && state.muted();
hw_gain_state_.cur_agc = state.has_agc_enabled() && state.agc_enabled();
hw_gain_state_.cur_gain = state.gain_db();
auto res = OnDriverInfoFetched(kDriverInfoHasGainState);
if (res != ZX_OK) {
ShutdownSelf("Failed to update info fetched.", res);
}
});
// Get list of supported formats.
stream_config_fidl_->GetSupportedFormats(
[this](std::vector<fuchsia::hardware::audio::SupportedFormats> formats) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
for (auto& i : formats) {
formats_.emplace_back(i.pcm_supported_formats());
}
// Record that we have fetched our format list. This will transition us to Unconfigured
// state and let our owner know if we are done fetching all the initial driver info needed
// to operate.
auto res = OnDriverInfoFetched(kDriverInfoHasFormats);
if (res != ZX_OK) {
ShutdownSelf("Failed to update info fetched.", res);
}
});
// Setup our command timeout.
fetch_driver_info_deadline_ =
async::Now(owner_->mix_domain().dispatcher()) + kDefaultShortCmdTimeout;
SetupCommandTimeout();
return ZX_OK;
}
zx_status_t AudioDriverV2::Configure(const Format& format, zx::duration min_ring_buffer_duration) {
TRACE_DURATION("audio", "AudioDriverV2::Configure");
// TODO(fxbug.dev/13665): Figure out a better way to assert this!
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
uint32_t channels = format.channels();
uint32_t frames_per_second = format.frames_per_second();
fuchsia::media::AudioSampleFormat sample_format = format.sample_format();
// Sanity check arguments.
if (channels > std::numeric_limits<uint16_t>::max()) {
FX_LOGS(ERROR) << "Bad channel count: " << channels;
return ZX_ERR_INVALID_ARGS;
}
// TODO(fxbug.dev/13666): sanity check the min_ring_buffer_duration.
// Check our known format list for compatibility.
if (!IsFormatInSupported(format.stream_type(), formats_)) {
FX_LOGS(ERROR) << "No compatible format found when setting format to " << frames_per_second
<< " Hz " << channels << " Ch Fmt 0x" << std::hex
<< static_cast<uint32_t>(sample_format);
return ZX_ERR_INVALID_ARGS;
}
// We must be in Unconfigured state to change formats.
// TODO(fxbug.dev/13667): Also permit this if we are in Configured state.
if (state_ != State::Unconfigured) {
FX_LOGS(ERROR) << "Bad state while attempting to configure for " << frames_per_second << " Hz "
<< channels << " Ch Fmt 0x" << std::hex << static_cast<uint32_t>(sample_format)
<< " (state = " << static_cast<uint32_t>(state_) << ")";
return ZX_ERR_BAD_STATE;
}
// Record the details of our intended target format
min_ring_buffer_duration_ = min_ring_buffer_duration;
{
std::lock_guard<std::mutex> lock(configured_format_lock_);
configured_format_ = {format};
}
zx::channel local_channel;
zx::channel remote_channel;
zx_status_t status = zx::channel::create(0u, &local_channel, &remote_channel);
if (status != ZX_OK) {
FX_LOGS(ERROR) << "Bad status creating channel: " << status;
return ZX_ERR_BAD_STATE;
}
fidl::InterfaceRequest<fuchsia::hardware::audio::RingBuffer> request = {};
request.set_channel(std::move(remote_channel));
DriverSampleFormat driver_format = {};
if (!AudioSampleFormatToDriverSampleFormat(format.stream_type().sample_format, &driver_format)) {
FX_LOGS(ERROR) << "Failed to convert Fmt 0x" << std::hex << static_cast<uint32_t>(sample_format)
<< " to driver format.";
return ZX_ERR_INVALID_ARGS;
}
fuchsia::hardware::audio::Format fidl_format = {};
fuchsia::hardware::audio::PcmFormat pcm = {};
pcm.number_of_channels = channels;
pcm.channels_to_use_bitmask = (1 << pcm.number_of_channels) - 1; // Use all channels.
pcm.bytes_per_sample = format.bytes_per_frame() / channels;
pcm.valid_bits_per_sample = format.valid_bits_per_channel();
pcm.frame_rate = frames_per_second;
pcm.sample_format = driver_format.sample_format;
fidl_format.set_pcm_format(std::move(pcm));
if (!stream_config_fidl_.is_bound()) {
FX_LOGS(ERROR) << "Stream channel lost";
return ZX_ERR_INTERNAL;
}
stream_config_fidl_->CreateRingBuffer(std::move(fidl_format), std::move(request));
// No need for timeout, there is no reply to this FIDL message.
ring_buffer_fidl_ =
fidl::InterfaceHandle<fuchsia::hardware::audio::RingBuffer>(std::move(local_channel)).Bind();
if (!ring_buffer_fidl_.is_bound()) {
FX_LOGS(ERROR) << "Failed to get stream channel";
return ZX_ERR_INTERNAL;
}
ring_buffer_fidl_.set_error_handler([this](zx_status_t status) -> void {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
ShutdownSelf("Ring buffer channel closed unexpectedly", status);
});
// Change state, setup our command timeout.
state_ = State::Configuring_GettingFifoDepth;
configuration_deadline_ = async::Now(owner_->mix_domain().dispatcher()) + kDefaultLongCmdTimeout;
SetupCommandTimeout();
ring_buffer_fidl_->GetProperties([this](fuchsia::hardware::audio::RingBufferProperties props) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
external_delay_ = zx::nsec(props.external_delay());
AUDIO_LOG(DEBUG) << "Received external delay " << external_delay_.get();
uint32_t fifo_depth_bytes = props.fifo_depth();
AUDIO_LOG(DEBUG) << "Received fifo depth " << fifo_depth_bytes;
auto format = GetFormat();
auto bytes_per_frame = format->bytes_per_frame();
auto frames_per_second = format->frames_per_second();
fifo_depth_frames_ = (fifo_depth_bytes + bytes_per_frame - 1) / bytes_per_frame;
fifo_depth_duration_ =
zx::nsec(TimelineRate::Scale(fifo_depth_frames_, ZX_SEC(1), frames_per_second));
AUDIO_LOG(DEBUG) << "Received fifo depth response (in frames) of " << fifo_depth_frames_;
// Figure out how many frames we need in our ring buffer.
int64_t min_frames_64 = TimelineRate::Scale(min_ring_buffer_duration_.to_nsecs(),
bytes_per_frame * frames_per_second, ZX_SEC(1));
int64_t overhead = static_cast<int64_t>(fifo_depth_bytes) + bytes_per_frame - 1;
bool overflow = ((min_frames_64 == TimelineRate::kOverflow) ||
(min_frames_64 > (std::numeric_limits<int64_t>::max() - overhead)));
if (!overflow) {
min_frames_64 += overhead;
min_frames_64 /= bytes_per_frame;
overflow = min_frames_64 > std::numeric_limits<uint32_t>::max();
}
if (overflow) {
FX_LOGS(ERROR) << "Overflow while attempting to compute ring buffer size in frames.";
FX_LOGS(ERROR) << "duration : " << min_ring_buffer_duration_.get();
FX_LOGS(ERROR) << "bytes per frame : " << bytes_per_frame;
FX_LOGS(ERROR) << "frames per sec : " << frames_per_second;
FX_LOGS(ERROR) << "fifo depth : " << fifo_depth_bytes;
return;
}
AUDIO_LOG_OBJ(DEBUG, this) << "for audio " << (owner_->is_input() ? "input" : "output")
<< " -- fifo_depth_bytes:" << fifo_depth_bytes
<< ", fifo_depth_frames:" << fifo_depth_frames_
<< ", bytes_per_frame:" << bytes_per_frame;
state_ = State::Configuring_GettingRingBuffer;
auto num_notifications_per_ring =
((clock_domain_ == fuchsia::hardware::audio::CLOCK_DOMAIN_MONOTONIC)) ? 0 : 2;
ring_buffer_fidl_->GetVmo(
static_cast<uint32_t>(min_frames_64), num_notifications_per_ring,
[this](fuchsia::hardware::audio::RingBuffer_GetVmo_Result result) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
{
std::lock_guard<std::mutex> lock(ring_buffer_state_lock_);
auto format = GetFormat();
if (owner_->is_input()) {
readable_ring_buffer_ = BaseRingBuffer::CreateReadableHardwareBuffer(
*format, versioned_ref_time_to_frac_presentation_frame_, reference_clock(),
std::move(result.response().ring_buffer), result.response().num_frames, [this]() {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
auto t = reference_clock().Read();
return Fixed::FromRaw(ref_time_to_frac_safe_read_or_write_frame_.Apply(t.get()))
.Floor();
});
} else {
writable_ring_buffer_ = BaseRingBuffer::CreateWritableHardwareBuffer(
*format, versioned_ref_time_to_frac_presentation_frame_, reference_clock(),
std::move(result.response().ring_buffer), result.response().num_frames, [this]() {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
auto t = reference_clock().Read();
return Fixed::FromRaw(ref_time_to_frac_safe_read_or_write_frame_.Apply(t.get()))
.Floor();
});
}
if (!readable_ring_buffer_ && !writable_ring_buffer_) {
ShutdownSelf("Failed to allocate and map driver ring buffer", ZX_ERR_NO_MEMORY);
return;
}
FX_DCHECK(!versioned_ref_time_to_frac_presentation_frame_->get().first.invertible());
ring_buffer_size_bytes_ = format->bytes_per_frame() * result.response().num_frames;
running_pos_bytes_ = 0;
frac_frames_per_byte_ = TimelineRate(Fixed(1).raw_value(), format->bytes_per_frame());
}
// We are now Configured. Let our owner know about this important milestone.
state_ = State::Configured;
configuration_deadline_ = zx::time::infinite();
SetupCommandTimeout();
owner_->OnDriverConfigComplete();
RequestNextPlugStateChange();
if (clock_domain_ != AudioClock::kMonotonicDomain) {
RequestNextClockRecoveryUpdate();
}
});
});
return ZX_OK;
}
void AudioDriverV2::RequestNextPlugStateChange() {
stream_config_fidl_->WatchPlugState([this](fuchsia::hardware::audio::PlugState state) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
// Wardware reporting hardwired but notifies unplugged.
if (pd_hardwired_ && !state.plugged()) {
FX_LOGS(WARNING) << "Stream reports hardwired yet notifies unplugged, notifying as plugged";
ReportPlugStateChange(true, zx::time(state.plug_state_time()));
return;
}
ReportPlugStateChange(state.plugged(), zx::time(state.plug_state_time()));
RequestNextPlugStateChange();
});
}
// This position notification will be used to synthesize a clock for this audio device.
void AudioDriverV2::ClockRecoveryUpdate(fuchsia::hardware::audio::RingBufferPositionInfo info) {
TRACE_DURATION("audio", "AudioDriverV2::ClockRecoveryUpdate");
if (clock_domain_ == AudioClock::kMonotonicDomain) {
return;
}
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
FX_CHECK(state_ == State::Started)
<< "ClockRecovery update while in state " << static_cast<uint32_t>(state_) << " -- should be "
<< static_cast<uint32_t>(State::Started);
auto actual_mono_time = zx::time(info.timestamp);
FX_CHECK(actual_mono_time >= mono_start_time_) << "Position notification while not started";
// Based on (wraparound) ring positions, we maintain a long-running byte position
auto prev_ring_position = running_pos_bytes_ % ring_buffer_size_bytes_;
running_pos_bytes_ -= prev_ring_position;
running_pos_bytes_ += info.position;
// If previous position >= this new position, we must have wrapped around
// The only exception: the first position notification (comparing to default initialized values)
if (prev_ring_position >= info.position && actual_mono_time > mono_start_time_) {
running_pos_bytes_ += ring_buffer_size_bytes_;
}
auto curr_pos_frac_frames = frac_frames_per_byte_.Scale(running_pos_bytes_);
auto curr_ref_time = ref_time_to_frac_presentation_frame_.ApplyInverse(curr_pos_frac_frames);
auto predicted_mono_time = audio_clock_->MonotonicTimeFromReferenceTime(zx::time(curr_ref_time));
auto curr_error = predicted_mono_time - actual_mono_time;
if constexpr (kPositionNotificationDisplayInterval > 0) {
if (position_notification_count_ % kPositionNotificationDisplayInterval == 0) {
FX_LOGS(INFO) << std::hex << static_cast<void*>(this) << std::dec
<< (owner_->is_output() ? " Output" : " Input ") << " notification #"
<< position_notification_count_ << " [" << info.timestamp << ", "
<< std::setw(6) << info.position << "] run_pos_bytes " << running_pos_bytes_
<< ", run_time " << (actual_mono_time - mono_start_time_).get()
<< ", predicted_mono " << predicted_mono_time.get() << ", curr_err "
<< curr_error.get();
}
}
recovered_clock_->TuneForError(actual_mono_time, curr_error);
// Maintain a running count of position notifications since START.
++position_notification_count_;
RequestNextClockRecoveryUpdate();
}
void AudioDriverV2::RequestNextClockRecoveryUpdate() {
FX_CHECK(clock_domain_ != AudioClock::kMonotonicDomain);
ring_buffer_fidl_->WatchClockRecoveryPositionInfo(
[this](fuchsia::hardware::audio::RingBufferPositionInfo info) { ClockRecoveryUpdate(info); });
}
zx_status_t AudioDriverV2::Start() {
TRACE_DURATION("audio", "AudioDriverV2::Start");
// TODO(fxbug.dev/13665): Figure out a better way to assert this!
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
// In order to start, we must be in the Configured state.
//
// Note: Attempting to start while already started is considered an error because (since we are
// already started) we will never deliver the OnDriverStartComplete callback. It would be
// confusing to call it directly from here -- before the user's call to Start even returned.
if (state_ != State::Configured) {
FX_LOGS(ERROR) << "Bad state while attempting start (state = " << static_cast<uint32_t>(state_)
<< ")";
return ZX_ERR_BAD_STATE;
}
// Change state, setup our command timeout and we are finished.
state_ = State::Starting;
configuration_deadline_ = async::Now(owner_->mix_domain().dispatcher()) + kDefaultShortCmdTimeout;
SetupCommandTimeout();
ring_buffer_fidl_->Start([this](int64_t start_time) {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
if (state_ != State::Starting) {
FX_LOGS(ERROR) << "Received unexpected start response while in state "
<< static_cast<uint32_t>(state_);
return;
}
mono_start_time_ = zx::time(start_time);
ref_start_time_ = reference_clock().ReferenceTimeFromMonotonicTime(mono_start_time_);
auto format = GetFormat();
auto frac_fps = TimelineRate(Fixed(format->frames_per_second()).raw_value(), zx::sec(1).get());
if (owner_->is_output()) {
// Abstractly, we can think of the hardware buffer as an infinitely
// long sequence of frames, where the hardware maintains three pointers
// into this sequence:
//
//        |<--- external delay --->|<--- FIFO depth --->|
//      +-+------------------------+-+------------------+-+
//  ... |P|                        |F|                  |W| ...
//      +-+------------------------+-+------------------+-+
//
// At P, the frame is being presented to the speaker.
// At F, the frame is at the head of the FIFO.
// At W, the frame is about to be enqueued into the FIFO.
//
// At ref_start_time_, F points at frame 0. As time advances one frame,
// each pointer shifts to the right by one frame. We define functions to
// locate W and P at a given time T:
//
//   ref_pts_to_frame(T) = P
//   ref_time_to_frac_safe_read_or_write_frame(T) = W
//
// W is the lowest-numbered frame that may be written to the hardware buffer,
// aka the "first safe" write position.
ref_time_to_frac_presentation_frame_ = TimelineFunction(
0, // first frame
(ref_start_time_ + external_delay_).get(), // first frame presented after external delay
frac_fps // fps in fractional frames
);
ref_time_to_frac_safe_read_or_write_frame_ = TimelineFunction(
Fixed(fifo_depth_frames_).raw_value(), // first safe frame is one FIFO depth after start
ref_start_time_.get(), // start time
frac_fps // fps in fractional frames
);
} else {
// The capture buffer works in a similar way, with three analogous pointers:
//
//        |<--- FIFO depth --->|<--- external delay --->|
//      +-+------------------+-+------------------------+-+
//  ... |R|                  |F|                        |C| ...
//      +-+------------------+-+------------------------+-+
//
// At C, the frame is being captured by the microphone.
// At F, the frame is at the tail of the FIFO.
// At R, the frame is just outside the FIFO.
//
// As above, F points at frame 0 at ref_start_time_, pointers shift to the right
// as time advances, and we define functions to locate C and R:
//
//   ref_pts_to_frame(T) = C
//   ref_time_to_frac_safe_read_or_write_frame(T) = R
//
// R is the highest-numbered frame that may be read from the hardware buffer,
// aka the "last safe" read position.
ref_time_to_frac_presentation_frame_ = TimelineFunction(
0, // first frame
(ref_start_time_ - external_delay_).get(), // first frame presented external delay ago
frac_fps // fps in fractional frames
);
ref_time_to_frac_safe_read_or_write_frame_ = TimelineFunction(
-Fixed(fifo_depth_frames_).raw_value(), // first safe frame is one FIFO before start
ref_start_time_.get(), // start time
frac_fps // fps in fractional frames
);
}
versioned_ref_time_to_frac_presentation_frame_->Update(ref_time_to_frac_presentation_frame_);
if (clock_domain_ != AudioClock::kMonotonicDomain) {
recovered_clock_->ResetRateAdjustment(mono_start_time_);
}
// We are now Started. Let our owner know about this important milestone.
state_ = State::Started;
configuration_deadline_ = zx::time::infinite();
SetupCommandTimeout();
owner_->OnDriverStartComplete();
});
SetupCommandTimeout();
return ZX_OK;
}
zx_status_t AudioDriverV2::Stop() {
TRACE_DURATION("audio", "AudioDriverV2::Stop");
// TODO(fxbug.dev/13665): Figure out a better way to assert this!
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
// In order to stop, we must be in the Started state.
// TODO(fxbug.dev/13668): make Stop idempotent. Allow Stop when Configured/Stopping; disallow if
// Shutdown; consider what to do if Uninitialized/MissingDriverInfo/Unconfigured/Configuring. Most
// importantly, if driver is Starting, queue the request until Start completes (as we cannot
// cancel driver commands). Finally, handle multiple Stop calls to be in-flight concurrently.
if (state_ != State::Started) {
FX_LOGS(ERROR) << "Bad state while attempting stop (state = " << static_cast<uint32_t>(state_)
<< ")";
return ZX_ERR_BAD_STATE;
}
// Invalidate our timeline transformation here. To outside observers, we are now stopped.
versioned_ref_time_to_frac_presentation_frame_->Update({});
// We are now in the Stopping state.
state_ = State::Stopping;
configuration_deadline_ = async::Now(owner_->mix_domain().dispatcher()) + kDefaultShortCmdTimeout;
SetupCommandTimeout();
ring_buffer_fidl_->Stop([this]() {
OBTAIN_EXECUTION_DOMAIN_TOKEN(token, &owner_->mix_domain());
// We are now stopped and in Configured state. Let our owner know about this important
// milestone.
state_ = State::Configured;
configuration_deadline_ = zx::time::infinite();
SetupCommandTimeout();
owner_->OnDriverStopComplete();
});
return ZX_OK;
}
zx_status_t AudioDriverV2::SetPlugDetectEnabled(bool enabled) {
TRACE_DURATION("audio", "AudioDriverV2::SetPlugDetectEnabled");
// This method is a no-op since under the FIDL API plug detect is always enabled if supported.
return ZX_OK;
}
void AudioDriverV2::ShutdownSelf(const char* reason, zx_status_t status) {
TRACE_DURATION("audio", "AudioDriverV2::ShutdownSelf");
if (state_ == State::Shutdown) {
return;
}
if (reason != nullptr && status != ZX_ERR_PEER_CLOSED) {
FX_PLOGS(INFO, status) << (owner_->is_input() ? " Input" : "Output") << " shutting down '"
<< reason << "'";
}
// Our owner will call our Cleanup function within this call.
owner_->ShutdownSelf();
state_ = State::Shutdown;
}
void AudioDriverV2::SetupCommandTimeout() {
TRACE_DURATION("audio", "AudioDriverV2::SetupCommandTimeout");
// If we have received a late response, report it now.
if (driver_last_timeout_ != zx::time::infinite()) {
auto delay = async::Now(owner_->mix_domain().dispatcher()) - driver_last_timeout_;
driver_last_timeout_ = zx::time::infinite();
FX_DCHECK(timeout_handler_);
timeout_handler_(delay);
}
zx::time deadline;
deadline = fetch_driver_info_deadline_;
deadline = std::min(deadline, configuration_deadline_);
if (cmd_timeout_.last_deadline() != deadline) {
if (deadline != zx::time::infinite()) {
cmd_timeout_.PostForTime(owner_->mix_domain().dispatcher(), deadline);
} else {
cmd_timeout_.Cancel();
}
}
}
void AudioDriverV2::ReportPlugStateChange(bool plugged, zx::time plug_time) {
TRACE_DURATION("audio", "AudioDriverV2::ReportPlugStateChange");
{
std::lock_guard<std::mutex> lock(plugged_lock_);
plugged_ = plugged;
plug_time_ = plug_time;
}
// Under the FIDL API plug detect is always enabled.
owner_->OnDriverPlugStateChange(plugged, plug_time);
}
zx_status_t AudioDriverV2::OnDriverInfoFetched(uint32_t info) {
TRACE_DURATION("audio", "AudioDriverV2::OnDriverInfoFetched");
// We should never fetch the same info twice.
if (fetched_driver_info_ & info) {
ShutdownSelf("Duplicate driver info fetch\n", ZX_ERR_BAD_STATE);
return ZX_ERR_BAD_STATE;
}
// Record the new piece of info we just fetched.
FX_DCHECK(state_ == State::MissingDriverInfo);
fetched_driver_info_ |= info;
// Have we finished fetching our initial driver info? If so, cancel the timeout, transition to
// Unconfigured state, and let our owner know that we have finished.
if ((fetched_driver_info_ & kDriverInfoHasAll) == kDriverInfoHasAll) {
// Now that we have our clock domain, we can establish our audio device clock
SetUpClocks();
// We are done. Clear the fetch driver info timeout and let our owner know.
fetch_driver_info_deadline_ = zx::time::infinite();
state_ = State::Unconfigured;
SetupCommandTimeout();
owner_->OnDriverInfoFetched();
}
return ZX_OK;
}
void AudioDriverV2::SetUpClocks() {
if (clock_domain_ == AudioClock::kMonotonicDomain) {
// If in the monotonic domain, we'll fall back to a non-adjustable clone of CLOCK_MONOTONIC.
audio_clock_ =
AudioClock::DeviceFixed(audio::clock::CloneOfMonotonic(), AudioClock::kMonotonicDomain);
return;
}
// This clock begins as a clone of MONOTONIC, but because the hardware is NOT in the monotonic
// clock domain, this clock must eventually diverge. We tune this clock based on notifications
// provided by the audio driver, which correlate DMA position with CLOCK_MONOTONIC time.
// TODO(fxbug.dev/60027): Recovered clocks should be per-domain not per-driver.
auto adjustable_clock = audio::clock::AdjustableCloneOfMonotonic();
auto read_only_clock = audio::clock::DuplicateClock(adjustable_clock).take_value();
recovered_clock_ = AudioClock::DeviceAdjustable(std::move(adjustable_clock), clock_domain_);
// TODO(fxbug.dev/46648): If this clock domain is discovered to be hardware-tunable, this should
// be DeviceAdjustable, not DeviceFixed, to articulate that it has hardware controls.
auto clone = AudioClock::DeviceFixed(std::move(read_only_clock), clock_domain_);
audio_clock_ = std::move(clone);
}
zx_status_t AudioDriverV2::SetGain(const AudioDeviceSettings::GainState& gain_state,
audio_set_gain_flags_t set_flags) {
// We ignore set_flags since the FIDL API requires updates to all field of
// fuchsia::hardware::audio::GainState.
return SetGain(gain_state);
}
zx_status_t AudioDriverV2::SetGain(const AudioDeviceSettings::GainState& gain_state) {
TRACE_DURATION("audio", "AudioDriverV2::SetGain");
fuchsia::hardware::audio::GainState gain_state2 = {};
if (gain_state.muted) {
gain_state2.set_muted(true);
}
if (gain_state.agc_enabled) {
gain_state2.set_agc_enabled(true);
}
gain_state2.set_gain_db(gain_state.gain_db);
stream_config_fidl_->SetGain(std::move(gain_state2));
return ZX_OK;
}
zx_status_t AudioDriverV2::SelectBestFormat(
uint32_t* frames_per_second_inout, uint32_t* channels_inout,
fuchsia::media::AudioSampleFormat* sample_format_inout) {
return media::audio::SelectBestFormat(formats_, frames_per_second_inout, channels_inout,
sample_format_inout);
}
void AudioDriverV2::DriverCommandTimedOut() {
FX_LOGS(WARNING) << "Unexpected driver timeout";
driver_last_timeout_ = async::Now(owner_->mix_domain().dispatcher());
}
} // namespace media::audio