| |
| use std::collections::VecDeque; |
| use std::io; |
| |
| use crate::msgs::codec; |
| use crate::msgs::codec::Codec; |
| use crate::msgs::message::Message; |
| |
| const HEADER_SIZE: usize = 1 + 2 + 2; |
| |
| /// This is the maximum on-the-wire size of a TLSCiphertext. |
| /// That's 2^14 payload bytes, a header, and a 2KB allowance |
| /// for ciphertext overheads. |
| const MAX_MESSAGE: usize = 16384 + 2048 + HEADER_SIZE; |
| |
| /// This deframer works to reconstruct TLS messages |
| /// from arbitrary-sized reads, buffering as necessary. |
| /// The input is `read()`, the output is the `frames` deque. |
| pub struct MessageDeframer { |
| /// Completed frames for output. |
| pub frames: VecDeque<Message>, |
| |
| /// Set to true if the peer is not talking TLS, but some other |
| /// protocol. The caller should abort the connection, because |
| /// the deframer cannot recover. |
| pub desynced: bool, |
| |
| /// A variable-size buffer containing the currently- |
| /// accumulating TLS message. |
| buf: Vec<u8>, |
| } |
| |
| impl MessageDeframer { |
| pub fn new() -> MessageDeframer { |
| MessageDeframer { |
| frames: VecDeque::new(), |
| desynced: false, |
| buf: Vec::with_capacity(MAX_MESSAGE), |
| } |
| } |
| |
| /// Read some bytes from `rd`, and add them to our internal |
| /// buffer. If this means our internal buffer contains |
| /// full messages, decode them all. |
| pub fn read(&mut self, rd: &mut io::Read) -> io::Result<usize> { |
| // Try to do the largest reads possible. Note that if |
| // we get a message with a length field out of range here, |
| // we do a zero length read. That looks like an EOF to |
| // the next layer up, which is fine. |
| let used = self.buf.len(); |
| self.buf.resize(MAX_MESSAGE, 0u8); |
| let rc = rd.read(&mut self.buf[used..MAX_MESSAGE]); |
| |
| if rc.is_err() { |
| // Discard indeterminate bytes. |
| self.buf.truncate(used); |
| return rc; |
| } |
| |
| let new_bytes = rc.unwrap(); |
| self.buf.truncate(used + new_bytes); |
| |
| loop { |
| match self.buf_contains_message() { |
| None => { |
| self.desynced = true; |
| break; |
| } |
| Some(true) => { |
| self.deframe_one(); |
| } |
| Some(false) => break, |
| } |
| } |
| |
| Ok(new_bytes) |
| } |
| |
| /// Returns true if we have messages for the caller |
| /// to process, either whole messages in our output |
| /// queue or partial messages in our buffer. |
| pub fn has_pending(&self) -> bool { |
| !self.frames.is_empty() || !self.buf.is_empty() |
| } |
| |
| /// Does our `buf` contain a full message? It does if it is big enough to |
| /// contain a header, and that header has a length which falls within `buf`. |
| /// This returns None if it contains a header which is invalid. |
| fn buf_contains_message(&self) -> Option<bool> { |
| if self.buf.len() < HEADER_SIZE { |
| return Some(false); |
| } |
| |
| let len_maybe = Message::check_header(&self.buf); |
| |
| // Header damaged. |
| if len_maybe == None { |
| return None; |
| } |
| |
| let len = len_maybe.unwrap(); |
| |
| // This is just too large. |
| if len >= MAX_MESSAGE - HEADER_SIZE { |
| return None; |
| } |
| |
| let full_message = self.buf.len() >= len + HEADER_SIZE; |
| Some(full_message) |
| } |
| |
| /// Take a TLS message off the front of `buf`, and put it onto the back |
| /// of our `frames` deque. |
| fn deframe_one(&mut self) { |
| let used = { |
| let mut rd = codec::Reader::init(&self.buf); |
| let m = Message::read(&mut rd).unwrap(); |
| self.frames.push_back(m); |
| rd.used() |
| }; |
| self.buf = self.buf.split_off(used); |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::MessageDeframer; |
| use std::io; |
| use crate::msgs; |
| |
| const FIRST_MESSAGE: &'static [u8] = include_bytes!("../testdata/deframer-test.1.bin"); |
| const SECOND_MESSAGE: &'static [u8] = include_bytes!("../testdata/deframer-test.2.bin"); |
| |
| struct ByteRead<'a> { |
| buf: &'a [u8], |
| offs: usize, |
| } |
| |
| impl<'a> ByteRead<'a> { |
| fn new(bytes: &'a [u8]) -> ByteRead { |
| ByteRead { |
| buf: bytes, |
| offs: 0, |
| } |
| } |
| } |
| |
| impl<'a> io::Read for ByteRead<'a> { |
| fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
| let mut len = 0; |
| |
| while len < buf.len() && len < self.buf.len() - self.offs { |
| buf[len] = self.buf[self.offs + len]; |
| len += 1; |
| } |
| |
| self.offs += len; |
| |
| Ok(len) |
| } |
| } |
| |
| fn input_bytes(d: &mut MessageDeframer, bytes: &[u8]) -> io::Result<usize> { |
| let mut rd = ByteRead::new(bytes); |
| d.read(&mut rd) |
| } |
| |
| fn input_whole_incremental(d: &mut MessageDeframer, bytes: &[u8]) { |
| let frames_before = d.frames.len(); |
| |
| for i in 0..bytes.len() { |
| assert_len(1, input_bytes(d, &bytes[i..i + 1])); |
| assert_eq!(d.has_pending(), true); |
| |
| if i < bytes.len() - 1 { |
| assert_eq!(frames_before, d.frames.len()); |
| } |
| } |
| |
| assert_eq!(frames_before + 1, d.frames.len()); |
| } |
| |
| fn assert_len(want: usize, got: io::Result<usize>) { |
| if let Ok(gotval) = got { |
| assert_eq!(gotval, want); |
| } else { |
| assert!(false, "read failed, expected {:?} bytes", want); |
| } |
| } |
| |
| fn pop_first(d: &mut MessageDeframer) { |
| let mut m = d.frames.pop_front().unwrap(); |
| m.decode_payload(); |
| assert_eq!(m.typ, msgs::enums::ContentType::Handshake); |
| } |
| |
| fn pop_second(d: &mut MessageDeframer) { |
| let mut m = d.frames.pop_front().unwrap(); |
| m.decode_payload(); |
| assert_eq!(m.typ, msgs::enums::ContentType::Alert); |
| } |
| |
| #[test] |
| fn check_incremental() { |
| let mut d = MessageDeframer::new(); |
| assert_eq!(d.has_pending(), false); |
| input_whole_incremental(&mut d, FIRST_MESSAGE); |
| assert_eq!(d.has_pending(), true); |
| assert_eq!(1, d.frames.len()); |
| pop_first(&mut d); |
| assert_eq!(d.has_pending(), false); |
| } |
| |
| #[test] |
| fn check_incremental_2() { |
| let mut d = MessageDeframer::new(); |
| assert_eq!(d.has_pending(), false); |
| input_whole_incremental(&mut d, FIRST_MESSAGE); |
| assert_eq!(d.has_pending(), true); |
| input_whole_incremental(&mut d, SECOND_MESSAGE); |
| assert_eq!(d.has_pending(), true); |
| assert_eq!(2, d.frames.len()); |
| pop_first(&mut d); |
| assert_eq!(d.has_pending(), true); |
| pop_second(&mut d); |
| assert_eq!(d.has_pending(), false); |
| } |
| |
| #[test] |
| fn check_whole() { |
| let mut d = MessageDeframer::new(); |
| assert_eq!(d.has_pending(), false); |
| assert_len(FIRST_MESSAGE.len(), input_bytes(&mut d, FIRST_MESSAGE)); |
| assert_eq!(d.has_pending(), true); |
| assert_eq!(d.frames.len(), 1); |
| pop_first(&mut d); |
| assert_eq!(d.has_pending(), false); |
| } |
| |
| #[test] |
| fn check_whole_2() { |
| let mut d = MessageDeframer::new(); |
| assert_eq!(d.has_pending(), false); |
| assert_len(FIRST_MESSAGE.len(), input_bytes(&mut d, FIRST_MESSAGE)); |
| assert_len(SECOND_MESSAGE.len(), input_bytes(&mut d, SECOND_MESSAGE)); |
| assert_eq!(d.frames.len(), 2); |
| pop_first(&mut d); |
| pop_second(&mut d); |
| assert_eq!(d.has_pending(), false); |
| } |
| } |