blob: 4616816f3f43bd73e866153c9f6c743bf0a03b7d [file] [log] [blame]
//! Time driver
mod atomic_stack;
use self::atomic_stack::AtomicStack;
mod entry;
pub(super) use self::entry::Entry;
mod handle;
pub(crate) use self::handle::Handle;
mod registration;
pub(crate) use self::registration::Registration;
mod stack;
use self::stack::Stack;
use crate::loom::sync::atomic::{AtomicU64, AtomicUsize};
use crate::park::{Park, Unpark};
use crate::time::{wheel, Error};
use crate::time::{Clock, Duration, Instant};
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
use std::sync::Arc;
use std::usize;
use std::{cmp, fmt};
/// Time implementation that drives [`Delay`], [`Interval`], and [`Timeout`].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Delay`] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Delay`]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call
/// [`turn`]. The time driver will perform no work unless [`turn`] is called
/// repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Delay`] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Delay`] instance will result in `Err` being returned.
///
/// # Implementation
///
/// THe time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Delay` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries will [`Delay`] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
#[derive(Debug)]
pub(crate) struct Driver<T> {
/// Shared state
inner: Arc<Inner>,
/// Timer wheel
wheel: wheel::Wheel<Stack>,
/// Thread parker. The `Driver` park implementation delegates to this.
park: T,
/// Source of "now" instances
clock: Clock,
}
/// Timer state shared between `Driver`, `Handle`, and `Registration`.
pub(crate) struct Inner {
/// The instant at which the timer started running.
start: Instant,
/// The last published timer `elapsed` value.
elapsed: AtomicU64,
/// Number of active timeouts
num: AtomicUsize,
/// Head of the "process" linked list.
process: AtomicStack,
/// Unparks the timer thread.
unpark: Box<dyn Unpark>,
}
/// Maximum number of timeouts the system can handle concurrently.
const MAX_TIMEOUTS: usize = usize::MAX >> 1;
// ===== impl Driver =====
impl<T> Driver<T>
where
T: Park,
{
/// Creates a new `Driver` instance that uses `park` to block the current
/// thread and `now` to get the current `Instant`.
///
/// Specifying the source of time is useful when testing.
pub(crate) fn new(park: T, clock: Clock) -> Driver<T> {
let unpark = Box::new(park.unpark());
Driver {
inner: Arc::new(Inner::new(clock.now(), unpark)),
wheel: wheel::Wheel::new(),
park,
clock,
}
}
/// Returns a handle to the timer.
///
/// The `Handle` is how `Delay` instances are created. The `Delay` instances
/// can either be created directly or the `Handle` instance can be passed to
/// `with_default`, setting the timer as the default timer for the execution
/// context.
pub(crate) fn handle(&self) -> Handle {
Handle::new(Arc::downgrade(&self.inner))
}
/// Converts an `Expiration` to an `Instant`.
fn expiration_instant(&self, when: u64) -> Instant {
self.inner.start + Duration::from_millis(when)
}
/// Runs timer related logic
fn process(&mut self) {
let now = crate::time::ms(
self.clock.now() - self.inner.start,
crate::time::Round::Down,
);
let mut poll = wheel::Poll::new(now);
while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
let when = entry.when_internal().expect("invalid internal entry state");
// Fire the entry
entry.fire(when);
// Track that the entry has been fired
entry.set_when_internal(None);
}
// Update the elapsed cache
self.inner.elapsed.store(self.wheel.elapsed(), SeqCst);
}
/// Processes the entry queue
///
/// This handles adding and canceling timeouts.
fn process_queue(&mut self) {
for entry in self.inner.process.take() {
match (entry.when_internal(), entry.load_state()) {
(None, None) => {
// Nothing to do
}
(Some(_), None) => {
// Remove the entry
self.clear_entry(&entry);
}
(None, Some(when)) => {
// Queue the entry
self.add_entry(entry, when);
}
(Some(_), Some(next)) => {
self.clear_entry(&entry);
self.add_entry(entry, next);
}
}
}
}
fn clear_entry(&mut self, entry: &Arc<Entry>) {
self.wheel.remove(entry, &mut ());
entry.set_when_internal(None);
}
/// Fires the entry if it needs to, otherwise queue it to be processed later.
///
/// Returns `None` if the entry was fired.
fn add_entry(&mut self, entry: Arc<Entry>, when: u64) {
use crate::time::wheel::InsertError;
entry.set_when_internal(Some(when));
match self.wheel.insert(when, entry, &mut ()) {
Ok(_) => {}
Err((entry, InsertError::Elapsed)) => {
// The entry's deadline has elapsed, so fire it and update the
// internal state accordingly.
entry.set_when_internal(None);
entry.fire(when);
}
Err((entry, InsertError::Invalid)) => {
// The entry's deadline is invalid, so error it and update the
// internal state accordingly.
entry.set_when_internal(None);
entry.error();
}
}
}
}
impl<T> Park for Driver<T>
where
T: Park,
{
type Unpark = T::Unpark;
type Error = T::Error;
fn unpark(&self) -> Self::Unpark {
self.park.unpark()
}
fn park(&mut self) -> Result<(), Self::Error> {
self.process_queue();
match self.wheel.poll_at() {
Some(when) => {
let now = self.clock.now();
let deadline = self.expiration_instant(when);
if deadline > now {
let dur = deadline - now;
if self.clock.is_paused() {
self.park.park_timeout(Duration::from_secs(0))?;
self.clock.advance(dur);
} else {
self.park.park_timeout(dur)?;
}
} else {
self.park.park_timeout(Duration::from_secs(0))?;
}
}
None => {
self.park.park()?;
}
}
self.process();
Ok(())
}
fn park_timeout(&mut self, duration: Duration) -> Result<(), Self::Error> {
self.process_queue();
match self.wheel.poll_at() {
Some(when) => {
let now = self.clock.now();
let deadline = self.expiration_instant(when);
if deadline > now {
let duration = cmp::min(deadline - now, duration);
if self.clock.is_paused() {
self.park.park_timeout(Duration::from_secs(0))?;
self.clock.advance(duration);
} else {
self.park.park_timeout(duration)?;
}
} else {
self.park.park_timeout(Duration::from_secs(0))?;
}
}
None => {
self.park.park_timeout(duration)?;
}
}
self.process();
Ok(())
}
}
impl<T> Drop for Driver<T> {
fn drop(&mut self) {
use std::u64;
// Shutdown the stack of entries to process, preventing any new entries
// from being pushed.
self.inner.process.shutdown();
// Clear the wheel, using u64::MAX allows us to drain everything
let mut poll = wheel::Poll::new(u64::MAX);
while let Some(entry) = self.wheel.poll(&mut poll, &mut ()) {
entry.error();
}
}
}
// ===== impl Inner =====
impl Inner {
fn new(start: Instant, unpark: Box<dyn Unpark>) -> Inner {
Inner {
num: AtomicUsize::new(0),
elapsed: AtomicU64::new(0),
process: AtomicStack::new(),
start,
unpark,
}
}
fn elapsed(&self) -> u64 {
self.elapsed.load(SeqCst)
}
#[cfg(all(test, loom))]
fn num(&self, ordering: std::sync::atomic::Ordering) -> usize {
self.num.load(ordering)
}
/// Increments the number of active timeouts
fn increment(&self) -> Result<(), Error> {
let mut curr = self.num.load(Relaxed);
loop {
if curr == MAX_TIMEOUTS {
return Err(Error::at_capacity());
}
match self
.num
.compare_exchange_weak(curr, curr + 1, Release, Relaxed)
{
Ok(_) => return Ok(()),
Err(next) => curr = next,
}
}
}
/// Decrements the number of active timeouts
fn decrement(&self) {
let prev = self.num.fetch_sub(1, Acquire);
debug_assert!(prev <= MAX_TIMEOUTS);
}
fn queue(&self, entry: &Arc<Entry>) -> Result<(), Error> {
if self.process.push(entry)? {
// The timer is notified so that it can process the timeout
self.unpark.unpark();
}
Ok(())
}
fn normalize_deadline(&self, deadline: Instant) -> u64 {
if deadline < self.start {
return 0;
}
crate::time::ms(deadline - self.start, crate::time::Round::Up)
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Inner").finish()
}
}
#[cfg(all(test, loom))]
mod tests;