blob: ce478e5ec690b2a19ce3af94e8c537db9a5e3bb7 [file] [log] [blame]
//! This crate implements a structure that can be used as a generic array type.use
//! Core Rust array types `[T; N]` can't be used generically with
//! respect to `N`, so for example this:
//!
//! ```{should_fail}
//! struct Foo<T, N> {
//! data: [T; N]
//! }
//! ```
//!
//! won't work.
//!
//! **generic-array** exports a `GenericArray<T,N>` type, which lets
//! the above be implemented as:
//!
//! ```
//! # use generic_array::{ArrayLength, GenericArray};
//! struct Foo<T, N: ArrayLength<T>> {
//! data: GenericArray<T,N>
//! }
//! ```
//!
//! The `ArrayLength<T>` trait is implemented by default for
//! [unsigned integer types](../typenum/uint/index.html) from
//! [typenum](../typenum/index.html).
//!
//! For ease of use, an `arr!` macro is provided - example below:
//!
//! ```
//! # #[macro_use]
//! # extern crate generic_array;
//! # extern crate typenum;
//! # fn main() {
//! let array = arr![u32; 1, 2, 3];
//! assert_eq!(array[2], 3);
//! # }
//! ```
//#![deny(missing_docs)]
#![no_std]
pub extern crate typenum;
#[cfg(feature = "serde")]
extern crate serde;
mod hex;
mod impls;
#[cfg(feature = "serde")]
pub mod impl_serde;
use core::{mem, ptr, slice};
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
pub use core::mem::transmute;
use core::ops::{Deref, DerefMut};
use typenum::bit::{B0, B1};
use typenum::uint::{UInt, UTerm, Unsigned};
#[cfg_attr(test, macro_use)]
pub mod arr;
pub mod iter;
pub use iter::GenericArrayIter;
/// Trait making `GenericArray` work, marking types to be used as length of an array
pub unsafe trait ArrayLength<T>: Unsigned {
/// Associated type representing the array type for the number
type ArrayType;
}
unsafe impl<T> ArrayLength<T> for UTerm {
#[doc(hidden)]
type ArrayType = ();
}
/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplEven<T, U> {
parent1: U,
parent2: U,
_marker: PhantomData<T>,
}
impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
fn clone(&self) -> GenericArrayImplEven<T, U> {
GenericArrayImplEven {
parent1: self.parent1.clone(),
parent2: self.parent2.clone(),
_marker: PhantomData,
}
}
}
impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplOdd<T, U> {
parent1: U,
parent2: U,
data: T,
}
impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
fn clone(&self) -> GenericArrayImplOdd<T, U> {
GenericArrayImplOdd {
parent1: self.parent1.clone(),
parent2: self.parent2.clone(),
data: self.data.clone(),
}
}
}
impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}
unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> {
#[doc(hidden)]
type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
}
unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> {
#[doc(hidden)]
type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
}
/// Struct representing a generic array - `GenericArray<T, N>` works like [T; N]
#[allow(dead_code)]
pub struct GenericArray<T, U: ArrayLength<T>> {
data: U::ArrayType,
}
impl<T, N> Deref for GenericArray<T, N>
where
N: ArrayLength<T>,
{
type Target = [T];
fn deref(&self) -> &[T] {
unsafe { slice::from_raw_parts(self as *const Self as *const T, N::to_usize()) }
}
}
impl<T, N> DerefMut for GenericArray<T, N>
where
N: ArrayLength<T>,
{
fn deref_mut(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::to_usize()) }
}
}
struct ArrayBuilder<T, N: ArrayLength<T>> {
array: ManuallyDrop<GenericArray<T, N>>,
position: usize,
}
impl<T, N: ArrayLength<T>> ArrayBuilder<T, N> {
fn new() -> ArrayBuilder<T, N> {
ArrayBuilder {
array: ManuallyDrop::new(unsafe { mem::uninitialized() }),
position: 0,
}
}
fn into_inner(self) -> GenericArray<T, N> {
let array = unsafe { ptr::read(&self.array) };
mem::forget(self);
ManuallyDrop::into_inner(array)
}
}
impl<T, N: ArrayLength<T>> Drop for ArrayBuilder<T, N> {
fn drop(&mut self) {
for value in self.array.iter_mut().take(self.position) {
unsafe {
ptr::drop_in_place(value);
}
}
}
}
struct ArrayConsumer<T, N: ArrayLength<T>> {
array: ManuallyDrop<GenericArray<T, N>>,
position: usize,
}
impl<T, N: ArrayLength<T>> ArrayConsumer<T, N> {
fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> {
ArrayConsumer {
array: ManuallyDrop::new(array),
position: 0,
}
}
}
impl<T, N: ArrayLength<T>> Drop for ArrayConsumer<T, N> {
fn drop(&mut self) {
for i in self.position..N::to_usize() {
unsafe {
ptr::drop_in_place(self.array.get_unchecked_mut(i));
}
}
}
}
impl<T, N> GenericArray<T, N>
where
N: ArrayLength<T>,
{
/// Initializes a new `GenericArray` instance using the given function.
///
/// If the generator function panics while initializing the array,
/// any already initialized elements will be dropped.
pub fn generate<F>(f: F) -> GenericArray<T, N>
where
F: Fn(usize) -> T,
{
let mut destination = ArrayBuilder::new();
for (i, dst) in destination.array.iter_mut().enumerate() {
unsafe {
ptr::write(dst, f(i));
}
destination.position += 1;
}
destination.into_inner()
}
/// Map a function over a slice to a `GenericArray`.
///
/// The length of the slice *must* be equal to the length of the array.
#[inline]
pub fn map_slice<S, F: Fn(&S) -> T>(s: &[S], f: F) -> GenericArray<T, N> {
assert_eq!(s.len(), N::to_usize());
Self::generate(|i| f(unsafe { s.get_unchecked(i) }))
}
/// Maps a `GenericArray` to another `GenericArray`.
///
/// If the mapping function panics, any already initialized elements in the new array
/// will be dropped, AND any unused elements in the source array will also be dropped.
pub fn map<U, F>(self, f: F) -> GenericArray<U, N>
where
F: Fn(T) -> U,
N: ArrayLength<U>,
{
let mut source = ArrayConsumer::new(self);
let mut destination = ArrayBuilder::new();
for (dst, src) in destination.array.iter_mut().zip(source.array.iter()) {
unsafe {
ptr::write(dst, f(ptr::read(src)));
}
source.position += 1;
destination.position += 1;
}
destination.into_inner()
}
/// Maps a `GenericArray` to another `GenericArray` by reference.
///
/// If the mapping function panics, any already initialized elements will be dropped.
#[inline]
pub fn map_ref<U, F>(&self, f: F) -> GenericArray<U, N>
where
F: Fn(&T) -> U,
N: ArrayLength<U>,
{
GenericArray::generate(|i| f(unsafe { self.get_unchecked(i) }))
}
/// Combines two `GenericArray` instances and iterates through both of them,
/// initializing a new `GenericArray` with the result of the zipped mapping function.
///
/// If the mapping function panics, any already initialized elements in the new array
/// will be dropped, AND any unused elements in the source arrays will also be dropped.
pub fn zip<B, U, F>(self, rhs: GenericArray<B, N>, f: F) -> GenericArray<U, N>
where
F: Fn(T, B) -> U,
N: ArrayLength<B> + ArrayLength<U>,
{
let mut left = ArrayConsumer::new(self);
let mut right = ArrayConsumer::new(rhs);
let mut destination = ArrayBuilder::new();
for (dst, (lhs, rhs)) in
destination.array.iter_mut().zip(left.array.iter().zip(
right.array.iter(),
))
{
unsafe {
ptr::write(dst, f(ptr::read(lhs), ptr::read(rhs)));
}
destination.position += 1;
left.position += 1;
right.position += 1;
}
destination.into_inner()
}
/// Combines two `GenericArray` instances and iterates through both of them by reference,
/// initializing a new `GenericArray` with the result of the zipped mapping function.
///
/// If the mapping function panics, any already initialized elements will be dropped.
pub fn zip_ref<B, U, F>(&self, rhs: &GenericArray<B, N>, f: F) -> GenericArray<U, N>
where
F: Fn(&T, &B) -> U,
N: ArrayLength<B> + ArrayLength<U>,
{
GenericArray::generate(|i| unsafe {
f(self.get_unchecked(i), rhs.get_unchecked(i))
})
}
/// Extracts a slice containing the entire array.
#[inline]
pub fn as_slice(&self) -> &[T] {
self.deref()
}
/// Extracts a mutable slice containing the entire array.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self.deref_mut()
}
/// Converts slice to a generic array reference with inferred length;
///
/// Length of the slice must be equal to the length of the array.
#[inline]
pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
assert_eq!(slice.len(), N::to_usize());
unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
}
/// Converts mutable slice to a mutable generic array reference
///
/// Length of the slice must be equal to the length of the array.
#[inline]
pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
assert_eq!(slice.len(), N::to_usize());
unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
}
}
impl<T: Clone, N> GenericArray<T, N>
where
N: ArrayLength<T>,
{
/// Construct a `GenericArray` from a slice by cloning its content
///
/// Length of the slice must be equal to the length of the array
#[inline]
pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> {
Self::from_exact_iter(list.iter().cloned()).expect(
"Slice must be the same length as the array",
)
}
}
impl<T, N> GenericArray<T, N>
where
N: ArrayLength<T>,
{
pub fn from_exact_iter<I>(iter: I) -> Option<Self>
where
I: IntoIterator<Item = T>,
<I as IntoIterator>::IntoIter: ExactSizeIterator,
{
let iter = iter.into_iter();
if iter.len() == N::to_usize() {
let mut destination = ArrayBuilder::new();
for (dst, src) in destination.array.iter_mut().zip(iter.into_iter()) {
unsafe {
ptr::write(dst, src);
}
destination.position += 1;
}
let array = unsafe { ptr::read(&destination.array) };
mem::forget(destination);
Some(ManuallyDrop::into_inner(array))
} else {
None
}
}
}
impl<T, N> ::core::iter::FromIterator<T> for GenericArray<T, N>
where
N: ArrayLength<T>,
T: Default,
{
fn from_iter<I>(iter: I) -> GenericArray<T, N>
where
I: IntoIterator<Item = T>,
{
let mut destination = ArrayBuilder::new();
let defaults = ::core::iter::repeat(()).map(|_| T::default());
for (dst, src) in destination.array.iter_mut().zip(
iter.into_iter().chain(defaults),
)
{
unsafe {
ptr::write(dst, src);
}
}
destination.into_inner()
}
}
#[cfg(test)]
mod test {
// Compile with:
// cargo rustc --lib --profile test --release --
// -C target-cpu=native -C opt-level=3 --emit asm
// and view the assembly to make sure test_assembly generates
// SIMD instructions instead of a niave loop.
#[inline(never)]
pub fn black_box<T>(val: T) -> T {
use core::{mem, ptr};
let ret = unsafe { ptr::read_volatile(&val) };
mem::forget(val);
ret
}
#[test]
fn test_assembly() {
let a = black_box(arr![i32; 1, 3, 5, 7]);
let b = black_box(arr![i32; 2, 4, 6, 8]);
let c = a.zip_ref(&b, |l, r| l + r);
assert_eq!(c, arr![i32; 3, 7, 11, 15]);
}
}