blob: daf08c8b54cac1a3843a393d0a06cc52319deac1 [file] [log] [blame]
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
#[cfg(feature = "mint")]
use mint;
use length::Length;
use scale::Scale;
use vector::{Vector2D, vec2, BoolVector2D};
use vector::{Vector3D, vec3, BoolVector3D};
use num::*;
use num_traits::{Float, NumCast, Signed};
use core::fmt;
use core::ops::{Add, Div, Mul, Sub};
use core::marker::PhantomData;
use core::cmp::{Eq, PartialEq};
use core::hash::{Hash};
#[cfg(feature = "serde")]
use serde;
/// A 2d size tagged with a unit.
#[repr(C)]
pub struct Size2D<T, U> {
pub width: T,
pub height: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
impl<T: Copy, U> Copy for Size2D<T, U> {}
impl<T: Clone, U> Clone for Size2D<T, U> {
fn clone(&self) -> Self {
Size2D {
width: self.width.clone(),
height: self.height.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Size2D<T, U>
where T: serde::Deserialize<'de>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: serde::Deserializer<'de>
{
let (width, height) = try!(serde::Deserialize::deserialize(deserializer));
Ok(Size2D { width, height, _unit: PhantomData })
}
}
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Size2D<T, U>
where T: serde::Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer
{
(&self.width, &self.height).serialize(serializer)
}
}
impl<T, U> Eq for Size2D<T, U> where T: Eq {}
impl<T, U> PartialEq for Size2D<T, U>
where T: PartialEq
{
fn eq(&self, other: &Self) -> bool {
self.width == other.width && self.height == other.height
}
}
impl<T, U> Hash for Size2D<T, U>
where T: Hash
{
fn hash<H: ::core::hash::Hasher>(&self, h: &mut H) {
self.width.hash(h);
self.height.hash(h);
}
}
impl<T: fmt::Debug, U> fmt::Debug for Size2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}×{:?}", self.width, self.height)
}
}
impl<T: fmt::Display, U> fmt::Display for Size2D<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({}x{})", self.width, self.height)
}
}
impl<T: Default, U> Default for Size2D<T, U> {
fn default() -> Self {
Size2D::new(Default::default(), Default::default())
}
}
impl<T, U> Size2D<T, U> {
/// Constructor taking scalar values.
pub const fn new(width: T, height: T) -> Self {
Size2D {
width,
height,
_unit: PhantomData,
}
}
}
impl<T: Clone, U> Size2D<T, U> {
/// Constructor taking scalar strongly typed lengths.
pub fn from_lengths(width: Length<T, U>, height: Length<T, U>) -> Self {
Size2D::new(width.get(), height.get())
}
}
impl<T: Round, U> Size2D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn round(&self) -> Self {
Size2D::new(self.width.round(), self.height.round())
}
}
impl<T: Ceil, U> Size2D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn ceil(&self) -> Self {
Size2D::new(self.width.ceil(), self.height.ceil())
}
}
impl<T: Floor, U> Size2D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn floor(&self) -> Self {
Size2D::new(self.width.floor(), self.height.floor())
}
}
impl<T: Copy + Add<T, Output = T>, U> Add for Size2D<T, U> {
type Output = Self;
fn add(self, other: Self) -> Self {
Size2D::new(self.width + other.width, self.height + other.height)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for Size2D<T, U> {
type Output = Self;
fn sub(self, other: Self) -> Self {
Size2D::new(self.width - other.width, self.height - other.height)
}
}
impl<T: Copy + Clone + Mul<T>, U> Size2D<T, U> {
pub fn area(&self) -> T::Output {
self.width * self.height
}
}
impl<T, U> Size2D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this size and another size.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
size2(
one_t * self.width + t * other.width,
one_t * self.height + t * other.height,
)
}
}
impl<T: Zero + PartialOrd, U> Size2D<T, U> {
pub fn is_empty_or_negative(&self) -> bool {
let zero = T::zero();
self.width <= zero || self.height <= zero
}
}
impl<T: Zero, U> Size2D<T, U> {
pub fn zero() -> Self {
Size2D::new(Zero::zero(), Zero::zero())
}
}
impl<T: Zero, U> Zero for Size2D<T, U> {
fn zero() -> Self {
Size2D::new(Zero::zero(), Zero::zero())
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for Size2D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
Size2D::new(self.width * scale, self.height * scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for Size2D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
Size2D::new(self.width / scale, self.height / scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<Scale<T, U1, U2>> for Size2D<T, U1> {
type Output = Size2D<T, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Size2D<T, U2> {
Size2D::new(self.width * scale.get(), self.height * scale.get())
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<Scale<T, U1, U2>> for Size2D<T, U2> {
type Output = Size2D<T, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Size2D<T, U1> {
Size2D::new(self.width / scale.get(), self.height / scale.get())
}
}
impl<T: Copy, U> Size2D<T, U> {
/// Return this size as an array of two elements.
#[inline]
pub fn to_array(&self) -> [T; 2] {
[self.width, self.height]
}
/// Return this size as a tuple of two elements.
#[inline]
pub fn to_tuple(&self) -> (T, T) {
(self.width, self.height)
}
/// Return this size as a vector.
#[inline]
pub fn to_vector(&self) -> Vector2D<T, U> {
vec2(self.width, self.height)
}
/// Drop the units, preserving only the numeric value.
pub fn to_untyped(&self) -> Size2D<T, UnknownUnit> {
Size2D::new(self.width, self.height)
}
/// Tag a unitless value with units.
pub fn from_untyped(p: Size2D<T, UnknownUnit>) -> Self {
Size2D::new(p.width, p.height)
}
/// Cast the unit
pub fn cast_unit<V>(&self) -> Size2D<T, V> {
Size2D::new(self.width, self.height)
}
}
impl<T: NumCast + Copy, Unit> Size2D<T, Unit> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn cast<NewT: NumCast + Copy>(&self) -> Size2D<NewT, Unit> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<Size2D<NewT, Unit>> {
match (NumCast::from(self.width), NumCast::from(self.height)) {
(Some(w), Some(h)) => Some(Size2D::new(w, h)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` size.
pub fn to_f32(&self) -> Size2D<f32, Unit> {
self.cast()
}
/// Cast into an `f64` size.
pub fn to_f64(&self) -> Size2D<f64, Unit> {
self.cast()
}
/// Cast into an `uint` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_usize(&self) -> Size2D<usize, Unit> {
self.cast()
}
/// Cast into an `u32` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_u32(&self) -> Size2D<u32, Unit> {
self.cast()
}
/// Cast into an `u64` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_u64(&self) -> Size2D<u64, Unit> {
self.cast()
}
/// Cast into an `i32` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_i32(&self) -> Size2D<i32, Unit> {
self.cast()
}
/// Cast into an `i64` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_i64(&self) -> Size2D<i64, Unit> {
self.cast()
}
}
impl<T, U> Size2D<T, U>
where
T: Signed,
{
pub fn abs(&self) -> Self {
size2(self.width.abs(), self.height.abs())
}
pub fn is_positive(&self) -> bool {
self.width.is_positive() && self.height.is_positive()
}
}
impl<T: PartialOrd, U> Size2D<T, U> {
pub fn greater_than(&self, other: Self) -> BoolVector2D {
BoolVector2D {
x: self.width > other.width,
y: self.height > other.height,
}
}
pub fn lower_than(&self, other: Self) -> BoolVector2D {
BoolVector2D {
x: self.width < other.width,
y: self.height < other.height,
}
}
}
impl<T: PartialEq, U> Size2D<T, U> {
pub fn equal(&self, other: Self) -> BoolVector2D {
BoolVector2D {
x: self.width == other.width,
y: self.height == other.height,
}
}
pub fn not_equal(&self, other: Self) -> BoolVector2D {
BoolVector2D {
x: self.width != other.width,
y: self.height != other.height,
}
}
}
impl<T: Float, U> Size2D<T, U> {
#[inline]
pub fn min(self, other: Self) -> Self {
size2(
self.width.min(other.width),
self.height.min(other.height),
)
}
#[inline]
pub fn max(self, other: Self) -> Self {
size2(
self.width.max(other.width),
self.height.max(other.height),
)
}
#[inline]
pub fn clamp(&self, start: Self, end: Self) -> Self {
self.max(start).min(end)
}
}
/// Shorthand for `Size2D::new(w, h)`.
pub const fn size2<T, U>(w: T, h: T) -> Size2D<T, U> {
Size2D::new(w, h)
}
#[cfg(feature = "mint")]
impl<T, U> From<mint::Vector2<T>> for Size2D<T, U> {
fn from(v: mint::Vector2<T>) -> Self {
Size2D {
width: v.x,
height: v.y,
_unit: PhantomData,
}
}
}
#[cfg(feature = "mint")]
impl<T, U> Into<mint::Vector2<T>> for Size2D<T, U> {
fn into(self) -> mint::Vector2<T> {
mint::Vector2 {
x: self.width,
y: self.height,
}
}
}
impl<T, U> From<Vector2D<T, U>> for Size2D<T, U> {
fn from(v: Vector2D<T, U>) -> Self {
Size2D {
width: v.x,
height: v.y,
_unit: PhantomData,
}
}
}
impl<T: Copy, U> Into<[T; 2]> for Size2D<T, U> {
fn into(self) -> [T; 2] {
self.to_array()
}
}
impl<T: Copy, U> From<[T; 2]> for Size2D<T, U> {
fn from(array: [T; 2]) -> Self {
size2(array[0], array[1])
}
}
impl<T: Copy, U> Into<(T, T)> for Size2D<T, U> {
fn into(self) -> (T, T) {
self.to_tuple()
}
}
impl<T: Copy, U> From<(T, T)> for Size2D<T, U> {
fn from(tuple: (T, T)) -> Self {
size2(tuple.0, tuple.1)
}
}
#[cfg(test)]
mod size2d {
use default::Size2D;
#[cfg(feature = "mint")]
use mint;
#[test]
pub fn test_add() {
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(3.0, 4.0);
assert_eq!(p1 + p2, Size2D::new(4.0, 6.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 + p2, Size2D::new(1.0, 2.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(-3.0, -4.0);
assert_eq!(p1 + p2, Size2D::new(-2.0, -2.0));
let p1 = Size2D::new(0.0, 0.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 + p2, Size2D::new(0.0, 0.0));
}
#[test]
pub fn test_sub() {
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(3.0, 4.0);
assert_eq!(p1 - p2, Size2D::new(-2.0, -2.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 - p2, Size2D::new(1.0, 2.0));
let p1 = Size2D::new(1.0, 2.0);
let p2 = Size2D::new(-3.0, -4.0);
assert_eq!(p1 - p2, Size2D::new(4.0, 6.0));
let p1 = Size2D::new(0.0, 0.0);
let p2 = Size2D::new(0.0, 0.0);
assert_eq!(p1 - p2, Size2D::new(0.0, 0.0));
}
#[test]
pub fn test_area() {
let p = Size2D::new(1.5, 2.0);
assert_eq!(p.area(), 3.0);
}
#[cfg(feature = "mint")]
#[test]
pub fn test_mint() {
let s1 = Size2D::new(1.0, 2.0);
let sm: mint::Vector2<_> = s1.into();
let s2 = Size2D::from(sm);
assert_eq!(s1, s2);
}
}
/// A 3d size tagged with a unit.
#[repr(C)]
pub struct Size3D<T, U> {
pub width: T,
pub height: T,
pub depth: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
impl<T: Copy, U> Copy for Size3D<T, U> {}
impl<T: Clone, U> Clone for Size3D<T, U> {
fn clone(&self) -> Self {
Size3D {
width: self.width.clone(),
height: self.height.clone(),
depth: self.depth.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Size3D<T, U>
where T: serde::Deserialize<'de>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: serde::Deserializer<'de>
{
let (width, height, depth) = try!(serde::Deserialize::deserialize(deserializer));
Ok(Size3D { width, height, depth, _unit: PhantomData })
}
}
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Size3D<T, U>
where T: serde::Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer
{
(&self.width, &self.height, &self.depth).serialize(serializer)
}
}
impl<T, U> Eq for Size3D<T, U> where T: Eq {}
impl<T, U> PartialEq for Size3D<T, U>
where T: PartialEq
{
fn eq(&self, other: &Self) -> bool {
self.width == other.width && self.height == other.height && self.depth == other.depth
}
}
impl<T, U> Hash for Size3D<T, U>
where T: Hash
{
fn hash<H: ::core::hash::Hasher>(&self, h: &mut H) {
self.width.hash(h);
self.height.hash(h);
self.depth.hash(h);
}
}
impl<T: fmt::Debug, U> fmt::Debug for Size3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}×{:?}×{:?}", self.width, self.height, self.depth)
}
}
impl<T: fmt::Display, U> fmt::Display for Size3D<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({}x{}x{})", self.width, self.height, self.depth)
}
}
impl<T: Default, U> Default for Size3D<T, U> {
fn default() -> Self {
Size3D::new(Default::default(), Default::default(), Default::default())
}
}
impl<T, U> Size3D<T, U> {
/// Constructor taking scalar values.
pub const fn new(width: T, height: T, depth: T) -> Self {
Size3D {
width,
height,
depth,
_unit: PhantomData,
}
}
}
impl<T: Clone, U> Size3D<T, U> {
/// Constructor taking scalar strongly typed lengths.
pub fn from_lengths(width: Length<T, U>, height: Length<T, U>, depth: Length<T, U>) -> Self {
Size3D::new(width.get(), height.get(), depth.get())
}
}
impl<T: Round, U> Size3D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn round(&self) -> Self {
Size3D::new(self.width.round(), self.height.round(), self.depth.round())
}
}
impl<T: Ceil, U> Size3D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn ceil(&self) -> Self {
Size3D::new(self.width.ceil(), self.height.ceil(), self.depth.ceil())
}
}
impl<T: Floor, U> Size3D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
pub fn floor(&self) -> Self {
Size3D::new(self.width.floor(), self.height.floor(), self.depth.floor())
}
}
impl<T: Copy + Add<T, Output = T>, U> Add for Size3D<T, U> {
type Output = Self;
fn add(self, other: Self) -> Self {
Size3D::new(self.width + other.width, self.height + other.height, self.depth + other.depth)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for Size3D<T, U> {
type Output = Self;
fn sub(self, other: Self) -> Self {
Size3D::new(self.width - other.width, self.height - other.height, self.depth - other.depth)
}
}
impl<T: Copy + Clone + Mul<T, Output=T>, U> Size3D<T, U> {
pub fn volume(&self) -> T {
self.width * self.height * self.depth
}
}
impl<T, U> Size3D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this size and another size.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
size3(
one_t * self.width + t * other.width,
one_t * self.height + t * other.height,
one_t * self.depth + t * other.depth,
)
}
}
impl<T: Zero + PartialOrd, U> Size3D<T, U> {
pub fn is_empty_or_negative(&self) -> bool {
let zero = T::zero();
self.width <= zero || self.height <= zero || self.depth <= zero
}
}
impl<T: Zero, U> Size3D<T, U> {
pub fn zero() -> Self {
Size3D::new(Zero::zero(), Zero::zero(), Zero::zero())
}
}
impl<T: Zero, U> Zero for Size3D<T, U> {
fn zero() -> Self {
Size3D::new(Zero::zero(), Zero::zero(), Zero::zero())
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for Size3D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
Size3D::new(self.width * scale, self.height * scale, self.depth * scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for Size3D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
Size3D::new(self.width / scale, self.height / scale, self.depth / scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<Scale<T, U1, U2>> for Size3D<T, U1> {
type Output = Size3D<T, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Size3D<T, U2> {
Size3D::new(self.width * scale.get(), self.height * scale.get(), self.depth * scale.get())
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<Scale<T, U1, U2>> for Size3D<T, U2> {
type Output = Size3D<T, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Size3D<T, U1> {
Size3D::new(self.width / scale.get(), self.height / scale.get(), self.depth / scale.get())
}
}
impl<T: Copy, U> Size3D<T, U> {
/// Return this size as an array of two elements.
#[inline]
pub fn to_array(&self) -> [T; 3] {
[self.width, self.height, self.depth]
}
/// Return this size as an array of two elements.
#[inline]
pub fn to_tuple(&self) -> (T, T, T) {
(self.width, self.height, self.depth)
}
/// Return this size as a vector
#[inline]
pub fn to_vector(&self) -> Vector3D<T, U> {
vec3(self.width, self.height, self.depth)
}
/// Drop the units, preserving only the numeric value.
pub fn to_untyped(&self) -> Size3D<T, UnknownUnit> {
Size3D::new(self.width, self.height, self.depth)
}
/// Tag a unitless value with units.
pub fn from_untyped(p: Size3D<T, UnknownUnit>) -> Self {
Size3D::new(p.width, p.height, p.depth)
}
/// Cast the unit
pub fn cast_unit<V>(&self) -> Size3D<T, V> {
Size3D::new(self.width, self.height, self.depth)
}
}
impl<T: NumCast + Copy, Unit> Size3D<T, Unit> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn cast<NewT: NumCast + Copy>(&self) -> Size3D<NewT, Unit> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<Size3D<NewT, Unit>> {
match (NumCast::from(self.width), NumCast::from(self.height), NumCast::from(self.depth)) {
(Some(w), Some(h), Some(d)) => Some(Size3D::new(w, h, d)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` size.
pub fn to_f32(&self) -> Size3D<f32, Unit> {
self.cast()
}
/// Cast into an `f64` size.
pub fn to_f64(&self) -> Size3D<f64, Unit> {
self.cast()
}
/// Cast into an `uint` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_usize(&self) -> Size3D<usize, Unit> {
self.cast()
}
/// Cast into an `u32` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_u32(&self) -> Size3D<u32, Unit> {
self.cast()
}
/// Cast into an `i32` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_i32(&self) -> Size3D<i32, Unit> {
self.cast()
}
/// Cast into an `i64` size, truncating decimals if any.
///
/// When casting from floating point sizes, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
pub fn to_i64(&self) -> Size3D<i64, Unit> {
self.cast()
}
}
impl<T, U> Size3D<T, U>
where
T: Signed,
{
pub fn abs(&self) -> Self {
size3(self.width.abs(), self.height.abs(), self.depth.abs())
}
pub fn is_positive(&self) -> bool {
self.width.is_positive() && self.height.is_positive() && self.depth.is_positive()
}
}
impl<T: PartialOrd, U> Size3D<T, U> {
pub fn greater_than(&self, other: Self) -> BoolVector3D {
BoolVector3D {
x: self.width > other.width,
y: self.height > other.height,
z: self.depth > other.depth,
}
}
pub fn lower_than(&self, other: Self) -> BoolVector3D {
BoolVector3D {
x: self.width < other.width,
y: self.height < other.height,
z: self.depth < other.depth,
}
}
}
impl<T: PartialEq, U> Size3D<T, U> {
pub fn equal(&self, other: Self) -> BoolVector3D {
BoolVector3D {
x: self.width == other.width,
y: self.height == other.height,
z: self.depth == other.depth,
}
}
pub fn not_equal(&self, other: Self) -> BoolVector3D {
BoolVector3D {
x: self.width != other.width,
y: self.height != other.height,
z: self.depth != other.depth,
}
}
}
impl<T: Float, U> Size3D<T, U> {
#[inline]
pub fn min(self, other: Self) -> Self {
size3(
self.width.min(other.width),
self.height.min(other.height),
self.depth.min(other.depth),
)
}
#[inline]
pub fn max(self, other: Self) -> Self {
size3(
self.width.max(other.width),
self.height.max(other.height),
self.depth.max(other.depth),
)
}
#[inline]
pub fn clamp(&self, start: Self, end: Self) -> Self {
self.max(start).min(end)
}
}
/// Shorthand for `Size3D::new(w, h, d)`.
pub const fn size3<T, U>(w: T, h: T, d: T) -> Size3D<T, U> {
Size3D::new(w, h, d)
}
#[cfg(feature = "mint")]
impl<T, U> From<mint::Vector3<T>> for Size3D<T, U> {
fn from(v: mint::Vector3<T>) -> Self {
Size3D {
width: v.x,
height: v.y,
depth: v.z,
_unit: PhantomData,
}
}
}
#[cfg(feature = "mint")]
impl<T, U> Into<mint::Vector3<T>> for Size3D<T, U> {
fn into(self) -> mint::Vector3<T> {
mint::Vector3 {
x: self.width,
y: self.height,
z: self.depth,
}
}
}