blob: ed2d8c9a5840f2131dbb958602e8fd39bdc9e247 [file] [log] [blame]
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use approxeq::ApproxEq;
use length::Length;
use scale::Scale;
use size::{Size2D, Size3D};
#[cfg(feature = "mint")]
use mint;
use num::*;
use num_traits::{Float, NumCast};
use vector::{Vector2D, Vector3D, vec2, vec3};
use core::fmt;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
use core::marker::PhantomData;
use core::cmp::{Eq, PartialEq};
use core::hash::{Hash};
#[cfg(feature = "serde")]
use serde;
/// A 2d Point tagged with a unit.
#[repr(C)]
pub struct Point2D<T, U> {
pub x: T,
pub y: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
impl<T: Copy, U> Copy for Point2D<T, U> {}
impl<T: Clone, U> Clone for Point2D<T, U> {
fn clone(&self) -> Self {
Point2D {
x: self.x.clone(),
y: self.y.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Point2D<T, U>
where T: serde::Deserialize<'de>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: serde::Deserializer<'de>
{
let (x, y) = try!(serde::Deserialize::deserialize(deserializer));
Ok(Point2D { x, y, _unit: PhantomData })
}
}
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Point2D<T, U>
where T: serde::Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer
{
(&self.x, &self.y).serialize(serializer)
}
}
impl<T, U> Eq for Point2D<T, U> where T: Eq {}
impl<T, U> PartialEq for Point2D<T, U>
where T: PartialEq
{
fn eq(&self, other: &Self) -> bool {
self.x == other.x && self.y == other.y
}
}
impl<T, U> Hash for Point2D<T, U>
where T: Hash
{
fn hash<H: ::core::hash::Hasher>(&self, h: &mut H) {
self.x.hash(h);
self.y.hash(h);
}
}
mint_vec!(Point2D[x, y] = Point2);
impl<T: Copy + Zero, U> Point2D<T, U> {
/// Constructor, setting all components to zero.
#[inline]
pub fn origin() -> Self {
point2(Zero::zero(), Zero::zero())
}
#[inline]
pub fn zero() -> Self {
Self::origin()
}
/// Convert into a 3d point.
#[inline]
pub fn to_3d(&self) -> Point3D<T, U> {
point3(self.x, self.y, Zero::zero())
}
}
impl<T: fmt::Debug, U> fmt::Debug for Point2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?},{:?})", self.x, self.y)
}
}
impl<T: fmt::Display, U> fmt::Display for Point2D<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "({},{})", self.x, self.y)
}
}
impl<T: Default, U> Default for Point2D<T, U> {
fn default() -> Self {
Point2D::new(Default::default(), Default::default())
}
}
impl<T, U> Point2D<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub const fn new(x: T, y: T) -> Self {
Point2D {
x,
y,
_unit: PhantomData,
}
}
}
impl<T: Copy, U> Point2D<T, U> {
/// Constructor taking properly Lengths instead of scalar values.
#[inline]
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self {
point2(x.0, y.0)
}
/// Create a 3d point from this one, using the specified z value.
#[inline]
pub fn extend(&self, z: T) -> Point3D<T, U> {
point3(self.x, self.y, z)
}
/// Cast this point into a vector.
///
/// Equivalent to subtracting the origin from this point.
#[inline]
pub fn to_vector(&self) -> Vector2D<T, U> {
Vector2D {
x: self.x,
y: self.y,
_unit: PhantomData,
}
}
/// Swap x and y.
#[inline]
pub fn yx(&self) -> Self {
point2(self.y, self.x)
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Point2D<T, UnknownUnit> {
point2(self.x, self.y)
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Self {
point2(p.x, p.y)
}
/// Cast the unit
pub fn cast_unit<V>(&self) -> Point2D<T, V> {
point2(self.x, self.y)
}
#[inline]
pub fn to_array(&self) -> [T; 2] {
[self.x, self.y]
}
#[inline]
pub fn to_tuple(&self) -> (T, T) {
(self.x, self.y)
}
}
impl<T: Copy + Add<T, Output = T>, U> Point2D<T, U> {
#[inline]
pub fn add_size(&self, other: &Size2D<T, U>) -> Self {
point2(self.x + other.width, self.y + other.height)
}
}
impl<T: Copy + Add<T, Output = T>, U> Add<Size2D<T, U>> for Point2D<T, U> {
type Output = Self;
#[inline]
fn add(self, other: Size2D<T, U>) -> Self {
point2(self.x + other.width, self.y + other.height)
}
}
impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector2D<T, U>> for Point2D<T, U> {
#[inline]
fn add_assign(&mut self, other: Vector2D<T, U>) {
*self = *self + other
}
}
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Point2D<T, U> {
#[inline]
fn sub_assign(&mut self, other: Vector2D<T, U>) {
*self = *self - other
}
}
impl<T: Copy + Add<T, Output = T>, U> Add<Vector2D<T, U>> for Point2D<T, U> {
type Output = Self;
#[inline]
fn add(self, other: Vector2D<T, U>) -> Self {
point2(self.x + other.x, self.y + other.y)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for Point2D<T, U> {
type Output = Vector2D<T, U>;
#[inline]
fn sub(self, other: Self) -> Vector2D<T, U> {
vec2(self.x - other.x, self.y - other.y)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub<Vector2D<T, U>> for Point2D<T, U> {
type Output = Self;
#[inline]
fn sub(self, other: Vector2D<T, U>) -> Self {
point2(self.x - other.x, self.y - other.y)
}
}
impl<T: Float, U> Point2D<T, U> {
#[inline]
pub fn min(self, other: Self) -> Self {
point2(self.x.min(other.x), self.y.min(other.y))
}
#[inline]
pub fn max(self, other: Self) -> Self {
point2(self.x.max(other.x), self.y.max(other.y))
}
#[inline]
pub fn clamp(&self, start: Self, end: Self) -> Self {
self.max(start).min(end)
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for Point2D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
point2(self.x * scale, self.y * scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Point2D<T, U> {
#[inline]
fn mul_assign(&mut self, scale: T) {
*self = *self * scale
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for Point2D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
point2(self.x / scale, self.y / scale)
}
}
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Point2D<T, U> {
#[inline]
fn div_assign(&mut self, scale: T) {
*self = *self / scale
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<Scale<T, U1, U2>> for Point2D<T, U1> {
type Output = Point2D<T, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Point2D<T, U2> {
point2(self.x * scale.get(), self.y * scale.get())
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<Scale<T, U1, U2>> for Point2D<T, U2> {
type Output = Point2D<T, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Point2D<T, U1> {
point2(self.x / scale.get(), self.y / scale.get())
}
}
impl<T: Round, U> Point2D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
/// For example `{ -0.1, -0.8 }.round() == { 0.0, -1.0 }`.
#[inline]
#[must_use]
pub fn round(&self) -> Self {
point2(self.x.round(), self.y.round())
}
}
impl<T: Ceil, U> Point2D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
/// For example `{ -0.1, -0.8 }.ceil() == { 0.0, 0.0 }`.
#[inline]
#[must_use]
pub fn ceil(&self) -> Self {
point2(self.x.ceil(), self.y.ceil())
}
}
impl<T: Floor, U> Point2D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
/// For example `{ -0.1, -0.8 }.floor() == { -1.0, -1.0 }`.
#[inline]
#[must_use]
pub fn floor(&self) -> Self {
point2(self.x.floor(), self.y.floor())
}
}
impl<T: NumCast + Copy, U> Point2D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
#[inline]
pub fn cast<NewT: NumCast + Copy>(&self) -> Point2D<NewT, U> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<Point2D<NewT, U>> {
match (NumCast::from(self.x), NumCast::from(self.y)) {
(Some(x), Some(y)) => Some(point2(x, y)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` point.
#[inline]
pub fn to_f32(&self) -> Point2D<f32, U> {
self.cast()
}
/// Cast into an `f64` point.
#[inline]
pub fn to_f64(&self) -> Point2D<f64, U> {
self.cast()
}
/// Cast into an `usize` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> Point2D<usize, U> {
self.cast()
}
/// Cast into an `u32` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> Point2D<u32, U> {
self.cast()
}
/// Cast into an i32 point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> Point2D<i32, U> {
self.cast()
}
/// Cast into an i64 point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> Point2D<i64, U> {
self.cast()
}
}
impl<T, U> Point2D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this point and another point.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
point2(one_t * self.x + t * other.x, one_t * self.y + t * other.y)
}
}
impl<T: Copy + ApproxEq<T>, U> ApproxEq<Point2D<T, U>> for Point2D<T, U> {
#[inline]
fn approx_epsilon() -> Self {
point2(T::approx_epsilon(), T::approx_epsilon())
}
#[inline]
fn approx_eq(&self, other: &Self) -> bool {
self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y)
}
#[inline]
fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)
}
}
impl<T: Copy, U> Into<[T; 2]> for Point2D<T, U> {
fn into(self) -> [T; 2] {
self.to_array()
}
}
impl<T: Copy, U> From<[T; 2]> for Point2D<T, U> {
fn from(array: [T; 2]) -> Self {
point2(array[0], array[1])
}
}
impl<T: Copy, U> Into<(T, T)> for Point2D<T, U> {
fn into(self) -> (T, T) {
self.to_tuple()
}
}
impl<T: Copy, U> From<(T, T)> for Point2D<T, U> {
fn from(tuple: (T, T)) -> Self {
point2(tuple.0, tuple.1)
}
}
/// A 3d Point tagged with a unit.
#[repr(C)]
pub struct Point3D<T, U> {
pub x: T,
pub y: T,
pub z: T,
#[doc(hidden)]
pub _unit: PhantomData<U>,
}
mint_vec!(Point3D[x, y, z] = Point3);
impl<T: Copy, U> Copy for Point3D<T, U> {}
impl<T: Clone, U> Clone for Point3D<T, U> {
fn clone(&self) -> Self {
Point3D {
x: self.x.clone(),
y: self.y.clone(),
z: self.z.clone(),
_unit: PhantomData,
}
}
}
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Point3D<T, U>
where T: serde::Deserialize<'de>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: serde::Deserializer<'de>
{
let (x, y, z) = try!(serde::Deserialize::deserialize(deserializer));
Ok(Point3D { x, y, z, _unit: PhantomData })
}
}
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Point3D<T, U>
where T: serde::Serialize
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer
{
(&self.x, &self.y, &self.z).serialize(serializer)
}
}
impl<T, U> Eq for Point3D<T, U> where T: Eq {}
impl<T, U> PartialEq for Point3D<T, U>
where T: PartialEq
{
fn eq(&self, other: &Self) -> bool {
self.x == other.x && self.y == other.y && self.z == other.z
}
}
impl<T, U> Hash for Point3D<T, U>
where T: Hash
{
fn hash<H: ::core::hash::Hasher>(&self, h: &mut H) {
self.x.hash(h);
self.y.hash(h);
self.z.hash(h);
}
}
impl<T: Copy + Zero, U> Point3D<T, U> {
/// Constructor, setting all components to zero.
#[inline]
pub fn origin() -> Self {
point3(Zero::zero(), Zero::zero(), Zero::zero())
}
#[inline]
pub fn zero() -> Self {
Self::origin()
}
}
impl<T: Copy + One, U> Point3D<T, U> {
#[inline]
pub fn to_array_4d(&self) -> [T; 4] {
[self.x, self.y, self.z, One::one()]
}
#[inline]
pub fn to_tuple_4d(&self) -> (T, T, T, T) {
(self.x, self.y, self.z, One::one())
}
}
impl<T, U> Point3D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this point and another point.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
let one_t = T::one() - t;
point3(
one_t * self.x + t * other.x,
one_t * self.y + t * other.y,
one_t * self.z + t * other.z,
)
}
}
impl<T: fmt::Debug, U> fmt::Debug for Point3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?},{:?},{:?})", self.x, self.y, self.z)
}
}
impl<T: fmt::Display, U> fmt::Display for Point3D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({},{},{})", self.x, self.y, self.z)
}
}
impl<T: Copy + Default, U> Default for Point3D<T, U> {
fn default() -> Self {
Point3D::new(Default::default(), Default::default(), Default::default())
}
}
impl<T, U> Point3D<T, U> {
/// Constructor taking scalar values directly.
#[inline]
pub const fn new(x: T, y: T, z: T) -> Self {
Point3D {
x,
y,
z,
_unit: PhantomData,
}
}
}
impl<T: Copy, U> Point3D<T, U> {
/// Constructor taking properly Lengths instead of scalar values.
#[inline]
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Self {
point3(x.0, y.0, z.0)
}
/// Cast this point into a vector.
///
/// Equivalent to subtracting the origin to this point.
#[inline]
pub fn to_vector(&self) -> Vector3D<T, U> {
Vector3D {
x: self.x,
y: self.y,
z: self.z,
_unit: PhantomData,
}
}
/// Returns a 2d point using this point's x and y coordinates
#[inline]
pub fn xy(&self) -> Point2D<T, U> {
point2(self.x, self.y)
}
/// Returns a 2d point using this point's x and z coordinates
#[inline]
pub fn xz(&self) -> Point2D<T, U> {
point2(self.x, self.z)
}
/// Returns a 2d point using this point's x and z coordinates
#[inline]
pub fn yz(&self) -> Point2D<T, U> {
point2(self.y, self.z)
}
#[inline]
pub fn to_array(&self) -> [T; 3] {
[self.x, self.y, self.z]
}
#[inline]
pub fn to_tuple(&self) -> (T, T, T) {
(self.x, self.y, self.z)
}
/// Drop the units, preserving only the numeric value.
#[inline]
pub fn to_untyped(&self) -> Point3D<T, UnknownUnit> {
point3(self.x, self.y, self.z)
}
/// Tag a unitless value with units.
#[inline]
pub fn from_untyped(p: Point3D<T, UnknownUnit>) -> Self {
point3(p.x, p.y, p.z)
}
/// Cast the unit
pub fn cast_unit<V>(&self) -> Point3D<T, V> {
point3(self.x, self.y, self.z)
}
/// Convert into a 2d point.
#[inline]
pub fn to_2d(&self) -> Point2D<T, U> {
self.xy()
}
}
impl<T: Copy + Add<T, Output = T>, U> Point3D<T, U> {
#[inline]
pub fn add_size(&self, other: &Size3D<T, U>) -> Self {
point3(self.x + other.width, self.y + other.height, self.z + other.depth)
}
}
impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Point3D<T, U> {
#[inline]
fn add_assign(&mut self, other: Vector3D<T, U>) {
*self = *self + other
}
}
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Point3D<T, U> {
#[inline]
fn sub_assign(&mut self, other: Vector3D<T, U>) {
*self = *self - other
}
}
impl<T: Copy + Add<T, Output = T>, U> Add<Vector3D<T, U>> for Point3D<T, U> {
type Output = Self;
#[inline]
fn add(self, other: Vector3D<T, U>) -> Self {
point3(self.x + other.x, self.y + other.y, self.z + other.z)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub for Point3D<T, U> {
type Output = Vector3D<T, U>;
#[inline]
fn sub(self, other: Self) -> Vector3D<T, U> {
vec3(self.x - other.x, self.y - other.y, self.z - other.z)
}
}
impl<T: Copy + Sub<T, Output = T>, U> Sub<Vector3D<T, U>> for Point3D<T, U> {
type Output = Self;
#[inline]
fn sub(self, other: Vector3D<T, U>) -> Self {
point3(self.x - other.x, self.y - other.y, self.z - other.z)
}
}
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for Point3D<T, U> {
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
point3(self.x * scale, self.y * scale, self.z * scale)
}
}
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<Scale<T, U1, U2>> for Point3D<T, U1> {
type Output = Point3D<T, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Point3D<T, U2> {
point3(self.x * scale.get(), self.y * scale.get(), self.z * scale.get())
}
}
impl<T: Copy + Div<T, Output = T>, U> Div<T> for Point3D<T, U> {
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
point3(self.x / scale, self.y / scale, self.z / scale)
}
}
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<Scale<T, U1, U2>> for Point3D<T, U2> {
type Output = Point3D<T, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Point3D<T, U1> {
point3(self.x / scale.get(), self.y / scale.get(), self.z / scale.get())
}
}
impl<T: Float, U> Point3D<T, U> {
#[inline]
pub fn min(self, other: Self) -> Self {
point3(
self.x.min(other.x),
self.y.min(other.y),
self.z.min(other.z),
)
}
#[inline]
pub fn max(self, other: Self) -> Self {
point3(
self.x.max(other.x),
self.y.max(other.y),
self.z.max(other.z),
)
}
#[inline]
pub fn clamp(&self, start: Self, end: Self) -> Self {
self.max(start).min(end)
}
}
impl<T: Round, U> Point3D<T, U> {
/// Rounds each component to the nearest integer value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[inline]
#[must_use]
pub fn round(&self) -> Self {
point3(self.x.round(), self.y.round(), self.z.round())
}
}
impl<T: Ceil, U> Point3D<T, U> {
/// Rounds each component to the smallest integer equal or greater than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[inline]
#[must_use]
pub fn ceil(&self) -> Self {
point3(self.x.ceil(), self.y.ceil(), self.z.ceil())
}
}
impl<T: Floor, U> Point3D<T, U> {
/// Rounds each component to the biggest integer equal or lower than the original value.
///
/// This behavior is preserved for negative values (unlike the basic cast).
#[inline]
#[must_use]
pub fn floor(&self) -> Self {
point3(self.x.floor(), self.y.floor(), self.z.floor())
}
}
impl<T: NumCast + Copy, U> Point3D<T, U> {
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
#[inline]
pub fn cast<NewT: NumCast + Copy>(&self) -> Point3D<NewT, U> {
self.try_cast().unwrap()
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.
#[inline]
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<Point3D<NewT, U>> {
match (
NumCast::from(self.x),
NumCast::from(self.y),
NumCast::from(self.z),
) {
(Some(x), Some(y), Some(z)) => Some(point3(x, y, z)),
_ => None,
}
}
// Convenience functions for common casts
/// Cast into an `f32` point.
#[inline]
pub fn to_f32(&self) -> Point3D<f32, U> {
self.cast()
}
/// Cast into an `f64` point.
#[inline]
pub fn to_f64(&self) -> Point3D<f64, U> {
self.cast()
}
/// Cast into an `usize` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_usize(&self) -> Point3D<usize, U> {
self.cast()
}
/// Cast into an `u32` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_u32(&self) -> Point3D<u32, U> {
self.cast()
}
/// Cast into an `i32` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i32(&self) -> Point3D<i32, U> {
self.cast()
}
/// Cast into an `i64` point, truncating decimals if any.
///
/// When casting from floating point points, it is worth considering whether
/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain
/// the desired conversion behavior.
#[inline]
pub fn to_i64(&self) -> Point3D<i64, U> {
self.cast()
}
}
impl<T: Copy + ApproxEq<T>, U> ApproxEq<Point3D<T, U>> for Point3D<T, U> {
#[inline]
fn approx_epsilon() -> Self {
point3(
T::approx_epsilon(),
T::approx_epsilon(),
T::approx_epsilon(),
)
}
#[inline]
fn approx_eq(&self, other: &Self) -> bool {
self.x.approx_eq(&other.x) && self.y.approx_eq(&other.y) && self.z.approx_eq(&other.z)
}
#[inline]
fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {
self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)
&& self.z.approx_eq_eps(&other.z, &eps.z)
}
}
impl<T: Copy, U> Into<[T; 3]> for Point3D<T, U> {
fn into(self) -> [T; 3] {
self.to_array()
}
}
impl<T: Copy, U> From<[T; 3]> for Point3D<T, U> {
fn from(array: [T; 3]) -> Self {
point3(array[0], array[1], array[2])
}
}
impl<T: Copy, U> Into<(T, T, T)> for Point3D<T, U> {
fn into(self) -> (T, T, T) {
self.to_tuple()
}
}
impl<T: Copy, U> From<(T, T, T)> for Point3D<T, U> {
fn from(tuple: (T, T, T)) -> Self {
point3(tuple.0, tuple.1, tuple.2)
}
}
#[inline]
pub const fn point2<T, U>(x: T, y: T) -> Point2D<T, U> {
Point2D {
x,
y,
_unit: PhantomData,
}
}
#[inline]
pub const fn point3<T, U>(x: T, y: T, z: T) -> Point3D<T, U> {
Point3D {
x,
y,
z,
_unit: PhantomData,
}
}
#[cfg(test)]
mod point2d {
use default::Point2D;
use {point2, vec2};
use scale::Scale;
#[cfg(feature = "mint")]
use mint;
#[test]
pub fn test_scalar_mul() {
let p1: Point2D<f32> = Point2D::new(3.0, 5.0);
let result = p1 * 5.0;
assert_eq!(result, Point2D::new(15.0, 25.0));
}
#[test]
pub fn test_min() {
let p1 = Point2D::new(1.0, 3.0);
let p2 = Point2D::new(2.0, 2.0);
let result = p1.min(p2);
assert_eq!(result, Point2D::new(1.0, 2.0));
}
#[test]
pub fn test_max() {
let p1 = Point2D::new(1.0, 3.0);
let p2 = Point2D::new(2.0, 2.0);
let result = p1.max(p2);
assert_eq!(result, Point2D::new(2.0, 3.0));
}
#[cfg(feature = "mint")]
#[test]
pub fn test_mint() {
let p1 = Point2D::new(1.0, 3.0);
let pm: mint::Point2<_> = p1.into();
let p2 = Point2D::from(pm);
assert_eq!(p1, p2);
}
pub enum Mm {}
pub enum Cm {}
pub type Point2DMm<T> = super::Point2D<T, Mm>;
pub type Point2DCm<T> = super::Point2D<T, Cm>;
#[test]
pub fn test_add() {
let p1 = Point2DMm::new(1.0, 2.0);
let p2 = vec2(3.0, 4.0);
let result = p1 + p2;
assert_eq!(result, Point2DMm::new(4.0, 6.0));
}
#[test]
pub fn test_add_assign() {
let mut p1 = Point2DMm::new(1.0, 2.0);
p1 += vec2(3.0, 4.0);
assert_eq!(p1, Point2DMm::new(4.0, 6.0));
}
#[test]
pub fn test_typed_scalar_mul() {
let p1 = Point2DMm::new(1.0, 2.0);
let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);
let result = p1 * cm_per_mm;
assert_eq!(result, Point2DCm::new(0.1, 0.2));
}
#[test]
pub fn test_conv_vector() {
for i in 0..100 {
// We don't care about these values as long as they are not the same.
let x = i as f32 * 0.012345;
let y = i as f32 * 0.987654;
let p: Point2D<f32> = point2(x, y);
assert_eq!(p.to_vector().to_point(), p);
}
}
#[test]
pub fn test_swizzling() {
let p: Point2D<i32> = point2(1, 2);
assert_eq!(p.yx(), point2(2, 1));
}
}
#[cfg(test)]
mod point3d {
use default;
use default::Point3D;
use {point2, point3};
#[cfg(feature = "mint")]
use mint;
#[test]
pub fn test_min() {
let p1 = Point3D::new(1.0, 3.0, 5.0);
let p2 = Point3D::new(2.0, 2.0, -1.0);
let result = p1.min(p2);
assert_eq!(result, Point3D::new(1.0, 2.0, -1.0));
}
#[test]
pub fn test_max() {
let p1 = Point3D::new(1.0, 3.0, 5.0);
let p2 = Point3D::new(2.0, 2.0, -1.0);
let result = p1.max(p2);
assert_eq!(result, Point3D::new(2.0, 3.0, 5.0));
}
#[test]
pub fn test_conv_vector() {
use point3;
for i in 0..100 {
// We don't care about these values as long as they are not the same.
let x = i as f32 * 0.012345;
let y = i as f32 * 0.987654;
let z = x * y;
let p: Point3D<f32> = point3(x, y, z);
assert_eq!(p.to_vector().to_point(), p);
}
}
#[test]
pub fn test_swizzling() {
let p: default::Point3D<i32> = point3(1, 2, 3);
assert_eq!(p.xy(), point2(1, 2));
assert_eq!(p.xz(), point2(1, 3));
assert_eq!(p.yz(), point2(2, 3));
}
#[cfg(feature = "mint")]
#[test]
pub fn test_mint() {
let p1 = Point3D::new(1.0, 3.0, 5.0);
let pm: mint::Point3<_> = p1.into();
let p2 = Point3D::from(pm);
assert_eq!(p1, p2);
}
}