blob: 60e415a81e2dea1ae69ad02db4895e555abcbc3f [file] [log] [blame]
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::UnknownUnit;
use scale::Scale;
use num::*;
use rect::Rect;
use point::{point2, Point2D};
use vector::{vec2, Vector2D};
use side_offsets::SideOffsets2D;
use size::Size2D;
use nonempty::NonEmpty;
use approxord::{min, max};
use num_traits::NumCast;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, Mul, Sub};
/// An axis aligned rectangle represented by its minimum and maximum coordinates.
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")))]
pub struct Box2D<T, U> {
pub min: Point2D<T, U>,
pub max: Point2D<T, U>,
}
impl<T: Hash, U> Hash for Box2D<T, U> {
fn hash<H: Hasher>(&self, h: &mut H) {
self.min.hash(h);
self.max.hash(h);
}
}
impl<T: Copy, U> Copy for Box2D<T, U> {}
impl<T: Copy, U> Clone for Box2D<T, U> {
fn clone(&self) -> Self {
*self
}
}
impl<T: PartialEq, U> PartialEq<Box2D<T, U>> for Box2D<T, U> {
fn eq(&self, other: &Self) -> bool {
self.min.eq(&other.min) && self.max.eq(&other.max)
}
}
impl<T: Eq, U> Eq for Box2D<T, U> {}
impl<T: fmt::Debug, U> fmt::Debug for Box2D<T, U> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Box2D({:?}, {:?})", self.min, self.max)
}
}
impl<T: fmt::Display, U> fmt::Display for Box2D<T, U> {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "Box2D({}, {})", self.min, self.max)
}
}
impl<T, U> Box2D<T, U> {
/// Constructor.
pub const fn new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self {
Box2D {
min,
max,
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Zero + PartialOrd,
{
/// Creates a Box2D of the given size, at offset zero.
#[inline]
pub fn from_size(size: Size2D<T, U>) -> Self {
let zero = Point2D::zero();
let point = size.to_vector().to_point();
Box2D::from_points(&[zero, point])
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + PartialOrd,
{
/// Returns true if the box has a negative area.
///
/// The common interpretation for a negative box is to consider it empty. It can be obtained
/// by calculating the intersection of two boxes that do not intersect.
#[inline]
pub fn is_negative(&self) -> bool {
self.max.x < self.min.x || self.max.y < self.min.y
}
/// Returns true if the size is zero or negative.
#[inline]
pub fn is_empty_or_negative(&self) -> bool {
self.max.x <= self.min.x || self.max.y <= self.min.y
}
#[inline]
pub fn to_non_empty(&self) -> Option<NonEmpty<Self>> {
if self.is_empty_or_negative() {
return None;
}
Some(NonEmpty(*self))
}
/// Returns true if the two boxes intersect.
#[inline]
pub fn intersects(&self, other: &Self) -> bool {
self.min.x < other.max.x
&& self.max.x > other.min.x
&& self.min.y < other.max.y
&& self.max.y > other.min.y
}
/// Computes the intersection of two boxes.
///
/// The result is a negative box if the boxes do not intersect.
#[inline]
pub fn intersection(&self, other: &Self) -> Self {
Box2D {
min: point2(
max(self.min.x, other.min.x),
max(self.min.y, other.min.y),
),
max: point2(
min(self.max.x, other.max.x),
min(self.max.y, other.max.y),
)
}
}
/// Computes the intersection of two boxes, returning `None` if the boxes do not intersect.
#[inline]
pub fn try_intersection(&self, other: &Self) -> Option<NonEmpty<Self>> {
let intersection = self.intersection(other);
if intersection.is_negative() {
return None;
}
Some(NonEmpty(intersection))
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Add<T, Output = T>,
{
/// Returns the same box, translated by a vector.
#[inline]
pub fn translate(&self, by: Vector2D<T, U>) -> Self {
Box2D {
min: self.min + by,
max: self.max + by,
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + PartialOrd + Zero,
{
/// Returns true if this box contains the point. Points are considered
/// in the box if they are on the front, left or top faces, but outside if they
/// are on the back, right or bottom faces.
#[inline]
pub fn contains(&self, p: Point2D<T, U>) -> bool {
self.min.x <= p.x && p.x < self.max.x
&& self.min.y <= p.y && p.y < self.max.y
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + PartialOrd + Zero + Sub<T, Output = T>,
{
/// Returns true if this box contains the interior of the other box. Always
/// returns true if other is empty, and always returns false if other is
/// nonempty but this box is empty.
#[inline]
pub fn contains_box(&self, other: &Self) -> bool {
other.is_empty_or_negative()
|| (self.min.x <= other.min.x && other.max.x <= self.max.x
&& self.min.y <= other.min.y && other.max.y <= self.max.y)
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Sub<T, Output = T>,
{
#[inline]
pub fn size(&self)-> Size2D<T, U> {
(self.max - self.min).to_size()
}
#[inline]
pub fn width(&self) -> T {
self.max.x - self.min.x
}
#[inline]
pub fn height(&self) -> T {
self.max.y - self.min.y
}
#[inline]
pub fn to_rect(&self) -> Rect<T, U> {
Rect {
origin: self.min,
size: self.size(),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + PartialEq + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Inflates the box by the specified sizes on each side respectively.
#[inline]
#[must_use]
pub fn inflate(&self, width: T, height: T) -> Self {
Box2D {
min: point2(self.min.x - width, self.min.y - height),
max: point2(self.max.x + width, self.max.y + height),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{
/// Calculate the size and position of an inner box.
///
/// Subtracts the side offsets from all sides. The horizontal, vertical
/// and applicate offsets must not be larger than the original side length.
pub fn inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
Box2D {
min: self.min + vec2(offsets.left, offsets.top),
max: self.max - vec2(offsets.right, offsets.bottom),
}
}
/// Calculate the b and position of an outer box.
///
/// Add the offsets to all sides. The expanded box is returned.
pub fn outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
Box2D {
min: self.min - vec2(offsets.left, offsets.top),
max: self.max + vec2(offsets.right, offsets.bottom),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Zero + PartialOrd,
{
/// Returns the smallest box containing all of the provided points.
pub fn from_points<I>(points: I) -> Self
where
I: IntoIterator,
I::Item: Borrow<Point2D<T, U>>,
{
let mut points = points.into_iter();
let (mut min_x, mut min_y) = match points.next() {
Some(first) => (first.borrow().x, first.borrow().y),
None => return Box2D::zero(),
};
let (mut max_x, mut max_y) = (min_x, min_y);
for point in points {
let p = point.borrow();
if p.x < min_x {
min_x = p.x
}
if p.x > max_x {
max_x = p.x
}
if p.y < min_y {
min_y = p.y
}
if p.y > max_y {
max_y = p.y
}
}
Box2D {
min: point2(min_x, min_y),
max: point2(max_x, max_y),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{
/// Linearly interpolate between this box and another box.
///
/// `t` is expected to be between zero and one.
#[inline]
pub fn lerp(&self, other: Self, t: T) -> Self {
Self::new(
self.min.lerp(other.min, t),
self.max.lerp(other.max, t),
)
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + One + Add<Output = T> + Div<Output = T>,
{
pub fn center(&self) -> Point2D<T, U> {
let two = T::one() + T::one();
(self.min + self.max.to_vector()) / two
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + PartialOrd,
{
#[inline]
pub fn union(&self, other: &Self) -> Self {
Box2D {
min: point2(
min(self.min.x, other.min.x),
min(self.min.y, other.min.y),
),
max: point2(
max(self.max.x, other.max.x),
max(self.max.y, other.max.y),
),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy,
{
#[inline]
pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
where
T: Mul<S, Output = T>
{
Box2D {
min: point2(self.min.x * x, self.min.y * y),
max: point2(self.max.x * x, self.max.y * y),
}
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
{
#[inline]
pub fn area(&self) -> T {
let size = self.size();
size.width * size.height
}
}
impl<T, U> Box2D<T, U>
where
T: Copy + Zero,
{
/// Constructor, setting all sides to zero.
pub fn zero() -> Self {
Box2D::new(Point2D::zero(), Point2D::zero())
}
}
impl<T, U> Box2D<T, U>
where
T: PartialEq,
{
/// Returns true if the size is zero.
#[inline]
pub fn is_empty(&self) -> bool {
self.min.x == self.max.x || self.min.y == self.max.y
}
}
impl<T, U> Mul<T> for Box2D<T, U>
where
T: Copy + Mul<T, Output = T>,
{
type Output = Self;
#[inline]
fn mul(self, scale: T) -> Self {
Box2D::new(self.min * scale, self.max * scale)
}
}
impl<T, U> Div<T> for Box2D<T, U>
where
T: Copy + Div<T, Output = T>,
{
type Output = Self;
#[inline]
fn div(self, scale: T) -> Self {
Box2D::new(self.min / scale, self.max / scale)
}
}
impl<T, U1, U2> Mul<Scale<T, U1, U2>> for Box2D<T, U1>
where
T: Copy + Mul<T, Output = T>,
{
type Output = Box2D<T, U2>;
#[inline]
fn mul(self, scale: Scale<T, U1, U2>) -> Box2D<T, U2> {
Box2D::new(self.min * scale, self.max * scale)
}
}
impl<T, U1, U2> Div<Scale<T, U1, U2>> for Box2D<T, U2>
where
T: Copy + Div<T, Output = T>,
{
type Output = Box2D<T, U1>;
#[inline]
fn div(self, scale: Scale<T, U1, U2>) -> Box2D<T, U1> {
Box2D::new(self.min / scale, self.max / scale)
}
}
impl<T, Unit> Box2D<T, Unit>
where
T: Copy,
{
/// Drop the units, preserving only the numeric value.
pub fn to_untyped(&self) -> Box2D<T, UnknownUnit> {
Box2D::new(self.min.to_untyped(), self.max.to_untyped())
}
/// Tag a unitless value with units.
pub fn from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, Unit> {
Box2D::new(
Point2D::from_untyped(c.min),
Point2D::from_untyped(c.max),
)
}
/// Cast the unit
pub fn cast_unit<V>(&self) -> Box2D<T, V> {
Box2D::new(self.min.cast_unit(), self.max.cast_unit())
}
}
impl<T0, Unit> Box2D<T0, Unit>
where
T0: NumCast + Copy,
{
/// Cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn cast<T1: NumCast + Copy>(&self) -> Box2D<T1, Unit> {
Box2D::new(
self.min.cast(),
self.max.cast(),
)
}
/// Fallible cast from one numeric representation to another, preserving the units.
///
/// When casting from floating point to integer coordinates, the decimals are truncated
/// as one would expect from a simple cast, but this behavior does not always make sense
/// geometrically. Consider using round(), round_in or round_out() before casting.
pub fn try_cast<T1: NumCast + Copy>(&self) -> Option<Box2D<T1, Unit>> {
match (self.min.try_cast(), self.max.try_cast()) {
(Some(a), Some(b)) => Some(Box2D::new(a, b)),
_ => None,
}
}
}
impl<T, U> Box2D<T, U>
where
T: Round,
{
/// Return a box with edges rounded to integer coordinates, such that
/// the returned box has the same set of pixel centers as the original
/// one.
/// Values equal to 0.5 round up.
/// Suitable for most places where integral device coordinates
/// are needed, but note that any translation should be applied first to
/// avoid pixel rounding errors.
/// Note that this is *not* rounding to nearest integer if the values are negative.
/// They are always rounding as floor(n + 0.5).
#[must_use]
pub fn round(&self) -> Self {
Box2D::new(self.min.round(), self.max.round())
}
}
impl<T, U> Box2D<T, U>
where
T: Floor + Ceil,
{
/// Return a box with faces/edges rounded to integer coordinates, such that
/// the original box contains the resulting box.
#[must_use]
pub fn round_in(&self) -> Self {
let min = self.min.ceil();
let max = self.max.floor();
Box2D { min, max }
}
/// Return a box with faces/edges rounded to integer coordinates, such that
/// the original box is contained in the resulting box.
#[must_use]
pub fn round_out(&self) -> Self {
let min = self.min.floor();
let max = self.max.ceil();
Box2D { min, max }
}
}
// Convenience functions for common casts
impl<T: NumCast + Copy, Unit> Box2D<T, Unit> {
/// Cast into an `f32` box.
pub fn to_f32(&self) -> Box2D<f32, Unit> {
self.cast()
}
/// Cast into an `f64` box.
pub fn to_f64(&self) -> Box2D<f64, Unit> {
self.cast()
}
/// Cast into an `usize` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_usize(&self) -> Box2D<usize, Unit> {
self.cast()
}
/// Cast into an `u32` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_u32(&self) -> Box2D<u32, Unit> {
self.cast()
}
/// Cast into an `i32` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_i32(&self) -> Box2D<i32, Unit> {
self.cast()
}
/// Cast into an `i64` box, truncating decimals if any.
///
/// When casting from floating point boxes, it is worth considering whether
/// to `round()`, `round_in()` or `round_out()` before the cast in order to
/// obtain the desired conversion behavior.
pub fn to_i64(&self) -> Box2D<i64, Unit> {
self.cast()
}
}
impl<T, U> From<Size2D<T, U>> for Box2D<T, U>
where
T: Copy + Zero + PartialOrd,
{
fn from(b: Size2D<T, U>) -> Self {
Self::from_size(b)
}
}
#[cfg(test)]
mod tests {
use side_offsets::SideOffsets2D;
use {Point2D, point2, vec2, size2};
use default::Box2D;
//use super::*;
#[test]
fn test_size() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert_eq!(b.size().width, 20.0);
assert_eq!(b.size().height, 20.0);
}
#[test]
fn test_width_height() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert!(b.width() == 20.0);
assert!(b.height() == 20.0);
}
#[test]
fn test_center() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert_eq!(b.center(), Point2D::zero());
}
#[test]
fn test_area() {
let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
assert_eq!(b.area(), 400.0);
}
#[test]
fn test_from_points() {
let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]);
assert_eq!(b.min, point2(50.0, 25.0));
assert_eq!(b.max, point2(100.0, 160.0));
}
#[test]
fn test_round_in() {
let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in();
assert_eq!(b.min.x, -25.0);
assert_eq!(b.min.y, -40.0);
assert_eq!(b.max.x, 60.0);
assert_eq!(b.max.y, 36.0);
}
#[test]
fn test_round_out() {
let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out();
assert_eq!(b.min.x,-26.0);
assert_eq!(b.min.y, -41.0);
assert_eq!(b.max.x, 61.0);
assert_eq!(b.max.y, 37.0);
}
#[test]
fn test_round() {
let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round();
assert_eq!(b.min.x,-26.0);
assert_eq!(b.min.y, -40.0);
assert_eq!(b.max.x, 60.0);
assert_eq!(b.max.y, 37.0);
}
#[test]
fn test_from_size() {
let b = Box2D::from_size(size2(30.0, 40.0));
assert!(b.min == Point2D::zero());
assert!(b.size().width == 30.0);
assert!(b.size().height == 40.0);
}
#[test]
fn test_inner_box() {
let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
assert_eq!(b.max.x, 80.0);
assert_eq!(b.max.y, 155.0);
assert_eq!(b.min.x, 60.0);
assert_eq!(b.min.y, 35.0);
}
#[test]
fn test_outer_box() {
let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
assert_eq!(b.max.x, 120.0);
assert_eq!(b.max.y, 165.0);
assert_eq!(b.min.x, 40.0);
assert_eq!(b.min.y, 15.0);
}
#[test]
fn test_translate() {
let size = size2(15.0, 15.0);
let mut center = (size / 2.0).to_vector().to_point();
let b = Box2D::from_size(size);
assert_eq!(b.center(), center);
let translation = vec2(10.0, 2.5);
let b = b.translate(translation);
center += translation;
assert_eq!(b.center(), center);
assert_eq!(b.max.x, 25.0);
assert_eq!(b.max.y, 17.5);
assert_eq!(b.min.x, 10.0);
assert_eq!(b.min.y, 2.5);
}
#[test]
fn test_union() {
let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]);
let b = b1.union(&b2);
assert_eq!(b.max.x, 20.0);
assert_eq!(b.max.y, 20.0);
assert_eq!(b.min.x, -20.0);
assert_eq!(b.min.y, -20.0);
}
#[test]
fn test_intersects() {
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
assert!(b1.intersects(&b2));
}
#[test]
fn test_intersection() {
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
let b = b1.intersection(&b2);
assert_eq!(b.max.x, 10.0);
assert_eq!(b.max.y, 20.0);
assert_eq!(b.min.x, -10.0);
assert_eq!(b.min.y, -20.0);
}
#[test]
fn test_try_intersection() {
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
assert!(b1.try_intersection(&b2).is_some());
let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]);
assert!(b1.try_intersection(&b2).is_none());
}
#[test]
fn test_scale() {
let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]);
let b = b.scale(0.5, 0.5);
assert_eq!(b.max.x, 5.0);
assert_eq!(b.max.y, 5.0);
assert_eq!(b.min.x, -5.0);
assert_eq!(b.min.y, -5.0);
}
#[test]
fn test_lerp() {
let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]);
let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]);
let b = b1.lerp(b2, 0.5);
assert_eq!(b.center(), Point2D::zero());
assert_eq!(b.size().width, 10.0);
assert_eq!(b.size().height, 10.0);
}
#[test]
fn test_contains() {
let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
assert!(b.contains(point2(-15.3, 10.5)));
}
#[test]
fn test_contains_box() {
let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]);
assert!(b1.contains_box(&b2));
}
#[test]
fn test_inflate() {
let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
let b = b.inflate(10.0, 5.0);
assert_eq!(b.size().width, 60.0);
assert_eq!(b.size().height, 50.0);
assert_eq!(b.center(), Point2D::zero());
}
#[test]
fn test_is_empty() {
for i in 0..2 {
let mut coords_neg = [-20.0, -20.0];
let mut coords_pos = [20.0, 20.0];
coords_neg[i] = 0.0;
coords_pos[i] = 0.0;
let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]);
assert!(b.is_empty());
}
}
}