blob: 90443161566b8c68e3a5162b410ef05528753654 [file] [log] [blame]
use crate::core::cmp;
use crate::core::u16;
use crate::core::u8;
use crate::io;
use crate::io::prelude::*;
use crate::io::{Error, ErrorKind};
use crate::byteorder_ext::{ReadBytesExt, WriteBytesExt};
use byteorder::LittleEndian;
use crate::dir_entry::DIR_ENTRY_SIZE;
use crate::error::{FatfsError, FatfsNumericError};
use crate::fs::{FatType, FormatVolumeOptions, FsStatusFlags};
use crate::table::RESERVED_FAT_ENTRIES;
const BITS_PER_BYTE: u32 = 8;
const KB: u64 = 1024;
const MB: u64 = KB * 1024;
const GB: u64 = MB * 1024;
#[derive(Default, Debug, Clone)]
pub(crate) struct BiosParameterBlock {
pub(crate) bytes_per_sector: u16,
pub(crate) sectors_per_cluster: u8,
pub(crate) reserved_sectors: u16,
pub(crate) fats: u8,
pub(crate) root_entries: u16,
pub(crate) total_sectors_16: u16,
pub(crate) media: u8,
pub(crate) sectors_per_fat_16: u16,
pub(crate) sectors_per_track: u16,
pub(crate) heads: u16,
pub(crate) hidden_sectors: u32,
pub(crate) total_sectors_32: u32,
// Extended BIOS Parameter Block
pub(crate) sectors_per_fat_32: u32,
pub(crate) extended_flags: u16,
pub(crate) fs_version: u16,
pub(crate) root_dir_first_cluster: u32,
pub(crate) fs_info_sector: u16,
pub(crate) backup_boot_sector: u16,
pub(crate) reserved_0: [u8; 12],
pub(crate) drive_num: u8,
pub(crate) reserved_1: u8,
pub(crate) ext_sig: u8,
pub(crate) volume_id: u32,
pub(crate) volume_label: [u8; 11],
pub(crate) fs_type_label: [u8; 8],
}
impl BiosParameterBlock {
fn deserialize<R: Read>(rdr: &mut R) -> io::Result<BiosParameterBlock> {
let mut bpb: BiosParameterBlock = Default::default();
bpb.bytes_per_sector = rdr.read_u16::<LittleEndian>()?;
bpb.sectors_per_cluster = rdr.read_u8()?;
bpb.reserved_sectors = rdr.read_u16::<LittleEndian>()?;
bpb.fats = rdr.read_u8()?;
bpb.root_entries = rdr.read_u16::<LittleEndian>()?;
bpb.total_sectors_16 = rdr.read_u16::<LittleEndian>()?;
bpb.media = rdr.read_u8()?;
bpb.sectors_per_fat_16 = rdr.read_u16::<LittleEndian>()?;
bpb.sectors_per_track = rdr.read_u16::<LittleEndian>()?;
bpb.heads = rdr.read_u16::<LittleEndian>()?;
bpb.hidden_sectors = rdr.read_u32::<LittleEndian>()?;
bpb.total_sectors_32 = rdr.read_u32::<LittleEndian>()?;
if bpb.is_fat32() {
bpb.sectors_per_fat_32 = rdr.read_u32::<LittleEndian>()?;
bpb.extended_flags = rdr.read_u16::<LittleEndian>()?;
bpb.fs_version = rdr.read_u16::<LittleEndian>()?;
bpb.root_dir_first_cluster = rdr.read_u32::<LittleEndian>()?;
bpb.fs_info_sector = rdr.read_u16::<LittleEndian>()?;
bpb.backup_boot_sector = rdr.read_u16::<LittleEndian>()?;
rdr.read_exact(&mut bpb.reserved_0)?;
bpb.drive_num = rdr.read_u8()?;
bpb.reserved_1 = rdr.read_u8()?;
bpb.ext_sig = rdr.read_u8()?; // 0x29
bpb.volume_id = rdr.read_u32::<LittleEndian>()?;
rdr.read_exact(&mut bpb.volume_label)?;
rdr.read_exact(&mut bpb.fs_type_label)?;
} else {
bpb.drive_num = rdr.read_u8()?;
bpb.reserved_1 = rdr.read_u8()?;
bpb.ext_sig = rdr.read_u8()?; // 0x29
bpb.volume_id = rdr.read_u32::<LittleEndian>()?;
rdr.read_exact(&mut bpb.volume_label)?;
rdr.read_exact(&mut bpb.fs_type_label)?;
}
// when the extended boot signature is anything other than 0x29, the fields are invalid
if bpb.ext_sig != 0x29 {
// fields after ext_sig are not used - clean them
bpb.volume_id = 0;
bpb.volume_label = [0; 11];
bpb.fs_type_label = [0; 8];
}
Ok(bpb)
}
fn serialize<W: Write>(&self, mut wrt: W) -> io::Result<()> {
wrt.write_u16::<LittleEndian>(self.bytes_per_sector)?;
wrt.write_u8(self.sectors_per_cluster)?;
wrt.write_u16::<LittleEndian>(self.reserved_sectors)?;
wrt.write_u8(self.fats)?;
wrt.write_u16::<LittleEndian>(self.root_entries)?;
wrt.write_u16::<LittleEndian>(self.total_sectors_16)?;
wrt.write_u8(self.media)?;
wrt.write_u16::<LittleEndian>(self.sectors_per_fat_16)?;
wrt.write_u16::<LittleEndian>(self.sectors_per_track)?;
wrt.write_u16::<LittleEndian>(self.heads)?;
wrt.write_u32::<LittleEndian>(self.hidden_sectors)?;
wrt.write_u32::<LittleEndian>(self.total_sectors_32)?;
if self.is_fat32() {
wrt.write_u32::<LittleEndian>(self.sectors_per_fat_32)?;
wrt.write_u16::<LittleEndian>(self.extended_flags)?;
wrt.write_u16::<LittleEndian>(self.fs_version)?;
wrt.write_u32::<LittleEndian>(self.root_dir_first_cluster)?;
wrt.write_u16::<LittleEndian>(self.fs_info_sector)?;
wrt.write_u16::<LittleEndian>(self.backup_boot_sector)?;
wrt.write_all(&self.reserved_0)?;
wrt.write_u8(self.drive_num)?;
wrt.write_u8(self.reserved_1)?;
wrt.write_u8(self.ext_sig)?; // 0x29
wrt.write_u32::<LittleEndian>(self.volume_id)?;
wrt.write_all(&self.volume_label)?;
wrt.write_all(&self.fs_type_label)?;
} else {
wrt.write_u8(self.drive_num)?;
wrt.write_u8(self.reserved_1)?;
wrt.write_u8(self.ext_sig)?; // 0x29
wrt.write_u32::<LittleEndian>(self.volume_id)?;
wrt.write_all(&self.volume_label)?;
wrt.write_all(&self.fs_type_label)?;
}
Ok(())
}
fn validate(&self) -> io::Result<()> {
// sanity checks
if self.bytes_per_sector.count_ones() != 1 {
return Err(Error::new(
ErrorKind::Other,
FatfsError::InvalidBytesPerSector(FatfsNumericError::NotPowerOfTwo),
));
} else if self.bytes_per_sector < 512 {
return Err(Error::new(
ErrorKind::Other,
FatfsError::InvalidBytesPerSector(FatfsNumericError::TooSmall(512)),
));
} else if self.bytes_per_sector > 4096 {
return Err(Error::new(
ErrorKind::Other,
FatfsError::InvalidBytesPerSector(FatfsNumericError::TooLarge(4096)),
));
}
if self.sectors_per_cluster.count_ones() != 1 {
return Err(Error::new(
ErrorKind::Other,
FatfsError::InvalidSectorsPerCluster(FatfsNumericError::NotPowerOfTwo),
));
} else if self.sectors_per_cluster < 1 {
return Err(Error::new(
ErrorKind::Other,
FatfsError::InvalidSectorsPerCluster(FatfsNumericError::TooSmall(1)),
));
} else if self.sectors_per_cluster > 128 {
return Err(Error::new(
ErrorKind::Other,
FatfsError::InvalidSectorsPerCluster(FatfsNumericError::TooLarge(128)),
));
}
// bytes per sector is u16, sectors per cluster is u8, so guaranteed no overflow in multiplication
let bytes_per_cluster = self.bytes_per_sector as u32 * self.sectors_per_cluster as u32;
let maximum_compatibility_bytes_per_cluster: u32 = 32 * 1024;
if bytes_per_cluster > maximum_compatibility_bytes_per_cluster {
// 32k is the largest value to maintain greatest compatibility
// Many implementations appear to support 64k per cluster, and some may support 128k or larger
// However, >32k is not as thoroughly tested...
warn!("fs compatibility: bytes_per_cluster value '{}' in BPB exceeds '{}', and thus may be incompatible with some implementations",
bytes_per_cluster, maximum_compatibility_bytes_per_cluster);
}
let is_fat32 = self.is_fat32();
if self.reserved_sectors < 1 {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidReservedSectors));
} else if !is_fat32 && self.reserved_sectors != 1 {
// Microsoft document indicates fat12 and fat16 code exists that presume this value is 1
warn!(
"fs compatibility: reserved_sectors value '{}' in BPB is not '1', and thus is incompatible with some implementations",
self.reserved_sectors
);
}
if self.fats == 0 {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidFats));
} else if self.fats > 2 {
// Microsoft document indicates that few implementations support any values other than 1 or 2
warn!(
"fs compatibility: numbers of FATs '{}' in BPB is greater than '2', and thus is incompatible with some implementations",
self.fats
);
}
if is_fat32 && self.root_entries != 0 {
return Err(Error::new(ErrorKind::Other, FatfsError::NonZeroRootEntries));
}
if !is_fat32 && self.root_entries == 0 {
return Err(Error::new(ErrorKind::Other, FatfsError::ZeroRootEntries));
}
if (u32::from(self.root_entries) * DIR_ENTRY_SIZE as u32) % u32::from(self.bytes_per_sector)
!= 0
{
warn!("Root entries should fill sectors fully");
}
if is_fat32 && self.total_sectors_16 != 0 {
return Err(Error::new(ErrorKind::Other, FatfsError::NonZeroTotalSectors));
}
if (self.total_sectors_16 == 0) == (self.total_sectors_32 == 0) {
return Err(Error::new(ErrorKind::Other, FatfsError::ZeroTotalSectors));
}
if is_fat32 && self.sectors_per_fat_32 == 0 {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidSectorsPerFat));
}
if self.sectors_per_fat() >= std::u32::MAX / (self.fats as u32) {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidSectorsPerFat));
}
if self.fs_version != 0 {
return Err(Error::new(ErrorKind::Other, FatfsError::UnknownVersion));
}
if self
.reserved_sectors()
.checked_add(self.sectors_per_all_fats())
.and_then(|e| e.checked_add(self.root_dir_sectors()))
.is_none()
{
return Err(Error::new(ErrorKind::Other, FatfsError::TooManyReservedSectors));
}
if self.total_sectors() <= self.first_data_sector() {
return Err(Error::new(ErrorKind::Other, FatfsError::TotalSectorsTooSmall));
}
if is_fat32 && self.backup_boot_sector() >= self.reserved_sectors() {
return Err(Error::new(ErrorKind::Other, FatfsError::BackupBootSectorInvalid));
}
if is_fat32 && self.fs_info_sector() >= self.reserved_sectors() {
return Err(Error::new(ErrorKind::Other, FatfsError::FsInfoInvalid));
}
let total_clusters = self.total_clusters();
let fat_type = FatType::from_clusters(total_clusters);
if is_fat32 != (fat_type == FatType::Fat32) {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidNumClusters));
}
if fat_type == FatType::Fat32 && total_clusters > 0x0FFF_FFFF {
return Err(Error::new(ErrorKind::Other, FatfsError::TooManyClusters));
}
let bits_per_fat_entry = fat_type.bits_per_fat_entry();
let total_fat_entries =
((self.sectors_per_fat() as u64) * (self.bytes_per_sector as u64) * 8
/ bits_per_fat_entry as u64) as u32;
if total_fat_entries - RESERVED_FAT_ENTRIES < total_clusters {
warn!("FAT is too small compared to total number of clusters");
}
Ok(())
}
pub(crate) fn mirroring_enabled(&self) -> bool {
self.extended_flags & 0x80 == 0
}
pub(crate) fn active_fat(&self) -> u16 {
// The zero-based number of the active FAT is only valid if mirroring is disabled.
if self.mirroring_enabled() {
0
} else {
self.extended_flags & 0x0F
}
}
pub(crate) fn status_flags(&self) -> FsStatusFlags {
FsStatusFlags::decode(self.reserved_1)
}
pub(crate) fn is_fat32(&self) -> bool {
// because this field must be zero on FAT32, and
// because it must be non-zero on FAT12/FAT16,
// this provides a simple way to detect FAT32
self.sectors_per_fat_16 == 0
}
pub(crate) fn sectors_per_fat(&self) -> u32 {
if self.is_fat32() {
self.sectors_per_fat_32
} else {
self.sectors_per_fat_16 as u32
}
}
pub(crate) fn total_sectors(&self) -> u32 {
if self.total_sectors_16 == 0 {
self.total_sectors_32
} else {
self.total_sectors_16 as u32
}
}
pub(crate) fn reserved_sectors(&self) -> u32 {
self.reserved_sectors as u32
}
pub(crate) fn root_dir_sectors(&self) -> u32 {
let root_dir_bytes = self.root_entries as u32 * DIR_ENTRY_SIZE as u32;
(root_dir_bytes + self.bytes_per_sector as u32 - 1) / self.bytes_per_sector as u32
}
pub(crate) fn sectors_per_all_fats(&self) -> u32 {
self.fats as u32 * self.sectors_per_fat()
}
pub(crate) fn first_data_sector(&self) -> u32 {
let root_dir_sectors = self.root_dir_sectors();
let fat_sectors = self.sectors_per_all_fats();
self.reserved_sectors() + fat_sectors + root_dir_sectors
}
pub(crate) fn total_clusters(&self) -> u32 {
let total_sectors = self.total_sectors();
let first_data_sector = self.first_data_sector();
let data_sectors = total_sectors - first_data_sector;
data_sectors / self.sectors_per_cluster as u32
}
pub(crate) fn bytes_from_sectors(&self, sectors: u32) -> u64 {
// Note: total number of sectors is a 32 bit number so offsets have to be 64 bit
(sectors as u64) * self.bytes_per_sector as u64
}
pub(crate) fn sectors_from_clusters(&self, clusters: u32) -> Result<u32, FatfsError> {
// sectors_per_cluster is an 8 bit number. This shouldn't overflow on a valid FAT disk, as
// FAT only supports up to a 32 bit sector count. The input to this function is not
// necessarily trusted, however, so we need to do a checked multiply.
clusters
.checked_mul(self.sectors_per_cluster as u32)
.ok_or(FatfsError::InvalidClusterNumber)
}
pub(crate) fn cluster_size(&self) -> u32 {
self.sectors_per_cluster as u32 * self.bytes_per_sector as u32
}
pub(crate) fn clusters_from_bytes(&self, bytes: u64) -> u32 {
let cluster_size = self.cluster_size() as i64;
((bytes as i64 + cluster_size - 1) / cluster_size) as u32
}
pub(crate) fn fs_info_sector(&self) -> u32 {
self.fs_info_sector as u32
}
pub(crate) fn backup_boot_sector(&self) -> u32 {
self.backup_boot_sector as u32
}
}
pub(crate) struct BootSector {
bootjmp: [u8; 3],
oem_name: [u8; 8],
pub(crate) bpb: BiosParameterBlock,
boot_code: [u8; 448],
boot_sig: [u8; 2],
}
impl BootSector {
pub(crate) fn deserialize<R: Read>(rdr: &mut R) -> io::Result<BootSector> {
let mut boot: BootSector = Default::default();
rdr.read_exact(&mut boot.bootjmp)?;
rdr.read_exact(&mut boot.oem_name)?;
boot.bpb = BiosParameterBlock::deserialize(rdr)?;
if boot.bpb.is_fat32() {
rdr.read_exact(&mut boot.boot_code[0..420])?;
} else {
rdr.read_exact(&mut boot.boot_code[0..448])?;
}
rdr.read_exact(&mut boot.boot_sig)?;
Ok(boot)
}
pub(crate) fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
wrt.write_all(&self.bootjmp)?;
wrt.write_all(&self.oem_name)?;
self.bpb.serialize(&mut *wrt)?;
if self.bpb.is_fat32() {
wrt.write_all(&self.boot_code[0..420])?;
} else {
wrt.write_all(&self.boot_code[0..448])?;
}
wrt.write_all(&self.boot_sig)?;
Ok(())
}
pub(crate) fn validate(&self) -> io::Result<()> {
if self.boot_sig != [0x55, 0xAA] {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidBootSectorSig));
}
if self.bootjmp[0] != 0xEB && self.bootjmp[0] != 0xE9 {
warn!("Unknown opcode {:x} in bootjmp boot sector field", self.bootjmp[0]);
}
self.bpb.validate()?;
Ok(())
}
}
impl Default for BootSector {
fn default() -> BootSector {
BootSector {
bootjmp: Default::default(),
oem_name: Default::default(),
bpb: Default::default(),
boot_code: [0; 448],
boot_sig: Default::default(),
}
}
}
pub(crate) fn estimate_fat_type(total_bytes: u64) -> FatType {
// Used only to select cluster size if FAT type has not been overriden in options
if total_bytes < 4 * MB {
FatType::Fat12
} else if total_bytes < 512 * MB {
FatType::Fat16
} else {
FatType::Fat32
}
}
fn determine_bytes_per_cluster(
total_bytes: u64,
bytes_per_sector: u16,
fat_type: Option<FatType>,
) -> u32 {
let fat_type = fat_type.unwrap_or_else(|| estimate_fat_type(total_bytes));
let bytes_per_cluster = match fat_type {
FatType::Fat12 => (total_bytes.next_power_of_two() / MB * 512) as u32,
FatType::Fat16 => {
if total_bytes <= 16 * MB {
1 * KB as u32
} else if total_bytes <= 128 * MB {
2 * KB as u32
} else {
(total_bytes.next_power_of_two() / (64 * MB) * KB) as u32
}
}
FatType::Fat32 => {
if total_bytes <= 260 * MB {
512
} else if total_bytes <= 8 * GB {
4 * KB as u32
} else {
(total_bytes.next_power_of_two() / (2 * GB) * KB) as u32
}
}
};
const MAX_CLUSTER_SIZE: u32 = 32 * KB as u32;
debug_assert!(bytes_per_cluster.is_power_of_two());
cmp::min(cmp::max(bytes_per_cluster, bytes_per_sector as u32), MAX_CLUSTER_SIZE)
}
fn determine_sectors_per_fat(
total_sectors: u32,
bytes_per_sector: u16,
sectors_per_cluster: u8,
fat_type: FatType,
reserved_sectors: u16,
root_dir_sectors: u32,
fats: u8,
) -> u32 {
//
// FAT size formula transformations:
//
// Initial basic formula:
// size of FAT in bits >= (total number of clusters + 2) * bits per FAT entry
//
// Note: when computing number of clusters from number of sectors rounding down is used because partial clusters
// are not allowed
// Note: in those transformations '/' is a floating-point division (not a rounding towards zero division)
//
// data_sectors = total_sectors - reserved_sectors - fats * sectors_per_fat - root_dir_sectors
// total_clusters = floor(data_sectors / sectors_per_cluster)
// bits_per_sector = bytes_per_sector * 8
// sectors_per_fat * bits_per_sector >= (total_clusters + 2) * bits_per_fat_entry
// sectors_per_fat * bits_per_sector >= (floor(data_sectors / sectors_per_cluster) + 2) * bits_per_fat_entry
//
// Note: omitting the floor function can cause the FAT to be bigger by 1 entry - negligible
//
// sectors_per_fat * bits_per_sector >= (data_sectors / sectors_per_cluster + 2) * bits_per_fat_entry
// t0 = total_sectors - reserved_sectors - root_dir_sectors
// sectors_per_fat * bits_per_sector >= ((t0 - fats * sectors_per_fat) / sectors_per_cluster + 2) * bits_per_fat_entry
// sectors_per_fat * bits_per_sector / bits_per_fat_entry >= (t0 - fats * sectors_per_fat) / sectors_per_cluster + 2
// sectors_per_fat * bits_per_sector / bits_per_fat_entry >= t0 / sectors_per_cluster + 2 - fats * sectors_per_fat / sectors_per_cluster
// sectors_per_fat * bits_per_sector / bits_per_fat_entry + fats * sectors_per_fat / sectors_per_cluster >= t0 / sectors_per_cluster + 2
// sectors_per_fat * (bits_per_sector / bits_per_fat_entry + fats / sectors_per_cluster) >= t0 / sectors_per_cluster + 2
// sectors_per_fat >= (t0 / sectors_per_cluster + 2) / (bits_per_sector / bits_per_fat_entry + fats / sectors_per_cluster)
//
// Note: MS specification omits the constant 2 in calculations. This library is taking a better approach...
//
// sectors_per_fat >= ((t0 + 2 * sectors_per_cluster) / sectors_per_cluster) / (bits_per_sector / bits_per_fat_entry + fats / sectors_per_cluster)
// sectors_per_fat >= (t0 + 2 * sectors_per_cluster) / (sectors_per_cluster * bits_per_sector / bits_per_fat_entry + fats)
//
// Note: compared to MS formula this one can suffer from an overflow problem if u32 type is used
//
// When converting formula to integer types round towards a bigger FAT:
// * first division towards infinity
// * second division towards zero (it is in a denominator of the first division)
let t0: u32 = total_sectors - u32::from(reserved_sectors) - root_dir_sectors;
let t1: u64 = u64::from(t0) + u64::from(2 * u32::from(sectors_per_cluster));
let bits_per_cluster =
u32::from(sectors_per_cluster) * u32::from(bytes_per_sector) * BITS_PER_BYTE;
let t2 =
u64::from(bits_per_cluster / u32::from(fat_type.bits_per_fat_entry()) + u32::from(fats));
let sectors_per_fat = (t1 + t2 - 1) / t2;
// Note: casting is safe here because number of sectors per FAT cannot be bigger than total sectors number
sectors_per_fat as u32
}
fn try_fs_geometry(
total_sectors: u32,
bytes_per_sector: u16,
sectors_per_cluster: u8,
fat_type: FatType,
root_dir_sectors: u32,
fats: u8,
) -> io::Result<(u16, u32)> {
// Note: most of implementations use 32 reserved sectors for FAT32 but it's wasting of space
// This implementation uses only 8. This is enough to fit in two boot sectors (main and backup) with additional
// bootstrap code and one FSInfo sector. It also makes FAT alligned to 4096 which is a nice number.
let reserved_sectors: u16 = if fat_type == FatType::Fat32 { 8 } else { 1 };
// Check if volume has enough space to accomodate reserved sectors, FAT, root directory and some data space
// Having less than 8 sectors for FAT and data would make a little sense
if total_sectors <= u32::from(reserved_sectors) + u32::from(root_dir_sectors) + 8 {
return Err(Error::new(ErrorKind::Other, FatfsError::VolumeTooSmall));
}
// calculate File Allocation Table size
let sectors_per_fat = determine_sectors_per_fat(
total_sectors,
bytes_per_sector,
sectors_per_cluster,
fat_type,
reserved_sectors,
root_dir_sectors,
fats,
);
let data_sectors = total_sectors
- u32::from(reserved_sectors)
- u32::from(root_dir_sectors)
- sectors_per_fat * u32::from(fats);
let total_clusters = data_sectors / u32::from(sectors_per_cluster);
if fat_type != FatType::from_clusters(total_clusters) {
return Err(Error::new(ErrorKind::Other, FatfsError::InvalidFatType));
}
debug_assert!(total_clusters >= fat_type.min_clusters());
if total_clusters > fat_type.max_clusters() {
// Note: it can happen for FAT32
return Err(Error::new(ErrorKind::Other, FatfsError::TooManyClusters));
}
return Ok((reserved_sectors, sectors_per_fat));
}
fn determine_root_dir_sectors(
root_dir_entries: u16,
bytes_per_sector: u16,
fat_type: FatType,
) -> u32 {
if fat_type == FatType::Fat32 {
0
} else {
let root_dir_bytes = u32::from(root_dir_entries) * DIR_ENTRY_SIZE as u32;
(root_dir_bytes + u32::from(bytes_per_sector) - 1) / u32::from(bytes_per_sector)
}
}
fn determine_fs_geometry(
total_sectors: u32,
bytes_per_sector: u16,
sectors_per_cluster: u8,
root_dir_entries: u16,
fats: u8,
) -> io::Result<(FatType, u16, u32)> {
for &fat_type in &[FatType::Fat32, FatType::Fat16, FatType::Fat12] {
let root_dir_sectors =
determine_root_dir_sectors(root_dir_entries, bytes_per_sector, fat_type);
let result = try_fs_geometry(
total_sectors,
bytes_per_sector,
sectors_per_cluster,
fat_type,
root_dir_sectors,
fats,
);
if result.is_ok() {
let (reserved_sectors, sectors_per_fat) = result.unwrap(); // SAFE: used is_ok() before
return Ok((fat_type, reserved_sectors, sectors_per_fat));
}
}
return Err(Error::new(ErrorKind::Other, FatfsError::BadDiskSize));
}
fn format_bpb(
options: &FormatVolumeOptions,
total_sectors: u32,
bytes_per_sector: u16,
) -> io::Result<(BiosParameterBlock, FatType)> {
let bytes_per_cluster = options.bytes_per_cluster.unwrap_or_else(|| {
let total_bytes = u64::from(total_sectors) * u64::from(bytes_per_sector);
determine_bytes_per_cluster(total_bytes, bytes_per_sector, options.fat_type)
});
let sectors_per_cluster = bytes_per_cluster / u32::from(bytes_per_sector);
assert!(sectors_per_cluster <= u32::from(u8::MAX));
let sectors_per_cluster = sectors_per_cluster as u8;
let fats = options.fats.unwrap_or(2u8);
let root_dir_entries = options.max_root_dir_entries.unwrap_or(512);
let (fat_type, reserved_sectors, sectors_per_fat) = determine_fs_geometry(
total_sectors,
bytes_per_sector,
sectors_per_cluster,
root_dir_entries,
fats,
)?;
// drive_num should be 0 for floppy disks and 0x80 for hard disks - determine it using FAT type
let drive_num =
options.drive_num.unwrap_or_else(|| if fat_type == FatType::Fat12 { 0 } else { 0x80 });
// reserved_0 is always zero
let reserved_0 = [0u8; 12];
// setup volume label
let mut volume_label = [0u8; 11];
if let Some(volume_label_from_opts) = options.volume_label {
volume_label.copy_from_slice(&volume_label_from_opts);
} else {
volume_label.copy_from_slice(b"NO NAME ");
}
// setup fs_type_label field
let mut fs_type_label = [0u8; 8];
let fs_type_label_str = match fat_type {
FatType::Fat12 => b"FAT12 ",
FatType::Fat16 => b"FAT16 ",
FatType::Fat32 => b"FAT32 ",
};
fs_type_label.copy_from_slice(fs_type_label_str);
// create Bios Parameter Block struct
let is_fat32 = fat_type == FatType::Fat32;
let sectors_per_fat_16 = if is_fat32 {
0
} else {
debug_assert!(sectors_per_fat <= u32::from(u16::MAX));
sectors_per_fat as u16
};
let bpb = BiosParameterBlock {
bytes_per_sector,
sectors_per_cluster,
reserved_sectors,
fats,
root_entries: if is_fat32 { 0 } else { root_dir_entries },
total_sectors_16: if total_sectors < 0x10000 { total_sectors as u16 } else { 0 },
media: options.media.unwrap_or(0xF8),
sectors_per_fat_16,
sectors_per_track: options.sectors_per_track.unwrap_or(0x20),
heads: options.heads.unwrap_or(0x40),
hidden_sectors: 0,
total_sectors_32: if total_sectors >= 0x10000 { total_sectors } else { 0 },
// FAT32 fields start
sectors_per_fat_32: if is_fat32 { sectors_per_fat } else { 0 },
extended_flags: 0, // mirroring enabled
fs_version: 0,
root_dir_first_cluster: if is_fat32 { 2 } else { 0 },
fs_info_sector: if is_fat32 { 1 } else { 0 },
backup_boot_sector: if is_fat32 { 6 } else { 0 },
reserved_0,
// FAT32 fields end
drive_num,
reserved_1: 0,
ext_sig: 0x29,
volume_id: options.volume_id.unwrap_or(0x12345678),
volume_label,
fs_type_label,
};
// Check if number of clusters is proper for used FAT type
if FatType::from_clusters(bpb.total_clusters()) != fat_type {
return Err(Error::new(ErrorKind::Other, FatfsError::ClusterFatMismatch));
}
Ok((bpb, fat_type))
}
pub(crate) fn format_boot_sector(
options: &FormatVolumeOptions,
total_sectors: u32,
bytes_per_sector: u16,
) -> io::Result<(BootSector, FatType)> {
let mut boot: BootSector = Default::default();
let (bpb, fat_type) = format_bpb(options, total_sectors, bytes_per_sector)?;
boot.bpb = bpb;
boot.oem_name.copy_from_slice(b"MSWIN4.1");
// Boot code copied from FAT32 boot sector initialized by mkfs.fat
boot.bootjmp = [0xEB, 0x58, 0x90];
let boot_code: [u8; 129] = [
0x0E, 0x1F, 0xBE, 0x77, 0x7C, 0xAC, 0x22, 0xC0, 0x74, 0x0B, 0x56, 0xB4, 0x0E, 0xBB, 0x07,
0x00, 0xCD, 0x10, 0x5E, 0xEB, 0xF0, 0x32, 0xE4, 0xCD, 0x16, 0xCD, 0x19, 0xEB, 0xFE, 0x54,
0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6E, 0x6F, 0x74, 0x20, 0x61, 0x20, 0x62, 0x6F,
0x6F, 0x74, 0x61, 0x62, 0x6C, 0x65, 0x20, 0x64, 0x69, 0x73, 0x6B, 0x2E, 0x20, 0x20, 0x50,
0x6C, 0x65, 0x61, 0x73, 0x65, 0x20, 0x69, 0x6E, 0x73, 0x65, 0x72, 0x74, 0x20, 0x61, 0x20,
0x62, 0x6F, 0x6F, 0x74, 0x61, 0x62, 0x6C, 0x65, 0x20, 0x66, 0x6C, 0x6F, 0x70, 0x70, 0x79,
0x20, 0x61, 0x6E, 0x64, 0x0D, 0x0A, 0x70, 0x72, 0x65, 0x73, 0x73, 0x20, 0x61, 0x6E, 0x79,
0x20, 0x6B, 0x65, 0x79, 0x20, 0x74, 0x6F, 0x20, 0x74, 0x72, 0x79, 0x20, 0x61, 0x67, 0x61,
0x69, 0x6E, 0x20, 0x2E, 0x2E, 0x2E, 0x20, 0x0D, 0x0A,
];
boot.boot_code[..boot_code.len()].copy_from_slice(&boot_code);
boot.boot_sig = [0x55, 0xAA];
// fix offsets in bootjmp and boot code for non-FAT32 filesystems (bootcode is on a different offset)
if fat_type != FatType::Fat32 {
// offset of boot code
let boot_code_offset: u8 = 0x36 + 8;
boot.bootjmp[1] = boot_code_offset - 2;
// offset of message
const MESSAGE_OFFSET: u16 = 29;
let message_offset_in_sector = u16::from(boot_code_offset) + MESSAGE_OFFSET + 0x7c00;
boot.boot_code[3] = (message_offset_in_sector & 0xff) as u8;
boot.boot_code[4] = (message_offset_in_sector >> 8) as u8;
}
Ok((boot, fat_type))
}
#[cfg(test)]
mod tests {
use super::*;
extern crate env_logger;
use crate::core::u32;
fn init() {
let _ = env_logger::builder().is_test(true).try_init();
}
#[test]
fn test_estimate_fat_type() {
assert_eq!(estimate_fat_type(3 * MB), FatType::Fat12);
assert_eq!(estimate_fat_type(4 * MB), FatType::Fat16);
assert_eq!(estimate_fat_type(511 * MB), FatType::Fat16);
assert_eq!(estimate_fat_type(512 * MB), FatType::Fat32);
}
#[test]
fn test_determine_bytes_per_cluster_fat12() {
assert_eq!(determine_bytes_per_cluster(1 * MB + 0, 512, Some(FatType::Fat12)), 512);
assert_eq!(determine_bytes_per_cluster(1 * MB + 1, 512, Some(FatType::Fat12)), 1024);
assert_eq!(determine_bytes_per_cluster(1 * MB, 4096, Some(FatType::Fat12)), 4096);
}
#[test]
fn test_determine_bytes_per_cluster_fat16() {
assert_eq!(determine_bytes_per_cluster(1 * MB, 512, Some(FatType::Fat16)), 1 * KB as u32);
assert_eq!(
determine_bytes_per_cluster(1 * MB, 4 * KB as u16, Some(FatType::Fat16)),
4 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(16 * MB + 0, 512, Some(FatType::Fat16)),
1 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(16 * MB + 1, 512, Some(FatType::Fat16)),
2 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(128 * MB + 0, 512, Some(FatType::Fat16)),
2 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(128 * MB + 1, 512, Some(FatType::Fat16)),
4 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(256 * MB + 0, 512, Some(FatType::Fat16)),
4 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(256 * MB + 1, 512, Some(FatType::Fat16)),
8 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(512 * MB + 0, 512, Some(FatType::Fat16)),
8 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(512 * MB + 1, 512, Some(FatType::Fat16)),
16 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(1024 * MB + 0, 512, Some(FatType::Fat16)),
16 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(1024 * MB + 1, 512, Some(FatType::Fat16)),
32 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(99999 * MB, 512, Some(FatType::Fat16)),
32 * KB as u32
);
}
#[test]
fn test_determine_bytes_per_cluster_fat32() {
assert_eq!(determine_bytes_per_cluster(260 * MB as u64, 512, Some(FatType::Fat32)), 512);
assert_eq!(
determine_bytes_per_cluster(260 * MB as u64, 4 * KB as u16, Some(FatType::Fat32)),
4 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(260 * MB as u64 + 1, 512, Some(FatType::Fat32)),
4 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(8 * GB as u64, 512, Some(FatType::Fat32)),
4 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(8 * GB as u64 + 1, 512, Some(FatType::Fat32)),
8 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(16 * GB as u64 + 0, 512, Some(FatType::Fat32)),
8 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(16 * GB as u64 + 1, 512, Some(FatType::Fat32)),
16 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(32 * GB as u64, 512, Some(FatType::Fat32)),
16 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(32 * GB as u64 + 1, 512, Some(FatType::Fat32)),
32 * KB as u32
);
assert_eq!(
determine_bytes_per_cluster(999 * GB as u64, 512, Some(FatType::Fat32)),
32 * KB as u32
);
}
fn test_determine_sectors_per_fat_single(
total_bytes: u64,
bytes_per_sector: u16,
bytes_per_cluster: u32,
fat_type: FatType,
reserved_sectors: u16,
fats: u8,
root_dir_entries: u32,
) {
let total_sectors = total_bytes / u64::from(bytes_per_sector);
debug_assert!(total_sectors <= u64::from(u32::MAX), "{:x}", total_sectors);
let total_sectors = total_sectors as u32;
let sectors_per_cluster = (bytes_per_cluster / u32::from(bytes_per_sector)) as u8;
let root_dir_size = root_dir_entries * DIR_ENTRY_SIZE as u32;
let root_dir_sectors =
(root_dir_size + u32::from(bytes_per_sector) - 1) / u32::from(bytes_per_sector);
let sectors_per_fat = determine_sectors_per_fat(
total_sectors,
bytes_per_sector,
sectors_per_cluster,
fat_type,
reserved_sectors,
root_dir_sectors,
fats,
);
let sectors_per_all_fats = u32::from(fats) * sectors_per_fat;
let total_data_sectors =
total_sectors - u32::from(reserved_sectors) - sectors_per_all_fats - root_dir_sectors;
let total_clusters = total_data_sectors / u32::from(sectors_per_cluster);
if FatType::from_clusters(total_clusters) != fat_type {
// Skip impossible FAT configurations
return;
}
let bits_per_sector = u32::from(bytes_per_sector) * BITS_PER_BYTE;
let bits_per_fat = u64::from(sectors_per_fat) * u64::from(bits_per_sector);
let total_fat_entries = (bits_per_fat / u64::from(fat_type.bits_per_fat_entry())) as u32;
let fat_clusters = total_fat_entries - RESERVED_FAT_ENTRIES;
// Note: fat_entries_per_sector is rounded down for FAT12
let fat_entries_per_sector = u32::from(bits_per_sector) / fat_type.bits_per_fat_entry();
let desc = format!("total_clusters {}, fat_clusters {}, total_sectors {}, bytes/sector {}, sectors/cluster {}, fat_type {:?}, reserved_sectors {}, root_dir_sectors {}, sectors_per_fat {}",
total_clusters, fat_clusters, total_sectors, bytes_per_sector, sectors_per_cluster, fat_type, reserved_sectors, root_dir_sectors, sectors_per_fat);
assert!(fat_clusters >= total_clusters, "Too small FAT: {}", desc);
assert!(
fat_clusters <= total_clusters + 2 * fat_entries_per_sector,
"Too big FAT: {}",
desc
);
}
fn test_determine_sectors_per_fat_for_multiple_sizes(
bytes_per_sector: u16,
fat_type: FatType,
reserved_sectors: u16,
fats: u8,
root_dir_entries: u32,
) {
let mut bytes_per_cluster = u32::from(bytes_per_sector);
while bytes_per_cluster <= 64 * KB as u32 {
let mut size = 1 * MB;
while size < 2048 * GB {
test_determine_sectors_per_fat_single(
size,
bytes_per_sector,
bytes_per_cluster,
fat_type,
reserved_sectors,
fats,
root_dir_entries,
);
size = size + size / 7;
}
size = 2048 * GB - 1;
test_determine_sectors_per_fat_single(
size,
bytes_per_sector,
bytes_per_cluster,
fat_type,
reserved_sectors,
fats,
root_dir_entries,
);
bytes_per_cluster *= 2;
}
}
#[test]
fn test_determine_sectors_per_fat() {
init();
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat12, 1, 2, 512);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat12, 1, 1, 512);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat12, 1, 2, 8192);
test_determine_sectors_per_fat_for_multiple_sizes(4096, FatType::Fat12, 1, 2, 512);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat16, 1, 2, 512);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat16, 1, 1, 512);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat16, 1, 2, 8192);
test_determine_sectors_per_fat_for_multiple_sizes(4096, FatType::Fat16, 1, 2, 512);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat32, 32, 2, 0);
test_determine_sectors_per_fat_for_multiple_sizes(512, FatType::Fat32, 32, 1, 0);
test_determine_sectors_per_fat_for_multiple_sizes(4096, FatType::Fat32, 32, 2, 0);
}
#[test]
fn test_format_boot_sector() {
init();
let bytes_per_sector = 512u16;
// test all partition sizes from 1MB to 2TB (u32::MAX sectors is 2TB - 1 for 512 byte sectors)
let mut total_sectors_vec = Vec::new();
let mut size = 1 * MB;
while size < 2048 * GB {
total_sectors_vec.push((size / u64::from(bytes_per_sector)) as u32);
size = size + size / 7;
}
total_sectors_vec.push(u32::MAX);
for total_sectors in total_sectors_vec {
let (boot, _) =
format_boot_sector(&FormatVolumeOptions::new(), total_sectors, bytes_per_sector)
.expect("format_boot_sector");
boot.validate().expect("validate");
}
}
}