blob: fc760d6ad50bbb53dc9c6bd4ee3975484f40bca3 [file] [log] [blame]
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/storage/lib/paver/gpt.h"
#include <dirent.h>
#include <fuchsia/device/llcpp/fidl.h>
#include <fbl/auto_call.h>
#include <gpt/c/gpt.h>
#include "src/storage/lib/paver/pave-logging.h"
#include "src/storage/lib/paver/utils.h"
namespace paver {
namespace {
using uuid::Uuid;
namespace block = ::llcpp::fuchsia::hardware::block;
namespace device = ::llcpp::fuchsia::device;
constexpr size_t ReservedHeaderBlocks(size_t blk_size) {
constexpr size_t kReservedEntryBlocks = (16 * 1024);
return (kReservedEntryBlocks + 2 * blk_size) / blk_size;
}
} // namespace
zx::status<Uuid> GptPartitionType(Partition type) {
switch (type) {
case Partition::kBootloaderA:
return zx::ok(Uuid(GUID_EFI_VALUE));
case Partition::kZirconA:
return zx::ok(Uuid(GUID_ZIRCON_A_VALUE));
case Partition::kZirconB:
return zx::ok(Uuid(GUID_ZIRCON_B_VALUE));
case Partition::kZirconR:
return zx::ok(Uuid(GUID_ZIRCON_R_VALUE));
case Partition::kVbMetaA:
return zx::ok(Uuid(GUID_VBMETA_A_VALUE));
case Partition::kVbMetaB:
return zx::ok(Uuid(GUID_VBMETA_B_VALUE));
case Partition::kVbMetaR:
return zx::ok(Uuid(GUID_VBMETA_R_VALUE));
case Partition::kAbrMeta:
return zx::ok(Uuid(GUID_ABR_META_VALUE));
case Partition::kFuchsiaVolumeManager:
return zx::ok(Uuid(GUID_FVM_VALUE));
default:
ERROR("Partition type is invalid\n");
return zx::error(ZX_ERR_INVALID_ARGS);
}
}
bool FilterByName(const gpt_partition_t& part, fbl::StringPiece name) {
char cstring_name[GPT_NAME_LEN];
::utf16_to_cstring(cstring_name, reinterpret_cast<const uint16_t*>(part.name), GPT_NAME_LEN);
// We use a case-insenstive comparison to be compatible with the previous naming scheme.
// On a ChromeOS device, all of the kernel partitions share a common GUID type, so we
// distinguish Zircon kernel partitions based on name.
return strncasecmp(cstring_name, name.data(), name.length()) == 0;
}
bool FilterByTypeAndName(const gpt_partition_t& part, const Uuid& type, fbl::StringPiece name) {
return type == Uuid(part.type) && FilterByName(part, name);
}
zx::status<> RebindGptDriver(fidl::UnownedClientEnd<::llcpp::fuchsia::io::Directory> svc_root,
zx::unowned_channel chan) {
auto pauser = BlockWatcherPauser::Create(svc_root);
if (pauser.is_error()) {
return pauser.take_error();
}
auto result = ::llcpp::fuchsia::device::Controller::Call::Rebind(
std::move(chan), fidl::StringView("/boot/driver/gpt.so"));
return zx::make_status(result.ok() ? (result->result.is_err() ? result->result.err() : ZX_OK)
: result.status());
}
bool GptDevicePartitioner::FindGptDevices(const fbl::unique_fd& devfs_root, GptDevices* out) {
constexpr char kBlockDevPath[] = "class/block/";
fbl::unique_fd d_fd(openat(devfs_root.get(), kBlockDevPath, O_RDONLY));
if (!d_fd) {
ERROR("Cannot inspect block devices\n");
return false;
}
DIR* d = fdopendir(d_fd.release());
if (d == nullptr) {
ERROR("Cannot inspect block devices\n");
return false;
}
const auto closer = fbl::MakeAutoCall([&]() { closedir(d); });
struct dirent* de;
GptDevices found_devices;
while ((de = readdir(d)) != nullptr) {
fbl::unique_fd fd(openat(dirfd(d), de->d_name, O_RDWR));
if (!fd) {
continue;
}
fdio_cpp::FdioCaller caller(std::move(fd));
auto result = block::Block::Call::GetInfo(caller.channel());
if (!result.ok()) {
continue;
}
const auto& response = result.value();
if (response.status != ZX_OK) {
continue;
}
if (response.info->flags & BLOCK_FLAG_REMOVABLE) {
continue;
}
auto result2 = device::Controller::Call::GetTopologicalPath(caller.channel());
if (result2.status() != ZX_OK) {
continue;
}
const auto& response2 = result2.value();
if (response2.result.is_err()) {
continue;
}
std::string path_str(response2.result.response().path.data(),
static_cast<size_t>(response2.result.response().path.size()));
// The GPT which will be a non-removable block device that isn't a partition itself.
if (path_str.find("part-") == std::string::npos) {
found_devices.push_back(std::make_pair(path_str, caller.release()));
}
}
if (found_devices.empty()) {
ERROR("No candidate GPT found\n");
return false;
}
*out = std::move(found_devices);
return true;
}
zx::status<std::unique_ptr<GptDevicePartitioner>> GptDevicePartitioner::InitializeProvidedGptDevice(
fbl::unique_fd devfs_root, fidl::UnownedClientEnd<::llcpp::fuchsia::io::Directory> svc_root,
fbl::unique_fd gpt_device) {
auto pauser = BlockWatcherPauser::Create(svc_root);
if (pauser.is_error()) {
ERROR("Failed to pause the block watcher\n");
return pauser.take_error();
}
fdio_cpp::UnownedFdioCaller caller(gpt_device.get());
auto result = block::Block::Call::GetInfo(caller.channel());
if (!result.ok()) {
ERROR("Warning: Could not acquire GPT block info: %s\n", zx_status_get_string(result.status()));
return zx::error(result.status());
}
const auto& response = result.value();
if (response.status != ZX_OK) {
ERROR("Warning: Could not acquire GPT block info: %s\n", zx_status_get_string(response.status));
return zx::error(response.status);
}
std::unique_ptr<GptDevice> gpt;
if (GptDevice::Create(gpt_device.get(), response.info->block_size, response.info->block_count,
&gpt) != ZX_OK) {
ERROR("Failed to get GPT info\n");
return zx::error(ZX_ERR_BAD_STATE);
}
if (!gpt->Valid()) {
ERROR("Located GPT is invalid; Attempting to initialize\n");
if (gpt->RemoveAllPartitions() != ZX_OK) {
ERROR("Failed to create empty GPT\n");
return zx::error(ZX_ERR_BAD_STATE);
}
if (gpt->Sync() != ZX_OK) {
ERROR("Failed to sync empty GPT\n");
return zx::error(ZX_ERR_BAD_STATE);
}
if (auto status = RebindGptDriver(svc_root, caller.channel()); status.is_error()) {
ERROR("Failed to re-read GPT\n");
return status.take_error();
}
printf("Rebound GPT driver succesfully\n");
}
return zx::ok(new GptDevicePartitioner(devfs_root.duplicate(), svc_root, std::move(gpt_device),
std::move(gpt), *(response.info)));
}
zx::status<GptDevicePartitioner::InitializeGptResult> GptDevicePartitioner::InitializeGpt(
fbl::unique_fd devfs_root, fidl::UnownedClientEnd<::llcpp::fuchsia::io::Directory> svc_root,
const fbl::unique_fd& block_device) {
if (block_device) {
auto status =
InitializeProvidedGptDevice(std::move(devfs_root), svc_root, block_device.duplicate());
if (status.is_error()) {
return status.take_error();
}
return zx::ok(InitializeGptResult{std::move(status.value()), false});
}
GptDevices gpt_devices;
if (!FindGptDevices(devfs_root, &gpt_devices)) {
ERROR("Failed to find GPT\n");
return zx::error(ZX_ERR_NOT_FOUND);
}
std::vector<fbl::unique_fd> non_removable_gpt_devices;
std::unique_ptr<GptDevicePartitioner> gpt_partitioner;
for (auto& [_, gpt_device] : gpt_devices) {
fdio_cpp::UnownedFdioCaller caller(gpt_device.get());
auto result = block::Block::Call::GetInfo(caller.channel());
if (!result.ok()) {
ERROR("Warning: Could not acquire GPT block info: %s\n",
zx_status_get_string(result.status()));
return zx::error(result.status());
}
const auto& response = result.value();
if (response.status != ZX_OK) {
ERROR("Warning: Could not acquire GPT block info: %s\n",
zx_status_get_string(response.status));
return zx::error(response.status);
}
if ((response.info->flags & block::FLAG_REMOVABLE) != 0) {
continue;
}
std::unique_ptr<GptDevice> gpt;
if (GptDevice::Create(gpt_device.get(), response.info->block_size, response.info->block_count,
&gpt) != ZX_OK) {
ERROR("Failed to get GPT info\n");
return zx::error(ZX_ERR_BAD_STATE);
}
if (!gpt->Valid()) {
continue;
}
non_removable_gpt_devices.emplace_back(gpt_device.duplicate());
auto partitioner = WrapUnique(new GptDevicePartitioner(
devfs_root.duplicate(), svc_root, std::move(gpt_device), std::move(gpt), *(response.info)));
if (partitioner->FindPartition(IsFvmPartition).is_error()) {
continue;
}
if (gpt_partitioner) {
ERROR("Found multiple block devices with valid GPTs. Unsuppported.\n");
return zx::error(ZX_ERR_NOT_SUPPORTED);
}
gpt_partitioner = std::move(partitioner);
}
if (gpt_partitioner) {
return zx::ok(InitializeGptResult{std::move(gpt_partitioner), false});
}
if (non_removable_gpt_devices.size() == 1) {
// If we only find a single non-removable gpt device, we initialize it's partition table.
auto status = InitializeProvidedGptDevice(std::move(devfs_root), svc_root,
std::move(non_removable_gpt_devices[0]));
if (status.is_error()) {
return status.take_error();
}
return zx::ok(InitializeGptResult{std::move(status.value()), true});
}
ERROR(
"Unable to find a valid GPT on this device with the expected partitions. "
"Please run *one* of the following command(s):\n");
for (const auto& [gpt_path, _] : gpt_devices) {
ERROR("install-disk-image init-partition-tables --block-device %s\n", gpt_path.c_str());
}
return zx::error(ZX_ERR_NOT_FOUND);
}
struct PartitionPosition {
size_t start; // Block, inclusive
size_t length; // In Blocks
};
zx::status<GptDevicePartitioner::FindFirstFitResult> GptDevicePartitioner::FindFirstFit(
size_t bytes_requested) const {
LOG("Looking for space\n");
// Gather GPT-related information.
size_t blocks_requested = (bytes_requested + block_info_.block_size - 1) / block_info_.block_size;
// Sort all partitions by starting block.
// For simplicity, include the 'start' and 'end' reserved spots as
// partitions.
size_t partition_count = 0;
PartitionPosition partitions[gpt::kPartitionCount + 2];
const size_t reserved_blocks = ReservedHeaderBlocks(block_info_.block_size);
partitions[partition_count].start = 0;
partitions[partition_count++].length = reserved_blocks;
partitions[partition_count].start = block_info_.block_count - reserved_blocks;
partitions[partition_count++].length = reserved_blocks;
for (uint32_t i = 0; i < gpt::kPartitionCount; i++) {
const gpt_partition_t* p = gpt_->GetPartition(i);
if (!p) {
continue;
}
partitions[partition_count].start = p->first;
partitions[partition_count].length = p->last - p->first + 1;
LOG("Partition seen with start %zu, end %zu (length %zu)\n", p->first, p->last,
partitions[partition_count].length);
partition_count++;
}
LOG("Sorting\n");
qsort(partitions, partition_count, sizeof(PartitionPosition), [](const void* p1, const void* p2) {
ssize_t s1 = static_cast<ssize_t>(static_cast<const PartitionPosition*>(p1)->start);
ssize_t s2 = static_cast<ssize_t>(static_cast<const PartitionPosition*>(p2)->start);
return s1 > s2 ? +1 : -1;
});
// Look for space between the partitions. Since the reserved spots of the
// GPT were included in |partitions|, all available space will be located
// "between" partitions.
for (size_t i = 0; i < partition_count - 1; i++) {
const size_t next = partitions[i].start + partitions[i].length;
LOG("Partition[%zu] From Block [%zu, %zu) ... (next partition starts at block %zu)\n", i,
partitions[i].start, next, partitions[i + 1].start);
if (next > partitions[i + 1].start) {
ERROR("Corrupted GPT\n");
return zx::error(ZX_ERR_IO);
}
const size_t free_blocks = partitions[i + 1].start - next;
LOG(" There are %zu free blocks (%zu requested)\n", free_blocks, blocks_requested);
if (free_blocks >= blocks_requested) {
return zx::ok(FindFirstFitResult{next, free_blocks});
}
}
ERROR("No GPT space found\n");
return zx::error(ZX_ERR_NO_RESOURCES);
}
zx::status<Uuid> GptDevicePartitioner::CreateGptPartition(const char* name, const Uuid& type,
uint64_t offset, uint64_t blocks) const {
Uuid guid = Uuid::Generate();
zx_status_t status;
if ((status = gpt_->AddPartition(name, type.bytes(), guid.bytes(), offset, blocks, 0)) != ZX_OK) {
ERROR("Failed to add partition\n");
return zx::error(ZX_ERR_IO);
}
if ((status = gpt_->Sync()) != ZX_OK) {
ERROR("Failed to sync GPT\n");
return zx::error(ZX_ERR_IO);
}
if (auto status = zx::make_status(gpt_->ClearPartition(offset, 1)); status.is_error()) {
ERROR("Failed to clear first block of new partition\n");
return status.take_error();
}
if (auto status = RebindGptDriver(svc_root_, Channel()); status.is_error()) {
ERROR("Failed to rebind GPT\n");
return status.take_error();
}
return zx::ok(guid);
}
zx::status<std::unique_ptr<PartitionClient>> GptDevicePartitioner::AddPartition(
const char* name, const Uuid& type, size_t minimum_size_bytes,
size_t optional_reserve_bytes) const {
auto status = FindFirstFit(minimum_size_bytes);
if (status.is_error()) {
ERROR("Couldn't find fit\n");
return status.take_error();
}
const size_t start = status->start;
size_t length = status->length;
LOG("Found space in GPT - OK %zu @ %zu\n", length, start);
if (optional_reserve_bytes) {
// If we can fulfill the requested size, and we still have space for the
// optional reserve section, then we should shorten the amount of blocks
// we're asking for.
//
// This isn't necessary, but it allows growing the GPT later, if necessary.
const size_t optional_reserve_blocks = optional_reserve_bytes / block_info_.block_size;
if (length - optional_reserve_bytes > (minimum_size_bytes / block_info_.block_size)) {
LOG("Space for reserve - OK\n");
length -= optional_reserve_blocks;
}
} else {
length = fbl::round_up(minimum_size_bytes, block_info_.block_size) / block_info_.block_size;
}
LOG("Final space in GPT - OK %zu @ %zu\n", length, start);
auto status_or_guid = CreateGptPartition(name, type, start, length);
if (status_or_guid.is_error()) {
return status_or_guid.take_error();
}
LOG("Added partition, waiting for bind\n");
auto status_or_part = OpenBlockPartition(devfs_root_, status_or_guid.value(), type, ZX_SEC(15));
if (status_or_part.is_error()) {
ERROR("Added partition, waiting for bind - NOT FOUND\n");
return status_or_part.take_error();
}
LOG("Added partition, waiting for bind - OK\n");
return zx::ok(new BlockPartitionClient(std::move(status_or_part.value())));
}
zx::status<GptDevicePartitioner::FindPartitionResult> GptDevicePartitioner::FindPartition(
FilterCallback filter) const {
for (uint32_t i = 0; i < gpt::kPartitionCount; i++) {
gpt_partition_t* p = gpt_->GetPartition(i);
if (!p) {
continue;
}
if (filter(*p)) {
LOG("Found partition in GPT, partition %u\n", i);
auto status = OpenBlockPartition(devfs_root_, Uuid(p->guid), Uuid(p->type), ZX_SEC(5));
if (status.is_error()) {
ERROR("Couldn't open partition\n");
return status.take_error();
}
auto part = std::make_unique<BlockPartitionClient>(std::move(status.value()));
return zx::ok(FindPartitionResult{std::move(part), p});
}
}
return zx::error(ZX_ERR_NOT_FOUND);
}
zx::status<> GptDevicePartitioner::WipePartitions(FilterCallback filter) const {
bool modify = false;
for (uint32_t i = 0; i < gpt::kPartitionCount; i++) {
const gpt_partition_t* p = gpt_->GetPartition(i);
if (!p) {
continue;
}
if (!filter(*p)) {
continue;
}
modify = true;
// Ignore the return status; wiping is a best-effort approach anyway.
WipeBlockPartition(devfs_root_, Uuid(p->guid), Uuid(p->type)).status_value();
if (gpt_->RemovePartition(p->guid) != ZX_OK) {
ERROR("Warning: Could not remove partition\n");
} else {
// If we successfully clear the partition, then all subsequent
// partitions get shifted down. If we just deleted partition 'i',
// we now need to look at partition 'i' again, since it's now
// occupied by what was in 'i+1'.
i--;
}
}
if (modify) {
gpt_->Sync();
LOG("Immediate reboot strongly recommended\n");
}
__UNUSED auto unused = RebindGptDriver(svc_root_, Channel()).status_value();
return zx::ok();
}
zx::status<> GptDevicePartitioner::WipeFvm() const { return WipePartitions(IsFvmPartition); }
zx::status<> GptDevicePartitioner::WipePartitionTables() const {
return WipePartitions([](const gpt_partition_t&) { return true; });
}
} // namespace paver