| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| #ifndef FUCHSIA |
| #include <sys/ptrace.h> |
| #endif |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/uio.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <memory> |
| |
| #include <android-base/unique_fd.h> |
| |
| #include <unwindstack/Memory.h> |
| |
| #include "Check.h" |
| |
| #ifndef TEMP_FAILURE_RETRY |
| #define TEMP_FAILURE_RETRY(x) ({ \ |
| int i; \ |
| do { \ |
| i = (x); \ |
| } while (i < 0 && errno == EINTR); \ |
| i }) |
| #endif |
| |
| |
| namespace unwindstack { |
| |
| #ifndef FUCHSIA |
| static size_t ProcessVmRead(pid_t pid, uint64_t remote_src, void* dst, size_t len) { |
| |
| // Split up the remote read across page boundaries. |
| // From the manpage: |
| // A partial read/write may result if one of the remote_iov elements points to an invalid |
| // memory region in the remote process. |
| // |
| // Partial transfers apply at the granularity of iovec elements. These system calls won't |
| // perform a partial transfer that splits a single iovec element. |
| constexpr size_t kMaxIovecs = 64; |
| struct iovec src_iovs[kMaxIovecs]; |
| |
| uint64_t cur = remote_src; |
| size_t total_read = 0; |
| while (len > 0) { |
| struct iovec dst_iov = { |
| .iov_base = &reinterpret_cast<uint8_t*>(dst)[total_read], .iov_len = len, |
| }; |
| |
| size_t iovecs_used = 0; |
| while (len > 0) { |
| if (iovecs_used == kMaxIovecs) { |
| break; |
| } |
| |
| // struct iovec uses void* for iov_base. |
| if (cur >= UINTPTR_MAX) { |
| errno = EFAULT; |
| return total_read; |
| } |
| |
| src_iovs[iovecs_used].iov_base = reinterpret_cast<void*>(cur); |
| |
| uintptr_t misalignment = cur & (getpagesize() - 1); |
| size_t iov_len = getpagesize() - misalignment; |
| iov_len = std::min(iov_len, len); |
| |
| len -= iov_len; |
| if (__builtin_add_overflow(cur, iov_len, &cur)) { |
| errno = EFAULT; |
| return total_read; |
| } |
| |
| src_iovs[iovecs_used].iov_len = iov_len; |
| ++iovecs_used; |
| } |
| |
| ssize_t rc = process_vm_readv(pid, &dst_iov, 1, src_iovs, iovecs_used, 0); |
| if (rc == -1) { |
| return total_read; |
| } |
| total_read += rc; |
| } |
| return total_read; |
| } |
| #endif |
| |
| #ifndef FUCHSIA |
| static bool PtraceReadLong(pid_t pid, uint64_t addr, long* value) { |
| // ptrace() returns -1 and sets errno when the operation fails. |
| // To disambiguate -1 from a valid result, we clear errno beforehand. |
| errno = 0; |
| *value = ptrace(PTRACE_PEEKTEXT, pid, reinterpret_cast<void*>(addr), nullptr); |
| if (*value == -1 && errno) { |
| return false; |
| } |
| return true; |
| } |
| |
| static size_t PtraceRead(pid_t pid, uint64_t addr, void* dst, size_t bytes) { |
| // Make sure that there is no overflow. |
| uint64_t max_size; |
| if (__builtin_add_overflow(addr, bytes, &max_size)) { |
| return 0; |
| } |
| |
| size_t bytes_read = 0; |
| long data; |
| size_t align_bytes = addr & (sizeof(long) - 1); |
| if (align_bytes != 0) { |
| if (!PtraceReadLong(pid, addr & ~(sizeof(long) - 1), &data)) { |
| return 0; |
| } |
| size_t copy_bytes = std::min(sizeof(long) - align_bytes, bytes); |
| memcpy(dst, reinterpret_cast<uint8_t*>(&data) + align_bytes, copy_bytes); |
| addr += copy_bytes; |
| dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + copy_bytes); |
| bytes -= copy_bytes; |
| bytes_read += copy_bytes; |
| } |
| |
| for (size_t i = 0; i < bytes / sizeof(long); i++) { |
| if (!PtraceReadLong(pid, addr, &data)) { |
| return bytes_read; |
| } |
| memcpy(dst, &data, sizeof(long)); |
| dst = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(dst) + sizeof(long)); |
| addr += sizeof(long); |
| bytes_read += sizeof(long); |
| } |
| |
| size_t left_over = bytes & (sizeof(long) - 1); |
| if (left_over) { |
| if (!PtraceReadLong(pid, addr, &data)) { |
| return bytes_read; |
| } |
| memcpy(dst, &data, left_over); |
| bytes_read += left_over; |
| } |
| return bytes_read; |
| } |
| #endif |
| |
| bool Memory::ReadFully(uint64_t addr, void* dst, size_t size) { |
| size_t rc = Read(addr, dst, size); |
| return rc == size; |
| } |
| |
| bool Memory::ReadString(uint64_t addr, std::string* string, uint64_t max_read) { |
| string->clear(); |
| uint64_t bytes_read = 0; |
| while (bytes_read < max_read) { |
| uint8_t value; |
| if (!ReadFully(addr, &value, sizeof(value))) { |
| return false; |
| } |
| if (value == '\0') { |
| return true; |
| } |
| string->push_back(value); |
| addr++; |
| bytes_read++; |
| } |
| return false; |
| } |
| |
| std::shared_ptr<Memory> Memory::CreateProcessMemory(pid_t pid) { |
| if (pid == getpid()) { |
| return std::shared_ptr<Memory>(new MemoryLocal()); |
| } |
| return std::shared_ptr<Memory>(new MemoryRemote(pid)); |
| } |
| |
| std::shared_ptr<Memory> Memory::CreateProcessMemoryCached(pid_t pid) { |
| if (pid == getpid()) { |
| return std::shared_ptr<Memory>(new MemoryCache(new MemoryLocal())); |
| } |
| return std::shared_ptr<Memory>(new MemoryCache(new MemoryRemote(pid))); |
| } |
| |
| size_t MemoryBuffer::Read(uint64_t addr, void* dst, size_t size) { |
| if (addr >= raw_.size()) { |
| return 0; |
| } |
| |
| size_t bytes_left = raw_.size() - static_cast<size_t>(addr); |
| const unsigned char* actual_base = static_cast<const unsigned char*>(raw_.data()) + addr; |
| size_t actual_len = std::min(bytes_left, size); |
| |
| memcpy(dst, actual_base, actual_len); |
| return actual_len; |
| } |
| |
| uint8_t* MemoryBuffer::GetPtr(size_t offset) { |
| if (offset < raw_.size()) { |
| return &raw_[offset]; |
| } |
| return nullptr; |
| } |
| |
| MemoryFileAtOffset::~MemoryFileAtOffset() { |
| Clear(); |
| } |
| |
| void MemoryFileAtOffset::Clear() { |
| if (data_) { |
| munmap(&data_[-offset_], size_ + offset_); |
| data_ = nullptr; |
| } |
| } |
| |
| bool MemoryFileAtOffset::Init(const std::string& file, uint64_t offset, uint64_t size) { |
| #ifdef FUCHSIA |
| return false; |
| #else |
| // Clear out any previous data if it exists. |
| Clear(); |
| |
| android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(file.c_str(), O_RDONLY | O_CLOEXEC))); |
| if (fd == -1) { |
| return false; |
| } |
| struct stat buf; |
| if (fstat(fd.get(), &buf) == -1) { |
| return false; |
| } |
| if (offset >= static_cast<uint64_t>(buf.st_size)) { |
| return false; |
| } |
| |
| offset_ = offset & (getpagesize() - 1); |
| uint64_t aligned_offset = offset & ~(getpagesize() - 1); |
| if (aligned_offset > static_cast<uint64_t>(buf.st_size) || |
| offset > static_cast<uint64_t>(buf.st_size)) { |
| return false; |
| } |
| |
| size_ = buf.st_size - aligned_offset; |
| uint64_t max_size; |
| if (!__builtin_add_overflow(size, offset_, &max_size) && max_size < size_) { |
| // Truncate the mapped size. |
| size_ = max_size; |
| } |
| void* map = mmap(nullptr, size_, PROT_READ, MAP_PRIVATE, fd.get(), |
| aligned_offset); |
| if (map == MAP_FAILED) { |
| return false; |
| } |
| |
| data_ = &reinterpret_cast<uint8_t*>(map)[offset_]; |
| size_ -= offset_; |
| |
| return true; |
| #endif |
| } |
| |
| size_t MemoryFileAtOffset::Read(uint64_t addr, void* dst, size_t size) { |
| if (addr >= size_) { |
| return 0; |
| } |
| |
| size_t bytes_left = size_ - static_cast<size_t>(addr); |
| const unsigned char* actual_base = static_cast<const unsigned char*>(data_) + addr; |
| size_t actual_len = std::min(bytes_left, size); |
| |
| memcpy(dst, actual_base, actual_len); |
| return actual_len; |
| } |
| |
| size_t MemoryRemote::Read(uint64_t addr, void* dst, size_t size) { |
| #if !defined(__LP64__) |
| // Cannot read an address greater than 32 bits in a 32 bit context. |
| if (addr > UINT32_MAX) { |
| return 0; |
| } |
| #endif |
| |
| size_t (*read_func)(pid_t, uint64_t, void*, size_t) = |
| reinterpret_cast<size_t (*)(pid_t, uint64_t, void*, size_t)>(read_redirect_func_.load()); |
| if (read_func != nullptr) { |
| return read_func(pid_, addr, dst, size); |
| } else { |
| #ifdef FUCHSIA |
| return 0; |
| #else |
| // Prefer process_vm_read, try it first. If it doesn't work, use the |
| // ptrace function. If at least one of them returns at least some data, |
| // set that as the permanent function to use. |
| // This assumes that if process_vm_read works once, it will continue |
| // to work. |
| size_t bytes = ProcessVmRead(pid_, addr, dst, size); |
| if (bytes > 0) { |
| read_redirect_func_ = reinterpret_cast<uintptr_t>(ProcessVmRead); |
| return bytes; |
| } |
| bytes = PtraceRead(pid_, addr, dst, size); |
| if (bytes > 0) { |
| read_redirect_func_ = reinterpret_cast<uintptr_t>(PtraceRead); |
| } |
| return bytes; |
| #endif |
| } |
| } |
| |
| size_t MemoryLocal::Read(uint64_t addr, void* dst, size_t size) { |
| #ifdef FUCHSIA |
| return 0; |
| #else |
| return ProcessVmRead(getpid(), addr, dst, size); |
| #endif |
| } |
| |
| MemoryRange::MemoryRange(const std::shared_ptr<Memory>& memory, uint64_t begin, uint64_t length, |
| uint64_t offset) |
| : memory_(memory), begin_(begin), length_(length), offset_(offset) {} |
| |
| size_t MemoryRange::Read(uint64_t addr, void* dst, size_t size) { |
| if (addr < offset_) { |
| return 0; |
| } |
| |
| uint64_t read_offset = addr - offset_; |
| if (read_offset >= length_) { |
| return 0; |
| } |
| |
| uint64_t read_length = std::min(static_cast<uint64_t>(size), length_ - read_offset); |
| uint64_t read_addr; |
| if (__builtin_add_overflow(read_offset, begin_, &read_addr)) { |
| return 0; |
| } |
| |
| return memory_->Read(read_addr, dst, read_length); |
| } |
| |
| void MemoryRanges::Insert(MemoryRange* memory) { |
| maps_.emplace(memory->offset() + memory->length(), memory); |
| } |
| |
| size_t MemoryRanges::Read(uint64_t addr, void* dst, size_t size) { |
| auto entry = maps_.upper_bound(addr); |
| if (entry != maps_.end()) { |
| return entry->second->Read(addr, dst, size); |
| } |
| return 0; |
| } |
| |
| bool MemoryOffline::Init(const std::string& file, uint64_t offset) { |
| auto memory_file = std::make_shared<MemoryFileAtOffset>(); |
| if (!memory_file->Init(file, offset)) { |
| return false; |
| } |
| |
| // The first uint64_t value is the start of memory. |
| uint64_t start; |
| if (!memory_file->ReadFully(0, &start, sizeof(start))) { |
| return false; |
| } |
| |
| uint64_t size = memory_file->Size(); |
| if (__builtin_sub_overflow(size, sizeof(start), &size)) { |
| return false; |
| } |
| |
| memory_ = std::make_unique<MemoryRange>(memory_file, sizeof(start), size, start); |
| return true; |
| } |
| |
| size_t MemoryOffline::Read(uint64_t addr, void* dst, size_t size) { |
| if (!memory_) { |
| return 0; |
| } |
| |
| return memory_->Read(addr, dst, size); |
| } |
| |
| MemoryOfflineBuffer::MemoryOfflineBuffer(const uint8_t* data, uint64_t start, uint64_t end) |
| : data_(data), start_(start), end_(end) {} |
| |
| void MemoryOfflineBuffer::Reset(const uint8_t* data, uint64_t start, uint64_t end) { |
| data_ = data; |
| start_ = start; |
| end_ = end; |
| } |
| |
| size_t MemoryOfflineBuffer::Read(uint64_t addr, void* dst, size_t size) { |
| if (addr < start_ || addr >= end_) { |
| return 0; |
| } |
| |
| size_t read_length = std::min(size, static_cast<size_t>(end_ - addr)); |
| memcpy(dst, &data_[addr - start_], read_length); |
| return read_length; |
| } |
| |
| MemoryOfflineParts::~MemoryOfflineParts() { |
| for (auto memory : memories_) { |
| delete memory; |
| } |
| } |
| |
| size_t MemoryOfflineParts::Read(uint64_t addr, void* dst, size_t size) { |
| if (memories_.empty()) { |
| return 0; |
| } |
| |
| // Do a read on each memory object, no support for reading across the |
| // different memory objects. |
| for (MemoryOffline* memory : memories_) { |
| size_t bytes = memory->Read(addr, dst, size); |
| if (bytes != 0) { |
| return bytes; |
| } |
| } |
| return 0; |
| } |
| |
| size_t MemoryCache::Read(uint64_t addr, void* dst, size_t size) { |
| // Only bother caching and looking at the cache if this is a small read for now. |
| if (size > 64) { |
| return impl_->Read(addr, dst, size); |
| } |
| |
| uint64_t addr_page = addr >> kCacheBits; |
| auto entry = cache_.find(addr_page); |
| uint8_t* cache_dst; |
| if (entry != cache_.end()) { |
| cache_dst = entry->second; |
| } else { |
| cache_dst = cache_[addr_page]; |
| if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) { |
| // Erase the entry. |
| cache_.erase(addr_page); |
| return impl_->Read(addr, dst, size); |
| } |
| } |
| size_t max_read = ((addr_page + 1) << kCacheBits) - addr; |
| if (size <= max_read) { |
| memcpy(dst, &cache_dst[addr & kCacheMask], size); |
| return size; |
| } |
| |
| // The read crossed into another cached entry, since a read can only cross |
| // into one extra cached page, duplicate the code rather than looping. |
| memcpy(dst, &cache_dst[addr & kCacheMask], max_read); |
| dst = &reinterpret_cast<uint8_t*>(dst)[max_read]; |
| addr_page++; |
| |
| entry = cache_.find(addr_page); |
| if (entry != cache_.end()) { |
| cache_dst = entry->second; |
| } else { |
| cache_dst = cache_[addr_page]; |
| if (!impl_->ReadFully(addr_page << kCacheBits, cache_dst, kCacheSize)) { |
| // Erase the entry. |
| cache_.erase(addr_page); |
| return impl_->Read(addr_page << kCacheBits, dst, size - max_read) + max_read; |
| } |
| } |
| memcpy(dst, cache_dst, size - max_read); |
| return size; |
| } |
| |
| } // namespace unwindstack |