blob: 82101747740e10fcf8b8364e1047f8c478f11858 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Networking types and operations.
//!
//! This crate defines types and operations useful for operating with various
//! network protocols. Some general utilities are defined in the crate root,
//! while protocol-specific operations are defined in their own modules.
#![deny(missing_docs)]
#![cfg_attr(not(std), no_std)]
#[cfg(std)]
extern crate core;
pub mod ethernet;
pub mod ip;
use core::convert::TryFrom;
use core::fmt::{self, Display, Formatter};
use core::ops::Deref;
mod sealed {
// Used to ensure that certain traits cannot be implemented by anyone
// outside this crate, such as the Ip and IpAddress traits.
pub trait Sealed {}
}
/// A type which is a witness to some property about an address.
///
/// A type which implements `Witness<A>` wraps an address of type `A` and
/// guarantees some property about the wrapped address. It is implemented by
/// [`SpecifiedAddr`], [`UnicastAddr`], [`MulticastAddr`], and
/// [`LinkLocalAddr`].
pub trait Witness<A>: AsRef<A> + Sized + sealed::Sealed {
/// Constructs a new witness type.
///
/// `new` returns `None` if `addr` does not satisfy the property guaranteed
/// by `Self`.
fn new(addr: A) -> Option<Self>;
/// Constructs a new witness type without checking to see if `addr` actually
/// satisfies the required property.
///
/// # Safety
///
/// It is up to the caller to make sure that `addr` satisfies the required
/// property in order to avoid breaking the guarantees of this trait.
unsafe fn new_unchecked(addr: A) -> Self;
/// Constructs a new witness type from an existing witness type.
///
/// `from_witness(witness)` is equivalent to `new(witness.into_addr())`.
fn from_witness<W: Witness<A>>(addr: W) -> Option<Self> {
Self::new(addr.into_addr())
}
// In a previous version of this code, we did `fn get(self) -> A where Self:
// Copy` (taking `self` by value and using `where Self: Copy`). That felt
// marginally cleaner, but it turns out that there are cases in which the
// user only has access to a reference and still wants to be able to call
// `get` without having to do the ugly `(*addr).get()`.
/// Gets a copy of the address.
#[inline]
fn get(&self) -> A
where
A: Copy,
{
*self.as_ref()
}
/// Consumes this witness and returns the contained `A`.
fn into_addr(self) -> A;
}
// NOTE: The "witness" types UnicastAddr, MulticastAddr, and LinkLocalAddr -
// which provide the invariant that the value they contain is a unicast,
// multicast, or link-local address, respectively - cannot actually guarantee
// this property without certain promises from the implementations of the
// UnicastAddress, MulticastAddress, and LinkLocalAddress traits that they rely
// on. In particular, the values must be "immutable" in the sense that, given
// only immutable references to the values, nothing about the values can change
// such that the "unicast-ness", "multicast-ness" or "link-local-ness" of the
// values change. Since the UnicastAddress, MulticastAddress, and
// LinkLocalAddress traits are not unsafe traits, it would be unsound for unsafe
// code to rely for its soundness on this behavior. For a more in-depth
// discussion of why this isn't possible without an explicit opt-in on the part
// of the trait implementor, see this forum thread:
// https://users.rust-lang.org/t/prevent-interior-mutability/29403
/// Implements a trait for a witness type.
///
/// `impl_trait_for_witness` implements `$trait` for `$witness<A>` if `A:
/// $trait`.
macro_rules! impl_trait_for_witness {
($trait:ident, $method:ident, $witness:ident) => {
impl<A: $trait> $trait for $witness<A> {
fn $method(&self) -> bool {
self.0.$method()
}
}
};
}
/// Addresses that can be specified.
///
/// `SpecifiedAddress` is implemented by address types for which some values are
/// considered [unspecified] addresses. Unspecified addresses are usually not
/// legal to be used in actual network traffic, and are only meant to represent
/// the lack of any defined address. The exact meaning of the unspecified
/// address often varies by context. For example, the IPv4 address 0.0.0.0 and
/// the IPv6 address :: can be used, in the context of creating a listening
/// socket on systems that use the BSD sockets API, to listen on all local IP
/// addresses rather than a particular one.
///
/// [unspecified]: https://en.wikipedia.org/wiki/0.0.0.0
pub trait SpecifiedAddress {
/// Is this a specified address?
///
/// `is_specified` must maintain the invariant that, if it is called twice
/// on the same object, and in between those two calls, no code has operated
/// on a mutable reference to that object, both calls will return the same
/// value. This property is required in order to implement
/// [`SpecifiedAddr`]. Note that, since this is not an `unsafe` trait,
/// `unsafe` code may NOT rely on this property for its soundness. However,
/// code MAY rely on this property for its correctness.
fn is_specified(&self) -> bool;
}
impl_trait_for_witness!(SpecifiedAddress, is_specified, UnicastAddr);
impl_trait_for_witness!(SpecifiedAddress, is_specified, MulticastAddr);
impl_trait_for_witness!(SpecifiedAddress, is_specified, LinkLocalAddr);
/// Addresses that can be unicast.
///
/// `UnicastAddress` is implemented by address types for which some values are
/// considered [unicast] addresses. Unicast addresses are used to identify a
/// single network node, as opposed to broadcast and multicast addresses, which
/// identify a group of nodes.
///
/// `UnicastAddress` is only implemented for addresses whose unicast-ness can be
/// determined by looking only at the address itself (this is notably not true
/// for IPv4 addresses, which can be considered broadcast addresses depending on
/// the subnet in which they are used).
///
/// [unicast]: https://en.wikipedia.org/wiki/Unicast
pub trait UnicastAddress {
/// Is this a unicast address?
///
/// `is_unicast` must maintain the invariant that, if it is called twice on
/// the same object, and in between those two calls, no code has operated on
/// a mutable reference to that object, both calls will return the same
/// value. This property is required in order to implement [`UnicastAddr`].
/// Note that, since this is not an `unsafe` trait, `unsafe` code may NOT
/// rely on this property for its soundness. However, code MAY rely on this
/// property for its correctness.
///
/// If this type also implements [`SpecifiedAddress`], then `a.is_unicast()`
/// implies `a.is_specified()`.
fn is_unicast(&self) -> bool;
}
impl_trait_for_witness!(UnicastAddress, is_unicast, SpecifiedAddr);
impl_trait_for_witness!(UnicastAddress, is_unicast, MulticastAddr);
impl_trait_for_witness!(UnicastAddress, is_unicast, LinkLocalAddr);
/// Addresses that can be multicast.
///
/// `MulticastAddress` is implemented by address types for which some values are
/// considered [multicast] addresses. Multicast addresses are used to identify a
/// group of multiple network nodes, as opposed to unicast addresses, which
/// identify a single node, or broadcast addresses, which identify all the nodes
/// in some region of a network.
///
/// [multicast]: https://en.wikipedia.org/wiki/Multicast
pub trait MulticastAddress {
/// Is this a unicast address?
///
/// `is_multicast` must maintain the invariant that, if it is called twice
/// on the same object, and in between those two calls, no code has operated
/// on a mutable reference to that object, both calls will return the same
/// value. This property is required in order to implement
/// [`MulticastAddr`]. Note that, since this is not an `unsafe` trait,
/// `unsafe` code may NOT rely on this property for its soundness. However,
/// code MAY rely on this property for its correctness.
///
/// If this type also implements [`SpecifiedAddress`], then
/// `a.is_multicast()` implies `a.is_specified()`.
fn is_multicast(&self) -> bool;
}
impl_trait_for_witness!(MulticastAddress, is_multicast, SpecifiedAddr);
impl_trait_for_witness!(MulticastAddress, is_multicast, UnicastAddr);
impl_trait_for_witness!(MulticastAddress, is_multicast, LinkLocalAddr);
/// Addresses that can be broadcast.
///
/// `BroadcastAddress` is implemented by address types for which some values are
/// considered [broadcast] addresses. Broadcast addresses are used to identify
/// all the nodes in some region of a network, as opposed to unicast addresses,
/// which identify a single node, or multicast addresses, which identify a group
/// of nodes (not necessarily all of them).
///
/// [broadcast]: https://en.wikipedia.org/wiki/Broadcasting_(networking)
pub trait BroadcastAddress {
/// Is this a broadcast address?
///
/// If this type also implements [`SpecifiedAddress`], then
/// `a.is_broadcast()` implies `a.is_specified()`.
fn is_broadcast(&self) -> bool;
}
impl_trait_for_witness!(BroadcastAddress, is_broadcast, SpecifiedAddr);
impl_trait_for_witness!(BroadcastAddress, is_broadcast, UnicastAddr);
impl_trait_for_witness!(BroadcastAddress, is_broadcast, MulticastAddr);
impl_trait_for_witness!(BroadcastAddress, is_broadcast, LinkLocalAddr);
/// Addresses that can be a link-local.
///
/// `LinkLocalAddress` is implemented by address types for which some values are
/// considered [link-local] addresses. Link-local addresses are used for
/// communication within a network segment, as opposed to global/public
/// addresses which may be used for communication across networks.
///
/// `LinkLocalAddress` is only implemented for addresses whose link-local-ness
/// can be determined by looking only at the address itself.
///
/// [link-local]: https://en.wikipedia.org/wiki/Link-local_address
pub trait LinkLocalAddress {
/// Is this a link-local address?
///
/// `is_linklocal` must maintain the invariant that, if it is called twice
/// on the same object, and in between those two calls, no code has operated
/// on a mutable reference to that object, both calls will return the same
/// value. This property is required in order to implement
/// [`LinkLocalAddr`]. Note that, since this is not an `unsafe` trait,
/// `unsafe` code may NOT rely on this property for its soundness. However,
/// code MAY rely on this property for its correctness.
///
/// If this type also implements [`SpecifiedAddress`], then
/// `a.is_linklocal()` implies `a.is_specified()`.
fn is_linklocal(&self) -> bool;
}
impl_trait_for_witness!(LinkLocalAddress, is_linklocal, SpecifiedAddr);
impl_trait_for_witness!(LinkLocalAddress, is_linklocal, UnicastAddr);
impl_trait_for_witness!(LinkLocalAddress, is_linklocal, MulticastAddr);
/// A scope used by [`ScopeableAddress`]. See that trait's documentation for
/// more information.
///
/// `Scope` is implemented for `()`. No addresses with the `()` scope can ever
/// have an associated zone (in other words, `().can_have_zone()` always returns
/// `false`).
pub trait Scope {
/// Can addresses in this scope have an associated zone?
fn can_have_zone(&self) -> bool;
}
impl Scope for () {
fn can_have_zone(&self) -> bool {
false
}
}
/// An address that can be tied to some scope identifier.
///
/// `ScopeableAddress` is implemented by address types for which some values can
/// have extra scoping information attached. Notably, some IPv6 addresses
/// belonging to a particular scope class require extra metadata to identify the
/// scope identifier or "zone". The zone is typically the networking interface
/// identifier.
///
/// Address types which are never in any identified scope may still implement
/// `ScopeableAddress` by setting the associated `Scope` type to `()`, which has
/// the effect of ensuring that a zone can never be associated with an address
/// (since the implementation of [`Scope::can_have_zone`] for `()` always
/// returns `false`).
pub trait ScopeableAddress {
/// The type of all non-global scopes.
type Scope: Scope;
/// The scope of this address.
///
/// `scope` must maintain the invariant that, if it is called twice on the
/// same object, and in between those two calls, no code has operated on a
/// mutable reference to that object, both calls will return the same value.
/// This property is required in order to implement [`AddrAndZone`]. Note
/// that, since this is not an `unsafe` trait, `unsafe` code may NOT rely on
/// this property for its soundness. However, code MAY rely on this property
/// for its correctness.
///
/// If this type also implements [`SpecifiedAddress`] then
/// `a.scope().can_have_zone()` implies `a.is_specified()`, since the
/// unspecified addresses are always global, and the global scope cannot
/// have a zone.
fn scope(&self) -> Self::Scope;
}
macro_rules! doc_comment {
($x:expr, $($tt:tt)*) => {
#[doc = $x]
$($tt)*
};
}
/// Define a witness type and implement methods and traits for it.
///
/// - `$type` is the type's name
/// - `$adj` is a string literal representing the adjective used to describe
/// addresses of this type for documentation purposes (e.g., "specified",
/// "unicast", etc)
/// - `$trait` is the name of the trait associated with the property to be
/// witnessed
/// - `$method` is the method on `$trait` which determines whether the property
/// holds (e.g., `is_specified`)
macro_rules! impl_witness {
($type:ident, $adj:literal, $trait:ident, $method:ident) => {
doc_comment! {
concat!("An address which is guaranteed to be ", $adj, ".
`", stringify!($type), "` wraps an address of type `A` and guarantees that it is
a ", $adj, " address. Note that this guarantee is contingent on a correct
implementation of the [`", stringify!($trait), "`] trait. Since that trait is
not `unsafe`, `unsafe` code may NOT rely on this guarantee for its soundness."),
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub struct $type<A>(A);
}
impl<A: $trait> $type<A> {
// NOTE(joshlf): It may seem odd to include `new` and `from_witness`
// constructors here when they already exists on the `Witness`
// trait, which this type implements. The reason we do this is that,
// since many of these types implement the `Witness` trait multiple
// times (e.g., `Witness<A> for LinkLocalAddr<A>` and `Witness<A>
// for LinkLocalAddr<MulticastAddr<A>`), if we didn't provide these
// constructors, callers invoking `Foo::new` or `Foo::from_witness`
// would need to `use` the `Witness` trait, and the compiler often
// doesn't have enough information to figure out which `Witness`
// implementation is meant in a given situation. This, in turn,
// requires a lot of boilerplate type annotations on the part of
// users. Providing these constructors helps alleviate this problem.
doc_comment! {
concat!("Constructs a new `", stringify!($type), "`.
`new` returns `None` if `!addr.", stringify!($method), "()`."),
#[inline]
pub fn new(addr: A) -> Option<$type<A>> {
if !addr.$method() {
return None;
}
Some($type(addr))
}
}
doc_comment! {
concat!("Constructs a new `", stringify!($type), "` from a
witness type.
`from_witness(witness)` is equivalent to `new(witness.into_addr())`."),
pub fn from_witness<W: Witness<A>>(addr: W) -> Option<$type<A>> {
$type::new(addr.into_addr())
}
}
}
// TODO(https://github.com/rust-lang/rust/issues/57563): Once traits
// other than `Sized` are supported for const fns, move this into the
// block with the `A: $trait` bound.
impl<A> $type<A> {
doc_comment! {
concat!("Constructs a new `", stringify!($type), "` without
checking to see if `addr` is actually ", $adj, ".
# Safety
It is up to the caller to make sure that `addr` is ", $adj, " to avoid breaking
the guarantees of `", stringify!($type), "`. See [`", stringify!($type), "`] for
more details."),
#[inline]
pub const unsafe fn new_unchecked(addr: A) -> $type<A> {
$type(addr)
}
}
}
impl<A> sealed::Sealed for $type<A> {}
impl<A: $trait> Witness<A> for $type<A> {
fn new(addr: A) -> Option<$type<A>> {
$type::new(addr)
}
unsafe fn new_unchecked(addr: A) -> $type<A> {
$type(addr)
}
#[inline]
fn into_addr(self) -> A {
self.0
}
}
impl<A: $trait> AsRef<A> for $type<A> {
fn as_ref(&self) -> &A {
&self.0
}
}
impl<A: $trait> Deref for $type<A> {
type Target = A;
#[inline]
fn deref(&self) -> &A {
&self.0
}
}
impl<A: $trait + Display> Display for $type<A> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
};
}
/// Implements an `into_specified` method on the witness type `$type`.
///
/// - `$trait` is the name of the trait associated with the witnessed property
/// - `$method` is the method on `$trait` which determines whether the property
/// holds (e.g., `is_unicast`)
///
/// An `into_specified` method is predicated on the witnessed property implying
/// that the address is also specified (e.g., `UnicastAddress::is_unicast`
/// implies `SpecifiedAddress::is_specified`).
macro_rules! impl_into_specified {
($type:ident, $trait:ident, $method:ident) => {
impl<A: $trait + SpecifiedAddress> $type<A> {
doc_comment! {
concat!("Converts this `", stringify!($type), "` into a
[`SpecifiedAddr`].
[`", stringify!($trait), "::", stringify!($method), "`] implies
[`SpecifiedAddress::is_specified`], so all `", stringify!($type), "`s are
guaranteed to be specified, so this conversion is infallible."),
#[inline]
pub fn into_specified(self) -> SpecifiedAddr<A> {
SpecifiedAddr(self.0)
}
}
}
impl<A: $trait + SpecifiedAddress> From<$type<A>> for SpecifiedAddr<A> {
fn from(addr: $type<A>) -> SpecifiedAddr<A> {
addr.into_specified()
}
}
};
}
/// Implements [`Witness`] for a nested witness type.
///
/// `impl_nested_witness` implements `Witness<A>` for
/// `$outer_type<$inner_type<A>>`.
macro_rules! impl_nested_witness {
($outer_trait:ident, $outer_type:ident, $inner_trait:ident, $inner_type:ident, $constructor:ident) => {
impl<A: $outer_trait + $inner_trait> $outer_type<$inner_type<A>> {
doc_comment! {
concat!("Constructs a new `", stringify!($outer_type), "<", stringify!($inner_type), "<A>>`.
`", stringify!($constructor), "(addr)` is equivalent to `", stringify!($inner_type),
"::new(addr).and_then(", stringify!($outer_type), "::new))`."),
#[inline]
pub fn $constructor(addr: A) -> Option<$outer_type<$inner_type<A>>> {
$inner_type::new(addr).and_then($outer_type::new)
}
}
}
impl<A: $outer_trait + $inner_trait> Witness<A> for $outer_type<$inner_type<A>> {
#[inline]
fn new(addr: A) -> Option<$outer_type<$inner_type<A>>> {
$inner_type::new(addr).and_then(Witness::<$inner_type<A>>::new)
}
unsafe fn new_unchecked(addr: A) -> $outer_type<$inner_type<A>> {
$outer_type($inner_type(addr))
}
#[inline]
fn into_addr(self) -> A {
self.0.into_addr()
}
}
impl<A: $outer_trait + $inner_trait> AsRef<A> for $outer_type<$inner_type<A>> {
fn as_ref(&self) -> &A {
&self.0 .0
}
}
impl<A: $outer_trait + $inner_trait> TryFrom<$inner_type<A>> for $outer_type<$inner_type<A>> {
type Error = ();
fn try_from(addr: $inner_type<A>) -> Result<$outer_type<$inner_type<A>>, ()> {
$outer_type::new(addr).ok_or(())
}
}
impl<A: $outer_trait + $inner_trait> TryFrom<$outer_type<A>> for $outer_type<$inner_type<A>> {
type Error = ();
fn try_from(addr: $outer_type<A>) -> Result<$outer_type<$inner_type<A>>, ()> {
// Note that `.map($outer_type)` is sound because we're
// guaranteed by `addr: $outer_type<A>` that
// `$inner_type::new(addr.into_addr())` satisfies the
// `$outer_trait` property.
$inner_type::new(addr.into_addr()).map($outer_type).ok_or(())
}
}
};
}
/// Implements `From<T> for SpecifiedAddr<A>` where `T` is the nested witness
/// type `$outer_type<$inner_type<A>>`.
macro_rules! impl_into_specified_for_nested_witness {
($outer_trait:ident, $outer_type:ident, $inner_trait:ident, $inner_type:ident) => {
impl<A: $outer_trait + $inner_trait + SpecifiedAddress> From<$outer_type<$inner_type<A>>>
for SpecifiedAddr<A>
{
fn from(addr: $outer_type<$inner_type<A>>) -> SpecifiedAddr<A> {
SpecifiedAddr(addr.into_addr())
}
}
};
}
/// Implements `TryFrom<$from_ty<A>> for $into_ty<A>`
macro_rules! impl_try_from_witness {
(@inner [$from_ty:ident: $from_trait:ident], [$into_ty:ident: $into_trait:ident]) => {
impl<A: $from_trait + $into_trait> TryFrom<$from_ty<A>> for $into_ty<A> {
type Error = ();
fn try_from(addr: $from_ty<A>) -> Result<$into_ty<A>, ()> {
Witness::<A>::from_witness(addr).ok_or(())
}
}
};
([$from_ty:ident: $from_trait:ident], $([$into_ty:ident: $into_trait:ident]),*) => {
$(
impl_try_from_witness!(@inner [$from_ty: $from_trait], [$into_ty: $into_trait]);
)*
}
}
// SpecifiedAddr
impl_witness!(SpecifiedAddr, "specified", SpecifiedAddress, is_specified);
impl_try_from_witness!(
[SpecifiedAddr: SpecifiedAddress],
[UnicastAddr: UnicastAddress],
[MulticastAddr: MulticastAddress],
[LinkLocalAddr: LinkLocalAddress],
[LinkLocalUnicastAddr: LinkLocalUnicastAddress],
[LinkLocalMulticastAddr: LinkLocalMulticastAddress]
);
// UnicastAddr
impl_witness!(UnicastAddr, "unicast", UnicastAddress, is_unicast);
impl_into_specified!(UnicastAddr, UnicastAddress, is_unicast);
impl_nested_witness!(UnicastAddress, UnicastAddr, LinkLocalAddress, LinkLocalAddr, new_linklocal);
impl_try_from_witness!(
[UnicastAddr: UnicastAddress],
[MulticastAddr: MulticastAddress],
[LinkLocalAddr: LinkLocalAddress],
[LinkLocalMulticastAddr: LinkLocalMulticastAddress]
);
// MulticastAddr
impl_witness!(MulticastAddr, "multicast", MulticastAddress, is_multicast);
impl_into_specified!(MulticastAddr, MulticastAddress, is_multicast);
impl_nested_witness!(
MulticastAddress,
MulticastAddr,
LinkLocalAddress,
LinkLocalAddr,
new_linklocal
);
impl_into_specified_for_nested_witness!(
MulticastAddress,
MulticastAddr,
LinkLocalAddress,
LinkLocalAddr
);
impl_try_from_witness!(
[MulticastAddr: MulticastAddress],
[UnicastAddr: UnicastAddress],
[LinkLocalAddr: LinkLocalAddress],
[LinkLocalUnicastAddr: LinkLocalUnicastAddress]
);
// LinkLocalAddr
impl_witness!(LinkLocalAddr, "link-local", LinkLocalAddress, is_linklocal);
impl_into_specified!(LinkLocalAddr, LinkLocalAddress, is_linklocal);
impl_nested_witness!(LinkLocalAddress, LinkLocalAddr, UnicastAddress, UnicastAddr, new_unicast);
impl_nested_witness!(
LinkLocalAddress,
LinkLocalAddr,
MulticastAddress,
MulticastAddr,
new_multicast
);
impl_into_specified_for_nested_witness!(
LinkLocalAddress,
LinkLocalAddr,
UnicastAddress,
UnicastAddr
);
impl_into_specified_for_nested_witness!(
LinkLocalAddress,
LinkLocalAddr,
MulticastAddress,
MulticastAddr
);
impl_try_from_witness!(
[LinkLocalAddr: LinkLocalAddress],
[UnicastAddr: UnicastAddress],
[MulticastAddr: MulticastAddress]
);
// NOTE(joshlf): We provide these type aliases both for convenience and also to
// steer users towards these types and away from `UnicastAddr<LinkLocalAddr<A>>`
// and `MulticastAddr<LinkLocalAddr<A>>`, which are also valid. The reason we
// still implement `Witness<A>` for those types is that user code may contain
// generic contexts (e.g., some code with `UnicastAddr<A>`, and other code which
// wishes to supply `A = LinkLocalAddr<AA>`), and we want to support that use
// case.
/// An address that can be link-local and unicast.
///
/// `LinkLocalUnicastAddress` is a shorthand for `LinkLocalAddress +
/// UnicastAddress`.
pub trait LinkLocalUnicastAddress: LinkLocalAddress + UnicastAddress {}
impl<A: LinkLocalAddress + UnicastAddress> LinkLocalUnicastAddress for A {}
/// An address that can be link-local and multicast.
///
/// `LinkLocalMulticastAddress` is a shorthand for `LinkLocalAddress +
/// MulticastAddress`.
pub trait LinkLocalMulticastAddress: LinkLocalAddress + MulticastAddress {}
impl<A: LinkLocalAddress + MulticastAddress> LinkLocalMulticastAddress for A {}
/// A link-local unicast address.
pub type LinkLocalUnicastAddr<A> = LinkLocalAddr<UnicastAddr<A>>;
/// A link-local multicast address.
pub type LinkLocalMulticastAddr<A> = LinkLocalAddr<MulticastAddr<A>>;
impl_try_from_witness!(
[LinkLocalUnicastAddr: LinkLocalUnicastAddress],
[UnicastAddr: UnicastAddress],
[MulticastAddr: MulticastAddress],
[LinkLocalAddr: LinkLocalAddress],
[LinkLocalMulticastAddr: LinkLocalMulticastAddress]
);
impl_try_from_witness!(
[LinkLocalMulticastAddr: LinkLocalMulticastAddress],
[UnicastAddr: UnicastAddress],
[MulticastAddr: MulticastAddress],
[LinkLocalAddr: LinkLocalAddress],
[LinkLocalUnicastAddr: LinkLocalUnicastAddress]
);
/// A witness type for an address and a scope zone.
///
/// `AddrAndZone` carries an address that *may* have a scope, alongside the
/// particular zone of that scope. The zone is also referred to as a "scope
/// identifier" in some systems (such as Linux).
///
/// Note that although `AddrAndZone` acts as a witness type, it does not
/// implement [`Witness`] since it carries both the address and scoping
/// information, and not only the witnessed address.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub struct AddrAndZone<A, Z>(A, Z);
impl<A: ScopeableAddress, Z> AddrAndZone<A, Z> {
/// Creates a new `AddrAndZone`, returning `Some` only if the provided
/// `addr`'s scope can have a zone (`addr.scope().can_have_zone()`).
pub fn new(addr: A, zone: Z) -> Option<Self> {
if addr.scope().can_have_zone() {
Some(Self(addr, zone))
} else {
None
}
}
/// Turns this `AddrAndZone` into its forming parts.
pub fn into_addr_scope_id(self) -> (A, Z) {
(self.0, self.1)
}
}
impl<A, Z> AddrAndZone<A, Z> {
/// Constructs a new `AddrAndZone` without checking to see if `addr`'s scope
/// can have a zone.
///
/// # Safety
///
/// It is up to the caller to make sure that `addr`'s scope can have a zone
/// to avoid breaking the guarantees of `AddrAndZone`.
#[inline]
pub const unsafe fn new_unchecked(addr: A, zone: Z) -> Self {
Self(addr, zone)
}
}
impl<A: ScopeableAddress + SpecifiedAddress, Z> AddrAndZone<A, Z> {
/// Turns this `AddrAndZone` into its forming parts, providing a safe
/// `SpecifiedAddr`.
pub fn into_specified_addr_zone(self) -> (SpecifiedAddr<A>, Z) {
(SpecifiedAddr(self.0), self.1)
}
}
impl<A: ScopeableAddress + Display, Z: Display> Display for AddrAndZone<A, Z> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}%{}", self.0, self.1)
}
}
impl<A, Z> sealed::Sealed for AddrAndZone<A, Z> {}
/// An address that may have an associated scope zone.
#[allow(missing_docs)]
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum ZonedAddress<A, Z> {
Unzoned(SpecifiedAddr<A>),
Zoned(AddrAndZone<A, Z>),
}
impl<A: ScopeableAddress + SpecifiedAddress, Z> ZonedAddress<A, Z> {
/// Creates a new `ZonedAddress` with the provided optional scope zone.
///
/// If `zone` is `None`, [`ZonedAddress::Unzoned`] is returned. Otherwise, a
/// [`ZonedAddress::Zoned`] is returned only if the provided `addr`'s scope
/// can have a zone (`addr.scope().can_have_zone()`).
pub fn new(addr: A, zone: Option<Z>) -> Option<Self> {
match zone {
Some(zone) => AddrAndZone::new(addr, zone).map(ZonedAddress::Zoned),
None => SpecifiedAddr::new(addr).map(ZonedAddress::Unzoned),
}
}
/// Decomposes this `ZonedAddress` into a `SpecifiedAddr` and an optional
/// scope zone.
pub fn into_addr_zone(self) -> (SpecifiedAddr<A>, Option<Z>) {
match self {
ZonedAddress::Unzoned(addr) => (addr, None),
ZonedAddress::Zoned(scope_and_zone) => {
let (addr, zone) = scope_and_zone.into_specified_addr_zone();
(addr, Some(zone))
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Address {
Unspecified,
GlobalUnicast,
GlobalMulticast,
LinkLocalUnicast,
LinkLocalMulticast,
}
impl SpecifiedAddress for Address {
fn is_specified(&self) -> bool {
*self != Address::Unspecified
}
}
impl UnicastAddress for Address {
fn is_unicast(&self) -> bool {
matches!(self, Address::GlobalUnicast | Address::LinkLocalUnicast)
}
}
impl MulticastAddress for Address {
fn is_multicast(&self) -> bool {
matches!(self, Address::GlobalMulticast | Address::LinkLocalMulticast)
}
}
impl LinkLocalAddress for Address {
fn is_linklocal(&self) -> bool {
matches!(self, Address::LinkLocalUnicast | Address::LinkLocalMulticast)
}
}
enum AddressScope {
LinkLocal,
Global,
}
impl Scope for AddressScope {
fn can_have_zone(&self) -> bool {
matches!(self, AddressScope::LinkLocal)
}
}
impl ScopeableAddress for Address {
type Scope = AddressScope;
fn scope(&self) -> AddressScope {
if self.is_linklocal() {
AddressScope::LinkLocal
} else {
AddressScope::Global
}
}
}
#[test]
fn test_specified_addr() {
assert_eq!(
SpecifiedAddr::new(Address::GlobalUnicast),
Some(SpecifiedAddr(Address::GlobalUnicast))
);
assert_eq!(SpecifiedAddr::new(Address::Unspecified), None);
}
#[test]
fn test_unicast_addr() {
assert_eq!(
UnicastAddr::new(Address::GlobalUnicast),
Some(UnicastAddr(Address::GlobalUnicast))
);
assert_eq!(UnicastAddr::new(Address::GlobalMulticast), None);
assert_eq!(
unsafe { UnicastAddr::new_unchecked(Address::GlobalUnicast) },
UnicastAddr(Address::GlobalUnicast)
);
}
#[test]
fn test_multicast_addr() {
assert_eq!(
MulticastAddr::new(Address::GlobalMulticast),
Some(MulticastAddr(Address::GlobalMulticast))
);
assert_eq!(MulticastAddr::new(Address::GlobalUnicast), None);
assert_eq!(
unsafe { MulticastAddr::new_unchecked(Address::GlobalMulticast) },
MulticastAddr(Address::GlobalMulticast)
);
}
#[test]
fn test_linklocal_addr() {
assert_eq!(
LinkLocalAddr::new(Address::LinkLocalUnicast),
Some(LinkLocalAddr(Address::LinkLocalUnicast))
);
assert_eq!(LinkLocalAddr::new(Address::GlobalMulticast), None);
assert_eq!(
unsafe { LinkLocalAddr::new_unchecked(Address::LinkLocalUnicast) },
LinkLocalAddr(Address::LinkLocalUnicast)
);
}
#[test]
fn test_nested() {
// Test UnicastAddr<LinkLocalAddr>, MulticastAddr<LinkLocalAddr>,
// LinkLocalAddr<UnicastAddr>, and LinkLocalAddr<MulticastAddr>.
macro_rules! test_nested {
($new:expr, $([$input:ident => $output:expr],)*) => {
$(
assert_eq!($new(Address::$input), $output);
)*
};
}
// Unicast
test_nested!(UnicastAddr::new_linklocal,
[Unspecified => None],
[GlobalUnicast => None],
[GlobalMulticast => None],
[LinkLocalUnicast => Some(UnicastAddr(LinkLocalAddr(Address::LinkLocalUnicast)))],
[LinkLocalMulticast => None],
);
// Multicast
test_nested!(MulticastAddr::new_linklocal,
[Unspecified => None],
[GlobalUnicast => None],
[GlobalMulticast => None],
[LinkLocalUnicast => None],
[LinkLocalMulticast => Some(MulticastAddr(LinkLocalAddr(Address::LinkLocalMulticast)))],
);
// Link-local
test_nested!(LinkLocalAddr::new_unicast,
[Unspecified => None],
[GlobalUnicast => None],
[GlobalMulticast => None],
[LinkLocalUnicast => Some(LinkLocalAddr(UnicastAddr(Address::LinkLocalUnicast)))],
[LinkLocalMulticast => None],
);
test_nested!(LinkLocalAddr::new_multicast,
[Unspecified => None],
[GlobalUnicast => None],
[GlobalMulticast => None],
[LinkLocalUnicast => None],
[LinkLocalMulticast => Some(LinkLocalAddr(MulticastAddr(Address::LinkLocalMulticast)))],
);
}
#[test]
fn test_addr_and_zone() {
let addr_and_zone = AddrAndZone::new(Address::LinkLocalUnicast, ());
assert_eq!(addr_and_zone, Some(AddrAndZone(Address::LinkLocalUnicast, ())));
assert_eq!(addr_and_zone.unwrap().into_addr_scope_id(), (Address::LinkLocalUnicast, ()));
assert_eq!(AddrAndZone::new(Address::GlobalUnicast, ()), None);
assert_eq!(
unsafe { AddrAndZone::new_unchecked(Address::LinkLocalUnicast, ()) },
AddrAndZone(Address::LinkLocalUnicast, ())
);
}
#[test]
fn test_scoped_address() {
// Type alias to help the compiler when the scope type can't be
// inferred.
type ZonedAddress = crate::ZonedAddress<Address, ()>;
assert_eq!(
ZonedAddress::new(Address::GlobalUnicast, None),
Some(ZonedAddress::Unzoned(SpecifiedAddr(Address::GlobalUnicast)))
);
assert_eq!(ZonedAddress::new(Address::Unspecified, None), None);
assert_eq!(
ZonedAddress::new(Address::LinkLocalUnicast, None),
Some(ZonedAddress::Unzoned(SpecifiedAddr(Address::LinkLocalUnicast)))
);
assert_eq!(ZonedAddress::new(Address::GlobalUnicast, Some(())), None);
assert_eq!(ZonedAddress::new(Address::Unspecified, Some(())), None);
assert_eq!(
ZonedAddress::new(Address::LinkLocalUnicast, Some(())),
Some(ZonedAddress::Zoned(AddrAndZone(Address::LinkLocalUnicast, ())))
);
assert_eq!(
ZonedAddress::new(Address::GlobalUnicast, None).unwrap().into_addr_zone(),
(SpecifiedAddr(Address::GlobalUnicast), None)
);
assert_eq!(
ZonedAddress::new(Address::LinkLocalUnicast, Some(())).unwrap().into_addr_zone(),
(SpecifiedAddr(Address::LinkLocalUnicast), Some(()))
);
}
}