| // Translated from C to Rust. The original C code can be found at | 
 | // https://github.com/ulfjack/ryu and carries the following license: | 
 | // | 
 | // Copyright 2018 Ulf Adams | 
 | // | 
 | // The contents of this file may be used under the terms of the Apache License, | 
 | // Version 2.0. | 
 | // | 
 | //    (See accompanying file LICENSE-Apache or copy at | 
 | //     http://www.apache.org/licenses/LICENSE-2.0) | 
 | // | 
 | // Alternatively, the contents of this file may be used under the terms of | 
 | // the Boost Software License, Version 1.0. | 
 | //    (See accompanying file LICENSE-Boost or copy at | 
 | //     https://www.boost.org/LICENSE_1_0.txt) | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, this software | 
 | // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | 
 | // KIND, either express or implied. | 
 |  | 
 | use common::*; | 
 |  | 
 | pub const FLOAT_MANTISSA_BITS: u32 = 23; | 
 | pub const FLOAT_EXPONENT_BITS: u32 = 8; | 
 |  | 
 | const FLOAT_BIAS: i32 = 127; | 
 | const FLOAT_POW5_INV_BITCOUNT: i32 = 59; | 
 | const FLOAT_POW5_BITCOUNT: i32 = 61; | 
 |  | 
 | // This table is generated by PrintFloatLookupTable. | 
 | static FLOAT_POW5_INV_SPLIT: [u64; 32] = [ | 
 |     576460752303423489, | 
 |     461168601842738791, | 
 |     368934881474191033, | 
 |     295147905179352826, | 
 |     472236648286964522, | 
 |     377789318629571618, | 
 |     302231454903657294, | 
 |     483570327845851670, | 
 |     386856262276681336, | 
 |     309485009821345069, | 
 |     495176015714152110, | 
 |     396140812571321688, | 
 |     316912650057057351, | 
 |     507060240091291761, | 
 |     405648192073033409, | 
 |     324518553658426727, | 
 |     519229685853482763, | 
 |     415383748682786211, | 
 |     332306998946228969, | 
 |     531691198313966350, | 
 |     425352958651173080, | 
 |     340282366920938464, | 
 |     544451787073501542, | 
 |     435561429658801234, | 
 |     348449143727040987, | 
 |     557518629963265579, | 
 |     446014903970612463, | 
 |     356811923176489971, | 
 |     570899077082383953, | 
 |     456719261665907162, | 
 |     365375409332725730, | 
 |     1 << 63, | 
 | ]; | 
 |  | 
 | static FLOAT_POW5_SPLIT: [u64; 47] = [ | 
 |     1152921504606846976, | 
 |     1441151880758558720, | 
 |     1801439850948198400, | 
 |     2251799813685248000, | 
 |     1407374883553280000, | 
 |     1759218604441600000, | 
 |     2199023255552000000, | 
 |     1374389534720000000, | 
 |     1717986918400000000, | 
 |     2147483648000000000, | 
 |     1342177280000000000, | 
 |     1677721600000000000, | 
 |     2097152000000000000, | 
 |     1310720000000000000, | 
 |     1638400000000000000, | 
 |     2048000000000000000, | 
 |     1280000000000000000, | 
 |     1600000000000000000, | 
 |     2000000000000000000, | 
 |     1250000000000000000, | 
 |     1562500000000000000, | 
 |     1953125000000000000, | 
 |     1220703125000000000, | 
 |     1525878906250000000, | 
 |     1907348632812500000, | 
 |     1192092895507812500, | 
 |     1490116119384765625, | 
 |     1862645149230957031, | 
 |     1164153218269348144, | 
 |     1455191522836685180, | 
 |     1818989403545856475, | 
 |     2273736754432320594, | 
 |     1421085471520200371, | 
 |     1776356839400250464, | 
 |     2220446049250313080, | 
 |     1387778780781445675, | 
 |     1734723475976807094, | 
 |     2168404344971008868, | 
 |     1355252715606880542, | 
 |     1694065894508600678, | 
 |     2117582368135750847, | 
 |     1323488980084844279, | 
 |     1654361225106055349, | 
 |     2067951531382569187, | 
 |     1292469707114105741, | 
 |     1615587133892632177, | 
 |     2019483917365790221, | 
 | ]; | 
 |  | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | fn pow5_factor(mut value: u32) -> u32 { | 
 |     let mut count = 0u32; | 
 |     loop { | 
 |         debug_assert!(value != 0); | 
 |         let q = value / 5; | 
 |         let r = value % 5; | 
 |         if r != 0 { | 
 |             break; | 
 |         } | 
 |         value = q; | 
 |         count += 1; | 
 |     } | 
 |     count | 
 | } | 
 |  | 
 | // Returns true if value is divisible by 5^p. | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | fn multiple_of_power_of_5(value: u32, p: u32) -> bool { | 
 |     pow5_factor(value) >= p | 
 | } | 
 |  | 
 | // Returns true if value is divisible by 2^p. | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | fn multiple_of_power_of_2(value: u32, p: u32) -> bool { | 
 |     // return __builtin_ctz(value) >= p; | 
 |     (value & ((1u32 << p) - 1)) == 0 | 
 | } | 
 |  | 
 | // It seems to be slightly faster to avoid uint128_t here, although the | 
 | // generated code for uint128_t looks slightly nicer. | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | fn mul_shift(m: u32, factor: u64, shift: i32) -> u32 { | 
 |     debug_assert!(shift > 32); | 
 |  | 
 |     // The casts here help MSVC to avoid calls to the __allmul library | 
 |     // function. | 
 |     let factor_lo = factor as u32; | 
 |     let factor_hi = (factor >> 32) as u32; | 
 |     let bits0 = m as u64 * factor_lo as u64; | 
 |     let bits1 = m as u64 * factor_hi as u64; | 
 |  | 
 |     let sum = (bits0 >> 32) + bits1; | 
 |     let shifted_sum = sum >> (shift - 32); | 
 |     debug_assert!(shifted_sum <= u32::max_value() as u64); | 
 |     shifted_sum as u32 | 
 | } | 
 |  | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | fn mul_pow5_inv_div_pow2(m: u32, q: u32, j: i32) -> u32 { | 
 |     debug_assert!(q < FLOAT_POW5_INV_SPLIT.len() as u32); | 
 |     unsafe { mul_shift(m, *FLOAT_POW5_INV_SPLIT.get_unchecked(q as usize), j) } | 
 | } | 
 |  | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | fn mul_pow5_div_pow2(m: u32, i: u32, j: i32) -> u32 { | 
 |     debug_assert!(i < FLOAT_POW5_SPLIT.len() as u32); | 
 |     unsafe { mul_shift(m, *FLOAT_POW5_SPLIT.get_unchecked(i as usize), j) } | 
 | } | 
 |  | 
 | // A floating decimal representing m * 10^e. | 
 | pub struct FloatingDecimal32 { | 
 |     pub mantissa: u32, | 
 |     // Decimal exponent's range is -45 to 38 | 
 |     // inclusive, and can fit in i16 if needed. | 
 |     pub exponent: i32, | 
 | } | 
 |  | 
 | #[cfg_attr(feature = "no-panic", inline)] | 
 | pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 { | 
 |     let (e2, m2) = if ieee_exponent == 0 { | 
 |         ( | 
 |             // We subtract 2 so that the bounds computation has 2 additional bits. | 
 |             1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2, | 
 |             ieee_mantissa, | 
 |         ) | 
 |     } else { | 
 |         ( | 
 |             ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2, | 
 |             (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa, | 
 |         ) | 
 |     }; | 
 |     let even = (m2 & 1) == 0; | 
 |     let accept_bounds = even; | 
 |  | 
 |     // Step 2: Determine the interval of valid decimal representations. | 
 |     let mv = 4 * m2; | 
 |     let mp = 4 * m2 + 2; | 
 |     // Implicit bool -> int conversion. True is 1, false is 0. | 
 |     let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32; | 
 |     let mm = 4 * m2 - 1 - mm_shift; | 
 |  | 
 |     // Step 3: Convert to a decimal power base using 64-bit arithmetic. | 
 |     let mut vr: u32; | 
 |     let mut vp: u32; | 
 |     let mut vm: u32; | 
 |     let e10: i32; | 
 |     let mut vm_is_trailing_zeros = false; | 
 |     let mut vr_is_trailing_zeros = false; | 
 |     let mut last_removed_digit = 0u8; | 
 |     if e2 >= 0 { | 
 |         let q = log10_pow2(e2); | 
 |         e10 = q as i32; | 
 |         let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1; | 
 |         let i = -e2 + q as i32 + k; | 
 |         vr = mul_pow5_inv_div_pow2(mv, q, i); | 
 |         vp = mul_pow5_inv_div_pow2(mp, q, i); | 
 |         vm = mul_pow5_inv_div_pow2(mm, q, i); | 
 |         if q != 0 && (vp - 1) / 10 <= vm / 10 { | 
 |             // We need to know one removed digit even if we are not going to loop below. We could use | 
 |             // q = X - 1 above, except that would require 33 bits for the result, and we've found that | 
 |             // 32-bit arithmetic is faster even on 64-bit machines. | 
 |             let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1; | 
 |             last_removed_digit = | 
 |                 (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8; | 
 |         } | 
 |         if q <= 9 { | 
 |             // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well. | 
 |             // Only one of mp, mv, and mm can be a multiple of 5, if any. | 
 |             if mv % 5 == 0 { | 
 |                 vr_is_trailing_zeros = multiple_of_power_of_5(mv, q); | 
 |             } else if accept_bounds { | 
 |                 vm_is_trailing_zeros = multiple_of_power_of_5(mm, q); | 
 |             } else { | 
 |                 vp -= multiple_of_power_of_5(mp, q) as u32; | 
 |             } | 
 |         } | 
 |     } else { | 
 |         let q = log10_pow5(-e2); | 
 |         e10 = q as i32 + e2; | 
 |         let i = -e2 - q as i32; | 
 |         let k = pow5bits(i) - FLOAT_POW5_BITCOUNT; | 
 |         let mut j = q as i32 - k; | 
 |         vr = mul_pow5_div_pow2(mv, i as u32, j); | 
 |         vp = mul_pow5_div_pow2(mp, i as u32, j); | 
 |         vm = mul_pow5_div_pow2(mm, i as u32, j); | 
 |         if q != 0 && (vp - 1) / 10 <= vm / 10 { | 
 |             j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT); | 
 |             last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8; | 
 |         } | 
 |         if q <= 1 { | 
 |             // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. | 
 |             // mv = 4 * m2, so it always has at least two trailing 0 bits. | 
 |             vr_is_trailing_zeros = true; | 
 |             if accept_bounds { | 
 |                 // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1. | 
 |                 vm_is_trailing_zeros = mm_shift == 1; | 
 |             } else { | 
 |                 // mp = mv + 2, so it always has at least one trailing 0 bit. | 
 |                 vp -= 1; | 
 |             } | 
 |         } else if q < 31 { | 
 |             // TODO(ulfjack): Use a tighter bound here. | 
 |             vr_is_trailing_zeros = multiple_of_power_of_2(mv, q - 1); | 
 |         } | 
 |     } | 
 |  | 
 |     // Step 4: Find the shortest decimal representation in the interval of valid representations. | 
 |     let mut removed = 0i32; | 
 |     let output = if vm_is_trailing_zeros || vr_is_trailing_zeros { | 
 |         // General case, which happens rarely (~4.0%). | 
 |         while vp / 10 > vm / 10 { | 
 |             vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0; | 
 |             vr_is_trailing_zeros &= last_removed_digit == 0; | 
 |             last_removed_digit = (vr % 10) as u8; | 
 |             vr /= 10; | 
 |             vp /= 10; | 
 |             vm /= 10; | 
 |             removed += 1; | 
 |         } | 
 |         if vm_is_trailing_zeros { | 
 |             while vm % 10 == 0 { | 
 |                 vr_is_trailing_zeros &= last_removed_digit == 0; | 
 |                 last_removed_digit = (vr % 10) as u8; | 
 |                 vr /= 10; | 
 |                 vp /= 10; | 
 |                 vm /= 10; | 
 |                 removed += 1; | 
 |             } | 
 |         } | 
 |         if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 { | 
 |             // Round even if the exact number is .....50..0. | 
 |             last_removed_digit = 4; | 
 |         } | 
 |         // We need to take vr + 1 if vr is outside bounds or we need to round up. | 
 |         vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5) | 
 |             as u32 | 
 |     } else { | 
 |         // Specialized for the common case (~96.0%). Percentages below are relative to this. | 
 |         // Loop iterations below (approximately): | 
 |         // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% | 
 |         while vp / 10 > vm / 10 { | 
 |             last_removed_digit = (vr % 10) as u8; | 
 |             vr /= 10; | 
 |             vp /= 10; | 
 |             vm /= 10; | 
 |             removed += 1; | 
 |         } | 
 |         // We need to take vr + 1 if vr is outside bounds or we need to round up. | 
 |         vr + (vr == vm || last_removed_digit >= 5) as u32 | 
 |     }; | 
 |     let exp = e10 + removed; | 
 |  | 
 |     FloatingDecimal32 { | 
 |         exponent: exp, | 
 |         mantissa: output, | 
 |     } | 
 | } |