blob: a5508b5ce3bef5d95e1100ef20705773d13dc622 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use {
crate::host_identifier::HostIdentifier,
anyhow::{Context as _, Result},
fidl::prelude::*,
fidl_fuchsia_developer_remotecontrol as rcs,
fidl_fuchsia_diagnostics::Selector,
fidl_fuchsia_io as io,
fidl_fuchsia_net_ext::SocketAddress as SocketAddressExt,
fuchsia_async as fasync, fuchsia_zircon as zx,
futures::future::join,
futures::prelude::*,
selector_maps::{MappingError, SelectorMappingList},
std::{cell::RefCell, net::SocketAddr, rc::Rc},
tracing::*,
};
mod host_identifier;
mod service_discovery;
const HUB_ROOT: &str = "/discovery_root";
pub struct RemoteControlService {
ids: RefCell<Vec<u64>>,
id_allocator: fn() -> Result<HostIdentifier>,
maps: SelectorMappingList,
}
impl RemoteControlService {
pub async fn new() -> Self {
let f = match fuchsia_fs::open_file_in_namespace(
"/config/data/selector-maps.json",
io::OpenFlags::RIGHT_READABLE,
) {
Ok(f) => f,
Err(e) => {
error!(%e, "failed to open selector maps json file");
return Self::new_with_allocator_and_maps(
|| HostIdentifier::new(),
SelectorMappingList::default(),
);
}
};
let bytes = match fuchsia_fs::read_file_bytes(&f).await {
Ok(b) => b,
Err(e) => {
error!(?e, "failed to read bytes from selector maps json");
return Self::new_with_allocator_and_maps(
|| HostIdentifier::new(),
SelectorMappingList::default(),
);
}
};
let list: SelectorMappingList = match serde_json::from_slice(bytes.as_slice()) {
Ok(m) => m,
Err(e) => {
error!(?e, "failed to parse selector map json");
return Self::new_with_allocator_and_maps(
|| HostIdentifier::new(),
SelectorMappingList::default(),
);
}
};
return Self::new_with_allocator_and_maps(|| HostIdentifier::new(), list);
}
pub(crate) fn new_with_allocator_and_maps(
id_allocator: fn() -> Result<HostIdentifier>,
maps: SelectorMappingList,
) -> Self {
return Self { id_allocator, ids: Default::default(), maps };
}
async fn handle(self: &Rc<Self>, request: rcs::RemoteControlRequest) -> Result<()> {
match request {
rcs::RemoteControlRequest::EchoString { value, responder } => {
log::info!("Received echo string {}", value);
responder.send(&value)?;
Ok(())
}
rcs::RemoteControlRequest::AddId { id, responder } => {
self.ids.borrow_mut().push(id);
responder.send()?;
Ok(())
}
rcs::RemoteControlRequest::IdentifyHost { responder } => {
self.clone().identify_host(responder).await?;
Ok(())
}
rcs::RemoteControlRequest::Connect { selector, service_chan, responder } => {
responder
.send(&mut self.clone().connect_to_service(selector, service_chan).await)?;
Ok(())
}
rcs::RemoteControlRequest::Select { selector, responder } => {
responder.send(&mut self.clone().select(selector).await)?;
Ok(())
}
rcs::RemoteControlRequest::OpenHub { server, responder } => {
responder.send(
&mut fuchsia_fs::connect_in_namespace(
HUB_ROOT,
server.into_channel(),
io::OpenFlags::RIGHT_READABLE | io::OpenFlags::RIGHT_WRITABLE,
)
.map_err(|i| i.into_raw()),
)?;
Ok(())
}
rcs::RemoteControlRequest::RootRealmExplorer { server, responder } => {
responder.send(
&mut fuchsia_fs::connect_in_namespace(
&format!(
"/svc/{}.root",
fidl_fuchsia_sys2::RealmExplorerMarker::PROTOCOL_NAME
),
server.into_channel(),
io::OpenFlags::RIGHT_READABLE | io::OpenFlags::RIGHT_WRITABLE,
)
.map_err(|i| i.into_raw()),
)?;
Ok(())
}
rcs::RemoteControlRequest::RootRealmQuery { server, responder } => {
responder.send(
&mut fuchsia_fs::connect_in_namespace(
&format!(
"/svc/{}.root",
fidl_fuchsia_sys2::RealmQueryMarker::PROTOCOL_NAME
),
server.into_channel(),
io::OpenFlags::RIGHT_READABLE | io::OpenFlags::RIGHT_WRITABLE,
)
.map_err(|i| i.into_raw()),
)?;
Ok(())
}
rcs::RemoteControlRequest::RootLifecycleController { server, responder } => {
responder.send(
&mut fuchsia_fs::connect_in_namespace(
&format!(
"/svc/{}.root",
fidl_fuchsia_sys2::LifecycleControllerMarker::PROTOCOL_NAME
),
server.into_channel(),
io::OpenFlags::RIGHT_READABLE | io::OpenFlags::RIGHT_WRITABLE,
)
.map_err(|i| i.into_raw()),
)?;
Ok(())
}
rcs::RemoteControlRequest::RootRouteValidator { server, responder } => {
responder.send(
&mut fuchsia_fs::connect_in_namespace(
&format!(
"/svc/{}.root",
fidl_fuchsia_sys2::RouteValidatorMarker::PROTOCOL_NAME
),
server.into_channel(),
io::OpenFlags::RIGHT_READABLE | io::OpenFlags::RIGHT_WRITABLE,
)
.map_err(|i| i.into_raw()),
)?;
Ok(())
}
rcs::RemoteControlRequest::ForwardTcp { addr, socket, responder } => {
let addr: SocketAddressExt = addr.into();
let addr = addr.0;
let mut result = match fasync::Socket::from_socket(socket) {
Ok(socket) => match self.connect_forwarded_port(addr, socket).await {
Ok(()) => Ok(()),
Err(e) => {
log::error!("Port forward connection failed: {:?}", e);
Err(rcs::TunnelError::ConnectFailed)
}
},
Err(e) => {
log::error!("Could not use socket asynchronously: {:?}", e);
Err(rcs::TunnelError::SocketFailed)
}
};
responder.send(&mut result)?;
Ok(())
}
rcs::RemoteControlRequest::ReverseTcp { addr, client, responder } => {
let addr: SocketAddressExt = addr.into();
let addr = addr.0;
let client = match client.into_proxy() {
Ok(proxy) => proxy,
Err(e) => {
log::error!("Could not communicate with callback: {:?}", e);
responder.send(&mut Err(rcs::TunnelError::CallbackError))?;
return Ok(());
}
};
let mut result = match self.listen_reversed_port(addr, client).await {
Ok(()) => Ok(()),
Err(e) => {
log::error!("Port forward connection failed: {:?}", e);
Err(rcs::TunnelError::ConnectFailed)
}
};
responder.send(&mut result)?;
Ok(())
}
}
}
pub async fn serve_stream(self: Rc<Self>, stream: rcs::RemoteControlRequestStream) {
stream
.for_each_concurrent(None, |request| async {
match request {
Ok(request) => {
let _ = self
.handle(request)
.await
.map_err(|e| log::warn!("stream request handling error: {:?}", e));
}
Err(e) => log::warn!("stream error: {:?}", e),
}
})
.await
}
async fn listen_reversed_port(
&self,
listen_addr: SocketAddr,
client: rcs::ForwardCallbackProxy,
) -> Result<(), std::io::Error> {
let mut listener = fasync::net::TcpListener::bind(&listen_addr)?.accept_stream();
fasync::Task::local(async move {
let mut client_closed = client.on_closed().fuse();
loop {
// Listen for a connection, or exit if the client has gone away.
let (stream, addr) = futures::select! {
result = listener.next().fuse() => {
match result {
Some(Ok(x)) => x,
Some(Err(e)) => {
log::warn!("Error accepting connection: {:?}", e);
continue;
}
None => {
log::warn!("reverse tunnel to {:?} listener socket closed", listen_addr);
break;
}
}
}
_ = client_closed => {
log::info!("reverse tunnel {:?} client has closed", listen_addr);
break;
}
};
log::info!("reverse tunnel connection from {:?} to {:?}", addr, listen_addr);
let (local, remote) = match zx::Socket::create(zx::SocketOpts::STREAM) {
Ok(x) => x,
Err(e) => {
log::warn!("Error creating socket: {:?}", e);
continue;
}
};
let local = match fasync::Socket::from_socket(local) {
Ok(x) => x,
Err(e) => {
log::warn!("Error converting socket to async: {:?}", e);
continue;
}
};
spawn_forward_traffic(stream, local);
// Send the socket to the client.
if let Err(e) = client.forward(remote, &mut SocketAddressExt(addr).into()) {
// The client has gone away, so stop the task.
if let fidl::Error::ClientChannelClosed { .. } = e {
log::warn!("tunnel client channel closed while forwarding socket");
break;
}
log::warn!("Could not return forwarded socket to client: {:?}", e);
}
}
})
.detach();
Ok(())
}
async fn connect_forwarded_port(
&self,
addr: SocketAddr,
socket: fasync::Socket,
) -> Result<(), std::io::Error> {
let tcp_conn = fasync::net::TcpStream::connect(addr)?.await?;
spawn_forward_traffic(tcp_conn, socket);
Ok(())
}
async fn connect_with_matcher(
self: &Rc<Self>,
selector: &Selector,
service_chan: zx::Channel,
matcher_fut: impl Future<Output = Result<Vec<service_discovery::PathEntry>>>,
) -> Result<rcs::ServiceMatch, rcs::ConnectError> {
let paths = matcher_fut.await.map_err(|err| {
warn!(?selector, %err, "error looking for matching services for selector");
rcs::ConnectError::ServiceDiscoveryFailed
})?;
if paths.is_empty() {
return Err(rcs::ConnectError::NoMatchingServices);
} else if paths.len() > 1 {
// TODO(jwing): we should be able to communicate this to the FE somehow.
warn!(
?paths,
"Selector must match exactly one service. Provided selector matched all of the following");
return Err(rcs::ConnectError::MultipleMatchingServices);
}
let svc_match = paths.get(0).unwrap();
let hub_path = svc_match.hub_path.to_str().unwrap();
info!(hub_path, "attempting to connect");
fuchsia_fs::connect_in_namespace(
hub_path,
service_chan,
io::OpenFlags::RIGHT_READABLE | io::OpenFlags::RIGHT_WRITABLE,
)
.map_err(|err| {
error!(?selector, %err, "error connecting to selector");
rcs::ConnectError::ServiceConnectFailed
})?;
Ok(svc_match.into())
}
pub(crate) fn map_selector(
self: &Rc<Self>,
selector: Selector,
) -> Result<Selector, rcs::ConnectError> {
self.maps.map_selector(selector.clone()).map_err(|e| {
match e {
MappingError::BadSelector(selector_str, err) => {
error!(?selector, ?selector_str, %err, "got invalid selector mapping");
}
MappingError::BadInputSelector(err) => {
error!(%err, "input selector invalid");
}
MappingError::Unbounded => {
error!(?selector, %e, "got a cycle in mapping selector");
}
}
rcs::ConnectError::ServiceRerouteFailed
})
}
pub async fn connect_to_service(
self: &Rc<Self>,
selector: Selector,
service_chan: zx::Channel,
) -> Result<rcs::ServiceMatch, rcs::ConnectError> {
let selector = self.map_selector(selector.clone())?;
self.connect_with_matcher(
&selector,
service_chan,
service_discovery::get_matching_paths(HUB_ROOT, &selector),
)
.await
}
async fn select_with_matcher(
self: &Rc<Self>,
selector: &Selector,
matcher_fut: impl Future<Output = Result<Vec<service_discovery::PathEntry>>>,
) -> Result<Vec<rcs::ServiceMatch>, rcs::SelectError> {
let paths = matcher_fut.await.map_err(|err| {
warn!(?selector, %err, "error looking for matching services for selector");
rcs::SelectError::ServiceDiscoveryFailed
})?;
Ok(paths.iter().map(|p| p.into()).collect::<Vec<rcs::ServiceMatch>>())
}
pub async fn select(
self: &Rc<Self>,
selector: Selector,
) -> Result<Vec<rcs::ServiceMatch>, rcs::SelectError> {
self.select_with_matcher(
&selector,
service_discovery::get_matching_paths(HUB_ROOT, &selector),
)
.await
}
pub async fn identify_host(
self: &Rc<Self>,
responder: rcs::RemoteControlIdentifyHostResponder,
) -> Result<()> {
let identifier = match (self.id_allocator)() {
Ok(i) => i,
Err(e) => {
error!(%e, "Allocating host identifier");
return responder
.send(&mut Err(rcs::IdentifyHostError::ProxyConnectionFailed))
.context("responding to client");
}
};
// TODO(raggi): limit size to stay under message size limit.
let ids = self.ids.borrow().clone();
let mut target_identity = identifier.identify().await.map(move |mut i| {
i.ids = Some(ids);
i
});
responder.send(&mut target_identity).context("responding to client")?;
Ok(())
}
}
#[derive(Debug)]
enum ForwardError {
TcpToZx(anyhow::Error),
ZxToTcp(anyhow::Error),
Both { tcp_to_zx: anyhow::Error, zx_to_tcp: anyhow::Error },
}
fn spawn_forward_traffic(tcp_side: fasync::net::TcpStream, zx_side: fasync::Socket) {
fasync::Task::local(async move {
match forward_traffic(tcp_side, zx_side).await {
Ok(()) => {}
Err(ForwardError::TcpToZx(err)) => {
log::error!("error forwarding from tcp to zx socket: {:#}", err);
}
Err(ForwardError::ZxToTcp(err)) => {
log::error!("error forwarding from zx to tcp socket: {:#}", err);
}
Err(ForwardError::Both { tcp_to_zx, zx_to_tcp }) => {
log::error!(
"error forwarding from zx to tcp socket:\n{:#}\n{:#}",
tcp_to_zx,
zx_to_tcp
);
}
}
})
.detach()
}
async fn forward_traffic(
tcp_side: fasync::net::TcpStream,
zx_side: fasync::Socket,
) -> Result<(), ForwardError> {
// We will forward traffic with two sub-tasks. One to stream bytes from the
// tcp socket to the zircon socket, and vice versa. Since we have two tasks,
// we need to handle how we exit the loops, otherwise we risk leaking
// resource.
//
// To handle this, we'll create two promises that will resolve upon the
// stream closing. For the zircon socket, we can use a native signal, but
// unfortunately fasync::net::TcpStream doesn't support listening for
// closure, so we'll just use a oneshot channel to signal to the other task
// when the tcp stream closes.
let (tcp_closed_tx, mut tcp_closed_rx) = futures::channel::oneshot::channel::<()>();
let mut zx_closed =
fasync::OnSignals::new(&zx_side, zx::Signals::SOCKET_PEER_CLOSED).extend_lifetime().fuse();
let (mut tcp_read, mut tcp_write) = tcp_side.split();
let (mut zx_read, mut zx_write) = zx_side.split();
let tcp_to_zx = async move {
let res = async move {
// TODO(84188): Use a buffer pool once we have them.
let mut buf = [0; 4096];
loop {
futures::select! {
res = tcp_read.read(&mut buf).fuse() => {
let num_bytes = res.context("read tcp socket")?;
if num_bytes == 0 {
return Ok(());
}
zx_write.write_all(&mut buf[..num_bytes]).await.context("write zx socket")?;
zx_write.flush().await.context("flush zx socket")?;
}
_ = zx_closed => {
return Ok(());
}
}
}
}
.await;
// Let the other task know the tcp stream has shut down. If the other
// task finished before this one, this send could fail. That's okay, so
// just ignore the result.
let _ = tcp_closed_tx.send(());
res
};
let zx_to_tcp = async move {
// TODO(84188): Use a buffer pool once we have them.
let mut buf = [0; 4096];
loop {
futures::select! {
res = zx_read.read(&mut buf).fuse() => {
let num_bytes = res.context("read zx socket")?;
if num_bytes == 0 {
return Ok(());
}
tcp_write.write_all(&mut buf[..num_bytes]).await.context("write tcp socket")?;
tcp_write.flush().await.context("flush tcp socket")?;
}
_ = tcp_closed_rx => {
break Ok(());
}
}
}
};
match join(tcp_to_zx, zx_to_tcp).await {
(Ok(()), Ok(())) => Ok(()),
(Err(tcp_to_zx), Err(zx_to_tcp)) => Err(ForwardError::Both { tcp_to_zx, zx_to_tcp }),
(Err(tcp_to_zx), Ok(())) => Err(ForwardError::TcpToZx(tcp_to_zx)),
(Ok(()), Err(zx_to_tcp)) => Err(ForwardError::ZxToTcp(zx_to_tcp)),
}
}
#[cfg(test)]
mod tests {
use {
super::*,
assert_matches::assert_matches,
fidl_fuchsia_buildinfo as buildinfo, fidl_fuchsia_developer_remotecontrol as rcs,
fidl_fuchsia_device as fdevice, fidl_fuchsia_hwinfo as hwinfo, fidl_fuchsia_io as fio,
fidl_fuchsia_net as fnet, fidl_fuchsia_net_interfaces as fnet_interfaces,
fuchsia_zircon as zx,
selectors::{parse_selector, VerboseError},
service_discovery::PathEntry,
std::net::Ipv4Addr,
std::path::PathBuf,
};
const NODENAME: &'static str = "thumb-set-human-shred";
const BOOT_TIME: u64 = 123456789000000000;
const SERIAL: &'static str = "test_serial";
const BOARD_CONFIG: &'static str = "test_board_name";
const PRODUCT_CONFIG: &'static str = "core";
const FAKE_SERVICE_SELECTOR: &'static str = "my/component:expose:some.fake.Service";
const MAPPED_SERVICE_SELECTOR: &'static str = "my/other/component:out:some.fake.mapped.Service";
const IPV4_ADDR: [u8; 4] = [127, 0, 0, 1];
const IPV6_ADDR: [u8; 16] = [127, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6];
fn setup_fake_device_service() -> hwinfo::DeviceProxy {
let (proxy, mut stream) =
fidl::endpoints::create_proxy_and_stream::<hwinfo::DeviceMarker>().unwrap();
fasync::Task::spawn(async move {
while let Ok(Some(req)) = stream.try_next().await {
match req {
hwinfo::DeviceRequest::GetInfo { responder } => {
let _ = responder.send(hwinfo::DeviceInfo {
serial_number: Some(String::from(SERIAL)),
..hwinfo::DeviceInfo::EMPTY
});
}
}
}
})
.detach();
proxy
}
fn setup_fake_build_info_service() -> buildinfo::ProviderProxy {
let (proxy, mut stream) =
fidl::endpoints::create_proxy_and_stream::<buildinfo::ProviderMarker>().unwrap();
fasync::Task::spawn(async move {
while let Ok(Some(req)) = stream.try_next().await {
match req {
buildinfo::ProviderRequest::GetBuildInfo { responder } => {
let _ = responder.send(buildinfo::BuildInfo {
board_config: Some(String::from(BOARD_CONFIG)),
product_config: Some(String::from(PRODUCT_CONFIG)),
..buildinfo::BuildInfo::EMPTY
});
}
}
}
})
.detach();
proxy
}
fn setup_fake_name_provider_service() -> fdevice::NameProviderProxy {
let (proxy, mut stream) =
fidl::endpoints::create_proxy_and_stream::<fdevice::NameProviderMarker>().unwrap();
fasync::Task::spawn(async move {
while let Ok(Some(req)) = stream.try_next().await {
match req {
fdevice::NameProviderRequest::GetDeviceName { responder } => {
let _ = responder.send(&mut Ok(String::from(NODENAME)));
}
}
}
})
.detach();
proxy
}
fn setup_fake_interface_state_service() -> fnet_interfaces::StateProxy {
let (proxy, mut stream) =
fidl::endpoints::create_proxy_and_stream::<fnet_interfaces::StateMarker>().unwrap();
fasync::Task::spawn(async move {
while let Ok(Some(req)) = stream.try_next().await {
match req {
fnet_interfaces::StateRequest::GetWatcher {
options: _,
watcher,
control_handle: _,
} => {
let mut stream = watcher.into_stream().unwrap();
let mut first = true;
while let Ok(Some(req)) = stream.try_next().await {
match req {
fnet_interfaces::WatcherRequest::Watch { responder } => {
let mut event = if first {
first = false;
fnet_interfaces::Event::Existing(
fnet_interfaces::Properties {
id: Some(1),
addresses: Some(
IntoIterator::into_iter([
fnet::Subnet {
addr: fnet::IpAddress::Ipv4(
fnet::Ipv4Address {
addr: IPV4_ADDR,
},
),
prefix_len: 4,
},
fnet::Subnet {
addr: fnet::IpAddress::Ipv6(
fnet::Ipv6Address {
addr: IPV6_ADDR,
},
),
prefix_len: 110,
},
])
.map(Some)
.map(|addr| fnet_interfaces::Address {
addr,
valid_until: Some(1),
..fnet_interfaces::Address::EMPTY
})
.collect(),
),
online: Some(true),
device_class: Some(
fnet_interfaces::DeviceClass::Loopback(
fnet_interfaces::Empty {},
),
),
has_default_ipv4_route: Some(false),
has_default_ipv6_route: Some(false),
name: Some(String::from("eth0")),
..fnet_interfaces::Properties::EMPTY
},
)
} else {
fnet_interfaces::Event::Idle(fnet_interfaces::Empty {})
};
let () = responder.send(&mut event).unwrap();
}
}
}
}
}
}
})
.detach();
proxy
}
fn make_rcs() -> Rc<RemoteControlService> {
make_rcs_with_maps(vec![])
}
fn make_rcs_with_maps(maps: Vec<(&str, &str)>) -> Rc<RemoteControlService> {
Rc::new(RemoteControlService::new_with_allocator_and_maps(
|| {
Ok(HostIdentifier {
interface_state_proxy: setup_fake_interface_state_service(),
name_provider_proxy: setup_fake_name_provider_service(),
device_info_proxy: setup_fake_device_service(),
build_info_proxy: setup_fake_build_info_service(),
boot_timestamp_nanos: BOOT_TIME,
})
},
SelectorMappingList::new(
maps.iter().map(|s| (s.0.to_string(), s.1.to_string())).collect(),
),
))
}
fn setup_rcs_proxy() -> rcs::RemoteControlProxy {
let service = make_rcs();
let (rcs_proxy, stream) =
fidl::endpoints::create_proxy_and_stream::<rcs::RemoteControlMarker>().unwrap();
fasync::Task::local(async move {
service.serve_stream(stream).await;
})
.detach();
return rcs_proxy;
}
#[fasync::run_singlethreaded(test)]
async fn test_identify_host() -> Result<()> {
let rcs_proxy = setup_rcs_proxy();
let resp = rcs_proxy.identify_host().await.unwrap().unwrap();
assert_eq!(resp.serial_number.unwrap(), SERIAL);
assert_eq!(resp.board_config.unwrap(), BOARD_CONFIG);
assert_eq!(resp.product_config.unwrap(), PRODUCT_CONFIG);
assert_eq!(resp.nodename.unwrap(), NODENAME);
let addrs = resp.addresses.unwrap();
assert_eq!(
addrs[..],
[
fnet::Subnet {
addr: fnet::IpAddress::Ipv4(fnet::Ipv4Address { addr: IPV4_ADDR }),
prefix_len: 4,
},
fnet::Subnet {
addr: fnet::IpAddress::Ipv6(fnet::Ipv6Address { addr: IPV6_ADDR }),
prefix_len: 110,
}
]
);
assert_eq!(resp.boot_timestamp_nanos.unwrap(), BOOT_TIME);
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_ids_in_host_identify() -> Result<()> {
let rcs_proxy = setup_rcs_proxy();
let ident = rcs_proxy.identify_host().await.unwrap().unwrap();
assert_eq!(ident.ids, Some(vec![]));
rcs_proxy.add_id(1234).await.unwrap();
rcs_proxy.add_id(4567).await.unwrap();
let ident = rcs_proxy.identify_host().await.unwrap().unwrap();
let ids = ident.ids.unwrap();
assert_eq!(ids.len(), 2);
assert_eq!(1234u64, ids[0]);
assert_eq!(4567u64, ids[1]);
Ok(())
}
fn wildcard_selector() -> Selector {
parse_selector::<VerboseError>("*:*:*").unwrap()
}
fn service_selector() -> Selector {
parse_selector::<VerboseError>(FAKE_SERVICE_SELECTOR).unwrap()
}
fn mapped_service_selector() -> Selector {
parse_selector::<VerboseError>(MAPPED_SERVICE_SELECTOR).unwrap()
}
async fn no_paths_matcher() -> Result<Vec<PathEntry>> {
Ok(vec![])
}
async fn two_paths_matcher() -> Result<Vec<PathEntry>> {
Ok(vec![
PathEntry {
hub_path: PathBuf::from("/"),
moniker: PathBuf::from("/a/b/c"),
component_subdir: "out".to_string(),
service: "myservice".to_string(),
},
PathEntry {
hub_path: PathBuf::from("/"),
moniker: PathBuf::from("/a/b/c"),
component_subdir: "out".to_string(),
service: "myservice2".to_string(),
},
])
}
async fn single_path_matcher() -> Result<Vec<PathEntry>> {
Ok(vec![PathEntry {
hub_path: PathBuf::from("/tmp"),
moniker: PathBuf::from("/tmp"),
component_subdir: "out".to_string(),
service: "myservice".to_string(),
}])
}
#[fasync::run_singlethreaded(test)]
async fn test_connect_no_matches() -> Result<()> {
let service = make_rcs();
let (_, server_end) = zx::Channel::create().unwrap();
let result = service
.connect_with_matcher(&wildcard_selector(), server_end, no_paths_matcher())
.await;
assert!(result.is_err());
assert_eq!(result.unwrap_err(), rcs::ConnectError::NoMatchingServices);
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_connect_multiple_matches() -> Result<()> {
let service = make_rcs();
let (_, server_end) = zx::Channel::create().unwrap();
let result = service
.connect_with_matcher(&wildcard_selector(), server_end, two_paths_matcher())
.await;
assert!(result.is_err());
assert_eq!(result.unwrap_err(), rcs::ConnectError::MultipleMatchingServices);
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_connect_single_match() -> Result<()> {
let service = make_rcs();
let (client_end, server_end) =
fidl::endpoints::create_endpoints::<fio::NodeMarker>().unwrap();
service
.connect_with_matcher(
&wildcard_selector(),
server_end.into_channel(),
single_path_matcher(),
)
.await
.unwrap();
// Make a dummy call to verify that the channel did get hooked up.
assert!(client_end.into_proxy().unwrap().describe().await.is_ok());
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_map_selector() -> Result<()> {
let service = make_rcs_with_maps(vec![(FAKE_SERVICE_SELECTOR, MAPPED_SERVICE_SELECTOR)]);
assert_eq!(service.map_selector(service_selector()).unwrap(), mapped_service_selector());
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_map_selector_broken_mapping() -> Result<()> {
let service = make_rcs_with_maps(vec![(FAKE_SERVICE_SELECTOR, "not_a_selector:::::")]);
assert_matches!(
service.map_selector(service_selector()).unwrap_err(),
rcs::ConnectError::ServiceRerouteFailed
);
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_map_selector_unbounded_mapping() -> Result<()> {
let service = make_rcs_with_maps(vec![
(FAKE_SERVICE_SELECTOR, MAPPED_SERVICE_SELECTOR),
(MAPPED_SERVICE_SELECTOR, FAKE_SERVICE_SELECTOR),
]);
assert_matches!(
service.map_selector(service_selector()).unwrap_err(),
rcs::ConnectError::ServiceRerouteFailed
);
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_map_selector_no_matches() -> Result<()> {
let service =
make_rcs_with_maps(vec![("not/a/match:out:some.Service", MAPPED_SERVICE_SELECTOR)]);
assert_eq!(service.map_selector(service_selector()).unwrap(), service_selector());
Ok(())
}
#[fasync::run_singlethreaded(test)]
async fn test_select_multiple_matches() -> Result<()> {
let service = make_rcs();
let result =
service.select_with_matcher(&wildcard_selector(), two_paths_matcher()).await.unwrap();
assert_eq!(result.len(), 2);
assert!(result.iter().any(|p| *p
== rcs::ServiceMatch {
moniker: vec!["a".to_string(), "b".to_string(), "c".to_string()],
subdir: "out".to_string(),
service: "myservice".to_string()
}));
assert!(result.iter().any(|p| *p
== rcs::ServiceMatch {
moniker: vec!["a".to_string(), "b".to_string(), "c".to_string()],
subdir: "out".to_string(),
service: "myservice2".to_string()
}));
Ok(())
}
async fn create_forward_tunnel(
) -> (fasync::net::TcpStream, fasync::Socket, fasync::Task<Result<(), ForwardError>>) {
let addr = (Ipv4Addr::LOCALHOST, 0).into();
let listener = fasync::net::TcpListener::bind(&addr).unwrap();
let listen_addr = listener.local_addr().unwrap();
let mut listener_stream = listener.accept_stream();
let (remote_tx, remote_rx) = futures::channel::oneshot::channel();
// Run the listener in a background task so it can forward traffic in
// parallel with the test.
let forward_task = fasync::Task::local(async move {
let (stream, _) = listener_stream.next().await.unwrap().unwrap();
let (local, remote) = zx::Socket::create(zx::SocketOpts::STREAM).unwrap();
let local = fasync::Socket::from_socket(local).unwrap();
let remote = fasync::Socket::from_socket(remote).unwrap();
remote_tx.send(remote).unwrap();
forward_traffic(stream, local).await
});
// We should connect to the TCP socket, which should set us up a zircon socket.
let tcp_stream = fasync::net::TcpStream::connect(listen_addr).unwrap().await.unwrap();
let zx_socket = remote_rx.await.unwrap();
(tcp_stream, zx_socket, forward_task)
}
#[fasync::run_singlethreaded(test)]
async fn test_forward_traffic_tcp_closes_first() {
let (mut tcp_stream, mut zx_socket, forward_task) = create_forward_tunnel().await;
// Now any traffic that is sent to the tcp stream should come out of the zx socket.
let msg = b"ping";
tcp_stream.write_all(msg).await.unwrap();
let mut buf = [0; 4096];
zx_socket.read_exact(&mut buf[..msg.len()]).await.unwrap();
assert_eq!(&buf[..msg.len()], msg);
// Send a reply from the zx socket to the tcp stream.
let msg = b"pong";
zx_socket.write_all(msg).await.unwrap();
tcp_stream.read_exact(&mut buf[..msg.len()]).await.unwrap();
assert_eq!(&buf[..msg.len()], msg);
// Now, close the tcp stream, this should cause the zx socket to close as well.
std::mem::drop(tcp_stream);
let mut buf = vec![];
zx_socket.read_to_end(&mut buf).await.unwrap();
assert_eq!(&buf, &Vec::<u8>::default());
// Make sure the forward task shuts down as well.
assert_matches!(forward_task.await, Ok(()));
}
#[fasync::run_singlethreaded(test)]
async fn test_forward_traffic_zx_socket_closes_first() {
let (mut tcp_stream, mut zx_socket, forward_task) = create_forward_tunnel().await;
// Check that the zx socket can send the first data.
let msg = b"ping";
zx_socket.write_all(msg).await.unwrap();
let mut buf = [0; 4096];
tcp_stream.read_exact(&mut buf[..msg.len()]).await.unwrap();
assert_eq!(&buf[..msg.len()], msg);
let msg = b"pong";
tcp_stream.write_all(msg).await.unwrap();
zx_socket.read_exact(&mut buf[..msg.len()]).await.unwrap();
assert_eq!(&buf[..msg.len()], msg);
// Now, close the zx socket, this should cause the tcp stream to close as well.
std::mem::drop(zx_socket);
let mut buf = vec![];
tcp_stream.read_to_end(&mut buf).await.unwrap();
assert_eq!(&buf, &Vec::<u8>::default());
// Make sure the forward task shuts down as well.
assert_matches!(forward_task.await, Ok(()));
}
}