blob: c3a0ce093edde9fd03d1da4bfd19f186a1aa2132 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "platform-device.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ddk/binding.h>
#include <ddk/debug.h>
#include <ddk/device.h>
#include <ddk/driver.h>
#include <ddk/metadata.h>
#include <ddk/platform-defs.h>
#include <fbl/function.h>
#include <zircon/syscalls/resource.h>
#include "platform-bus.h"
namespace platform_bus {
zx_status_t PlatformDevice::Create(const pbus_dev_t* pdev, zx_device_t* parent, PlatformBus* bus,
fbl::unique_ptr<platform_bus::PlatformDevice>* out) {
fbl::AllocChecker ac;
fbl::unique_ptr<platform_bus::PlatformDevice> dev(
new (&ac) platform_bus::PlatformDevice(parent, bus, pdev));
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
auto status = dev->Init(pdev);
if (status != ZX_OK) {
return status;
}
out->swap(dev);
return ZX_OK;
}
PlatformDevice::PlatformDevice(zx_device_t* parent, PlatformBus* bus, const pbus_dev_t* pdev)
: PlatformDeviceType(parent), bus_(bus), vid_(pdev->vid), pid_(pdev->pid),
did_(pdev->did) {
strlcpy(name_, pdev->name, sizeof(name_));
}
zx_status_t PlatformDevice::Init(const pbus_dev_t* pdev) {
return resources_.Init(pdev);
}
// Create a resource and pass it back to the proxy along with necessary metadata
// to create/map the VMO in the driver process.
zx_status_t PlatformDevice::RpcGetMmio(uint32_t index, zx_paddr_t* out_paddr, size_t* out_length,
zx_handle_t* out_handle, uint32_t* out_handle_count) {
if (index >= resources_.mmio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
const auto& root_rsrc = bus_->GetResource();
if (!root_rsrc->is_valid()) {
return ZX_ERR_NO_RESOURCES;
}
const pbus_mmio_t& mmio = resources_.mmio(index);
zx::resource resource;
char rsrc_name[ZX_MAX_NAME_LEN];
snprintf(rsrc_name, ZX_MAX_NAME_LEN - 1, "%s.pbus[%u]", name_, index);
zx_status_t status = zx::resource::create(*root_rsrc, ZX_RSRC_KIND_MMIO, mmio.base,
mmio.length, rsrc_name, sizeof(rsrc_name), &resource);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: pdev_rpc_get_mmio: zx_resource_create failed: %d\n", name_, status);
return status;
}
*out_paddr = mmio.base;
*out_length = mmio.length;
*out_handle_count = 1;
*out_handle = resource.release();
return ZX_OK;
}
// Create a resource and pass it back to the proxy along with necessary metadata
// to create the IRQ in the driver process.
zx_status_t PlatformDevice::RpcGetInterrupt(uint32_t index, uint32_t* out_irq, uint32_t* out_mode,
zx_handle_t* out_handle, uint32_t* out_handle_count) {
if (index >= resources_.irq_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
const auto& root_rsrc = bus_->GetResource();
if (!root_rsrc->is_valid()) {
return ZX_ERR_NO_RESOURCES;
}
zx::resource resource;
const pbus_irq_t& irq = resources_.irq(index);
uint32_t options = ZX_RSRC_KIND_IRQ | ZX_RSRC_FLAG_EXCLUSIVE;
char rsrc_name[ZX_MAX_NAME_LEN];
snprintf(rsrc_name, ZX_MAX_NAME_LEN - 1, "%s.pbus[%u]", name_, index);
zx_status_t status = zx::resource::create(*root_rsrc, options, irq.irq, 1, rsrc_name,
sizeof(rsrc_name), &resource);
if (status != ZX_OK) {
return status;
}
*out_irq = irq.irq;
*out_mode = irq.mode;
*out_handle_count = 1;
*out_handle = resource.release();
return ZX_OK;
}
zx_status_t PlatformDevice::RpcGetBti(uint32_t index, zx_handle_t* out_handle,
uint32_t* out_handle_count) {
if (index >= resources_.bti_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
const pbus_bti_t& bti = resources_.bti(index);
zx::bti out_bti;
zx_status_t status = bus_->IommuGetBti(bti.iommu_index, bti.bti_id, &out_bti);
*out_handle = out_bti.release();
if (status == ZX_OK) {
*out_handle_count = 1;
}
return status;
}
zx_status_t PlatformDevice::RpcGetSmc(uint32_t index, zx_handle_t* out_handle,
uint32_t* out_handle_count) {
if (index >= resources_.smc_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
const auto& root_rsrc = bus_->GetResource();
if (!root_rsrc->is_valid()) {
return ZX_ERR_NO_RESOURCES;
}
zx::resource resource;
const pbus_smc_t& smc = resources_.smc(index);
uint32_t options = ZX_RSRC_KIND_SMC | ZX_RSRC_FLAG_EXCLUSIVE;
char rsrc_name[ZX_MAX_NAME_LEN];
snprintf(rsrc_name, ZX_MAX_NAME_LEN - 1, "%s.pbus[%u]", name_, index);
zx_status_t status = zx::resource::create(*root_rsrc, options,
smc.service_call_num_base, smc.count, rsrc_name,
sizeof(rsrc_name), &resource);
if (status != ZX_OK) {
zxlogf(ERROR, "%s: pdev_rpc_get_smc: zx_resource_create failed: %d\n", name_, status);
return status;
}
*out_handle_count = 1;
*out_handle = resource.release();
return ZX_OK;
}
zx_status_t PlatformDevice::RpcGetDeviceInfo(pdev_device_info_t* out_info) {
pdev_device_info_t info = {
.vid = vid_,
.pid = pid_,
.did = did_,
.mmio_count = static_cast<uint32_t>(resources_.mmio_count()),
.irq_count = static_cast<uint32_t>(resources_.irq_count()),
.gpio_count = static_cast<uint32_t>(resources_.gpio_count()),
.clk_count = static_cast<uint32_t>(resources_.clk_count()),
.bti_count = static_cast<uint32_t>(resources_.bti_count()),
.smc_count = static_cast<uint32_t>(resources_.smc_count()),
.metadata_count = static_cast<uint32_t>(resources_.metadata_count() +
resources_.boot_metadata_count()),
.reserved = {},
.name = {},
};
static_assert(sizeof(info.name) == sizeof(name_), "");
memcpy(info.name, name_, sizeof(out_info->name));
memcpy(out_info, &info, sizeof(info));
return ZX_OK;
}
zx_status_t PlatformDevice::RpcGetMetadata(uint32_t index, uint32_t* out_type, uint8_t* buf,
uint32_t buf_size, uint32_t* actual) {
if (index >= resources_.metadata_count() + resources_.boot_metadata_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
if (index < resources_.metadata_count()) {
auto& metadata = resources_.metadata(index);
if (metadata.data_size > buf_size) {
return ZX_ERR_BUFFER_TOO_SMALL;
}
memcpy(buf, metadata.data_buffer, metadata.data_size);
*out_type = metadata.type;
*actual = static_cast<uint32_t>(metadata.data_size);
return ZX_OK;
}
// boot_metadata indices follow metadata indices.
index -= static_cast<uint32_t>(resources_.metadata_count());
auto& metadata = resources_.boot_metadata(index);
zx::vmo vmo;
uint32_t length;
zx_status_t status = bus_->GetBootItem(metadata.zbi_type, metadata.zbi_extra, &vmo, &length);
if (status != ZX_OK) {
return status;
} else if (length > buf_size) {
return ZX_ERR_BUFFER_TOO_SMALL;
}
status = vmo.read(buf, 0, length);
if (status != ZX_OK) {
return status;
}
*out_type = metadata.zbi_type;
*actual = length;
return ZX_OK;
}
zx_status_t PlatformDevice::RpcGpioConfigIn(uint32_t index, uint32_t flags) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->ConfigIn(resources_.gpio(index).gpio, flags);
}
zx_status_t PlatformDevice::RpcGpioConfigOut(uint32_t index, uint8_t initial_value) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->ConfigOut(resources_.gpio(index).gpio, initial_value);
}
zx_status_t PlatformDevice::RpcGpioSetAltFunction(uint32_t index, uint64_t function) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->SetAltFunction(resources_.gpio(index).gpio, function);
}
zx_status_t PlatformDevice::RpcGpioRead(uint32_t index, uint8_t* out_value) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->Read(resources_.gpio(index).gpio, out_value);
}
zx_status_t PlatformDevice::RpcGpioWrite(uint32_t index, uint8_t value) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->Write(resources_.gpio(index).gpio, value);
}
zx_status_t PlatformDevice::RpcGpioGetInterrupt(uint32_t index, uint32_t flags,
zx_handle_t* out_handle,
uint32_t* out_handle_count) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
zx::interrupt irq;
zx_status_t status = bus_->gpio()->GetInterrupt(resources_.gpio(index).gpio, flags, &irq);
if (status == ZX_OK) {
*out_handle = irq.release();
*out_handle_count = 1;
}
return status;
}
zx_status_t PlatformDevice::RpcGpioReleaseInterrupt(uint32_t index) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->ReleaseInterrupt(resources_.gpio(index).gpio);
}
zx_status_t PlatformDevice::RpcGpioSetPolarity(uint32_t index, uint32_t flags) {
if (bus_->gpio() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.gpio_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->gpio()->SetPolarity(resources_.gpio(index).gpio, flags);
}
zx_status_t PlatformDevice::RpcClockEnable(uint32_t index) {
if (bus_->clk() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.clk_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->clk()->Enable(resources_.clk(index).clk);
}
zx_status_t PlatformDevice::RpcClockDisable(uint32_t index) {
if (bus_->clk() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
if (index >= resources_.clk_count()) {
return ZX_ERR_OUT_OF_RANGE;
}
return bus_->clk()->Disable(resources_.clk(index).clk);
}
zx_status_t PlatformDevice::RpcSysmemConnect(zx::channel allocator_request) {
if (bus_->sysmem() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
return bus_->sysmem()->Connect(std::move(allocator_request));
}
zx_status_t PlatformDevice::RpcCanvasConfig(zx::vmo vmo, size_t offset, const canvas_info_t* info,
uint8_t* out_canvas_idx) {
if (bus_->canvas() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
return bus_->canvas()->Config(std::move(vmo), offset, info, out_canvas_idx);
}
zx_status_t PlatformDevice::RpcCanvasFree(uint8_t canvas_index) {
if (bus_->canvas() == nullptr) {
return ZX_ERR_NOT_SUPPORTED;
}
return bus_->canvas()->Free(canvas_index);
}
zx_status_t PlatformDevice::DdkRxrpc(zx_handle_t channel) {
if (channel == ZX_HANDLE_INVALID) {
// proxy device has connected
return ZX_OK;
}
uint8_t req_buf[PROXY_MAX_TRANSFER_SIZE];
uint8_t resp_buf[PROXY_MAX_TRANSFER_SIZE];
auto* req_header = reinterpret_cast<platform_proxy_req_t*>(&req_buf);
auto* resp_header = reinterpret_cast<platform_proxy_rsp_t*>(&resp_buf);
uint32_t actual;
zx_handle_t req_handles[ZX_CHANNEL_MAX_MSG_HANDLES];
zx_handle_t resp_handles[ZX_CHANNEL_MAX_MSG_HANDLES];
uint32_t req_handle_count;
uint32_t resp_handle_count = 0;
auto status = zx_channel_read(channel, 0, &req_buf, req_handles, sizeof(req_buf),
fbl::count_of(req_handles), &actual, &req_handle_count);
if (status != ZX_OK) {
zxlogf(ERROR, "platform_dev_rxrpc: zx_channel_read failed %d\n", status);
return status;
}
resp_header->txid = req_header->txid;
uint32_t resp_len;
switch (req_header->proto_id) {
case ZX_PROTOCOL_PDEV: {
auto req = reinterpret_cast<rpc_pdev_req_t*>(&req_buf);
if (actual < sizeof(*req)) {
zxlogf(ERROR, "%s received %u, expecting %zu (PDEV)\n", __func__, actual, sizeof(*req));
return ZX_ERR_INTERNAL;
}
auto resp = reinterpret_cast<rpc_pdev_rsp_t*>(&resp_buf);
resp_len = sizeof(*resp);
switch (req_header->op) {
case PDEV_GET_MMIO:
status = RpcGetMmio(req->index, &resp->paddr, &resp->length, resp_handles,
&resp_handle_count);
break;
case PDEV_GET_INTERRUPT:
status = RpcGetInterrupt(req->index, &resp->irq, &resp->mode, resp_handles,
&resp_handle_count);
break;
case PDEV_GET_BTI:
status = RpcGetBti(req->index, resp_handles, &resp_handle_count);
break;
case PDEV_GET_SMC:
status = RpcGetSmc(req->index, resp_handles, &resp_handle_count);
break;
case PDEV_GET_DEVICE_INFO:
status = RpcGetDeviceInfo(&resp->device_info);
break;
case PDEV_GET_BOARD_INFO:
status = bus_->PBusGetBoardInfo(&resp->board_info);
break;
case PDEV_GET_METADATA: {
auto resp = reinterpret_cast<rpc_pdev_metadata_rsp_t*>(resp_buf);
static_assert(sizeof(*resp) == sizeof(resp_buf), "");
auto buf_size = static_cast<uint32_t>(sizeof(resp_buf) - sizeof(*resp_header));
status = RpcGetMetadata(req->index, &resp->pdev.metadata_type, resp->metadata,
buf_size, &resp->pdev.metadata_length);
resp_len += resp->pdev.metadata_length;
break;
}
default:
zxlogf(ERROR, "%s: unknown pdev op %u\n", __func__, req_header->op);
return ZX_ERR_INTERNAL;
}
break;
}
case ZX_PROTOCOL_GPIO: {
auto req = reinterpret_cast<rpc_gpio_req_t*>(&req_buf);
if (actual < sizeof(*req)) {
zxlogf(ERROR, "%s received %u, expecting %zu (GPIO)\n", __func__, actual, sizeof(*req));
return ZX_ERR_INTERNAL;
}
auto resp = reinterpret_cast<rpc_gpio_rsp_t*>(&resp_buf);
resp_len = sizeof(*resp);
switch (req_header->op) {
case GPIO_CONFIG_IN:
status = RpcGpioConfigIn(req->index, req->flags);
break;
case GPIO_CONFIG_OUT:
status = RpcGpioConfigOut(req->index, req->value);
break;
case GPIO_SET_ALT_FUNCTION:
status = RpcGpioSetAltFunction(req->index, req->alt_function);
break;
case GPIO_READ:
status = RpcGpioRead(req->index, &resp->value);
break;
case GPIO_WRITE:
status = RpcGpioWrite(req->index, req->value);
break;
case GPIO_GET_INTERRUPT:
status = RpcGpioGetInterrupt(req->index, req->flags, resp_handles,
&resp_handle_count);
break;
case GPIO_RELEASE_INTERRUPT:
status = RpcGpioReleaseInterrupt(req->index);
break;
case GPIO_SET_POLARITY:
status = RpcGpioSetPolarity(req->index, req->polarity);
break;
default:
zxlogf(ERROR, "%s: unknown GPIO op %u\n", __func__, req_header->op);
return ZX_ERR_INTERNAL;
}
break;
}
case ZX_PROTOCOL_CLOCK: {
auto req = reinterpret_cast<rpc_clk_req_t*>(&req_buf);
if (actual < sizeof(*req)) {
zxlogf(ERROR, "%s received %u, expecting %zu (CLOCK)\n", __func__, actual,
sizeof(*req));
return ZX_ERR_INTERNAL;
}
resp_len = sizeof(*resp_header);
switch (req_header->op) {
case CLK_ENABLE:
status = RpcClockEnable(req->index);
break;
case CLK_DISABLE:
status = RpcClockDisable(req->index);
break;
default:
zxlogf(ERROR, "%s: unknown clk op %u\n", __func__, req_header->op);
return ZX_ERR_INTERNAL;
}
break;
}
case ZX_PROTOCOL_SYSMEM: {
auto req = reinterpret_cast<platform_proxy_req_t*>(&req_buf);
if (actual < sizeof(*req)) {
zxlogf(ERROR, "%s received %u, expecting %zu (SYSMEM)\n", __func__, actual,
sizeof(*req));
return ZX_ERR_INTERNAL;
}
if (req_handle_count != 1) {
zxlogf(ERROR, "%s received %u handles, expecting 1 (SYSMEM)\n", __func__,
req_handle_count);
return ZX_ERR_INTERNAL;
}
resp_len = sizeof(*resp_header);
switch (req_header->op) {
case SYSMEM_CONNECT:
status = RpcSysmemConnect(zx::channel(req_handles[0]));
break;
default:
zxlogf(ERROR, "%s: unknown sysmem op %u\n", __func__, req_header->op);
return ZX_ERR_INTERNAL;
}
break;
}
case ZX_PROTOCOL_AMLOGIC_CANVAS: {
auto req = reinterpret_cast<rpc_amlogic_canvas_req_t*>(&req_buf);
if (actual < sizeof(*req)) {
zxlogf(ERROR, "%s received %u, expecting %zu (CANVAS)\n", __func__, actual,
sizeof(*req));
return ZX_ERR_INTERNAL;
}
auto resp = reinterpret_cast<rpc_amlogic_canvas_rsp_t*>(&resp_buf);
resp_len = sizeof(*resp);
switch (req_header->op) {
case AMLOGIC_CANVAS_CONFIG:
if (req_handle_count != 1) {
zxlogf(ERROR, "%s received %u handles, expecting 1 (CANVAS CONFIG) \n", __func__,
req_handle_count);
return ZX_ERR_INTERNAL;
}
status = RpcCanvasConfig(zx::vmo(req_handles[0]), req->offset, &req->info,
&resp->canvas_idx);
break;
case AMLOGIC_CANVAS_FREE:
if (req_handle_count != 0) {
zxlogf(ERROR, "%s received %u handles, expecting 0 (CANVAS FREE) \n", __func__,
req_handle_count);
return ZX_ERR_INTERNAL;
}
status = RpcCanvasFree(req->canvas_idx);
break;
default:
zxlogf(ERROR, "%s: unknown CANVAS op %u\n", __func__, req_header->op);
return ZX_ERR_INTERNAL;
}
break;
}
default:
zxlogf(ERROR, "%s: unknown protocol %u\n", __func__, req_header->proto_id);
return ZX_ERR_INTERNAL;
}
// set op to match request so zx_channel_write will return our response
resp_header->status = status;
status = zx_channel_write(channel, 0, resp_header, resp_len,
(resp_handle_count ? resp_handles : nullptr), resp_handle_count);
if (status != ZX_OK) {
zxlogf(ERROR, "platform_dev_rxrpc: zx_channel_write failed %d\n", status);
}
return status;
}
void PlatformDevice::DdkRelease() {
delete this;
}
zx_status_t PlatformDevice::Start() {
char name[ZX_DEVICE_NAME_MAX];
if (vid_ == PDEV_VID_GENERIC && pid_ == PDEV_PID_GENERIC && did_ == PDEV_DID_KPCI) {
strlcpy(name, "pci", sizeof(name));
} else {
snprintf(name, sizeof(name), "%02x:%02x:%01x", vid_, pid_, did_);
}
char argstr[64];
snprintf(argstr, sizeof(argstr), "pdev:%s,", name);
// Platform devices run in their own devhosts.
uint32_t device_add_flags = DEVICE_ADD_MUST_ISOLATE;
const size_t metadata_count = resources_.metadata_count();
const size_t boot_metadata_count = resources_.boot_metadata_count();
if (metadata_count > 0 || boot_metadata_count > 0) {
// Keep device invisible until after we add its metadata.
device_add_flags |= DEVICE_ADD_INVISIBLE;
}
zx_device_prop_t props[] = {
{BIND_PLATFORM_DEV_VID, 0, vid_},
{BIND_PLATFORM_DEV_PID, 0, pid_},
{BIND_PLATFORM_DEV_DID, 0, did_},
};
zx_status_t status = DdkAdd(name, device_add_flags, props, fbl::count_of(props),
ZX_PROTOCOL_PDEV, argstr);
if (status != ZX_OK) {
return status;
}
if (metadata_count > 0 || boot_metadata_count > 0) {
for (size_t i = 0; i < metadata_count; i++) {
const auto& metadata = resources_.metadata(i);
status = DdkAddMetadata(metadata.type, metadata.data_buffer, metadata.data_size);
if (status != ZX_OK) {
DdkRemove();
return status;
}
}
for (size_t i = 0; i < boot_metadata_count; i++) {
const auto& metadata = resources_.boot_metadata(i);
fbl::Array<uint8_t> data;
status = bus_->GetBootItem(metadata.zbi_type, metadata.zbi_extra, &data);
if (status == ZX_OK) {
status = DdkAddMetadata(metadata.zbi_type, data.get(), data.size());
}
if (status != ZX_OK) {
zxlogf(WARN, "%s failed to add metadata for new device\n", __func__);
}
}
DdkMakeVisible();
}
return ZX_OK;
}
} // namespace platform_bus