blob: c7eb40efed7e99d74d4e13a7841dc54407f3ef5f [file] [log] [blame]
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use {
crate::device::{
buffer::{Buffer, BufferRef, MutableBufferRef},
buffer_allocator::{BufferAllocator, MemBufferSource},
Device,
},
anyhow::{ensure, Error},
async_trait::async_trait,
// Provides read_exact_at and write_all_at.
// TODO(jfsulliv): Do we need to support non-UNIX systems?
std::os::unix::fs::FileExt,
};
/// FileBackedDevice is an implementation of Device backed by a std::fs::File. It is intended to be
/// used for host tooling (to create or verify fxfs images), although it could also be used on
/// Fuchsia builds if we wanted to do that for whatever reason.
pub struct FileBackedDevice {
allocator: BufferAllocator,
file: std::fs::File,
block_count: u64,
}
const BLOCK_SIZE: u32 = 512;
const TRANSFER_HEAP_SIZE: usize = 32 * 1024 * 1024;
impl FileBackedDevice {
/// Creates a new FileBackedDevice over |file|. The size of the file will be used as the size of
/// the Device.
pub fn new(file: std::fs::File) -> Self {
let size = file.metadata().unwrap().len();
let block_count = size / BLOCK_SIZE as u64;
// TODO(jfsulliv): If file is S_ISBLK, we should use its block size. Rust does not appear to
// expose this information in a portable way, so we may need to dip into non-portable code
// to do so.
let allocator = BufferAllocator::new(
BLOCK_SIZE as usize,
Box::new(MemBufferSource::new(TRANSFER_HEAP_SIZE)),
);
Self { allocator, file, block_count }
}
}
#[async_trait]
impl Device for FileBackedDevice {
fn allocate_buffer(&self, size: usize) -> Buffer<'_> {
self.allocator.allocate_buffer(size)
}
fn block_size(&self) -> u32 {
BLOCK_SIZE
}
fn block_count(&self) -> u64 {
self.block_count
}
async fn read(&self, offset: u64, mut buffer: MutableBufferRef<'_>) -> Result<(), Error> {
assert_eq!(offset % self.block_size() as u64, 0);
assert_eq!(buffer.range().start % self.block_size() as usize, 0);
assert_eq!(buffer.len() % self.block_size() as usize, 0);
ensure!(offset as usize + buffer.len() <= self.size(), "Reading past end of file");
// This isn't actually async, but that probably doesn't matter for host usage.
self.file.read_exact_at(buffer.as_mut_slice(), offset)?;
Ok(())
}
async fn write(&self, offset: u64, buffer: BufferRef<'_>) -> Result<(), Error> {
assert_eq!(offset % self.block_size() as u64, 0);
assert_eq!(buffer.range().start % self.block_size() as usize, 0);
assert_eq!(buffer.len() % self.block_size() as usize, 0);
ensure!(offset as usize + buffer.len() <= self.size(), "Writing past end of file");
// This isn't actually async, but that probably doesn't matter for host usage.
self.file.write_all_at(buffer.as_slice(), offset)?;
Ok(())
}
async fn close(&self) -> Result<(), Error> {
// This isn't actually async, but that probably doesn't matter for host usage.
self.file.sync_all()?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use {
crate::device::{file_backed_device::FileBackedDevice, Device},
fuchsia_async as fasync,
std::fs::{File, OpenOptions},
std::path::PathBuf,
};
fn create_file() -> (PathBuf, File) {
let mut temp_path = std::env::temp_dir();
temp_path.push(format!("file_{:x}", rand::random::<u64>()));
let (pathbuf, file) = (
temp_path.clone(),
OpenOptions::new()
.read(true)
.write(true)
.create_new(true)
.open(temp_path.as_path())
.expect(&format!("create {:?} failed", temp_path.as_path())),
);
file.set_len(1024 * 1024).expect("Failed to truncate file");
(pathbuf, file)
}
#[fasync::run_singlethreaded(test)]
async fn test_lifecycle() {
let (_path, file) = create_file();
let device = FileBackedDevice::new(file);
{
let _buf = device.allocate_buffer(8192);
}
device.close().await.expect("Close failed");
}
#[fasync::run_singlethreaded(test)]
async fn test_read_write() {
let (_path, file) = create_file();
let device = FileBackedDevice::new(file);
{
let mut buf1 = device.allocate_buffer(8192);
let mut buf2 = device.allocate_buffer(8192);
buf1.as_mut_slice().fill(0xaa as u8);
buf2.as_mut_slice().fill(0xbb as u8);
device.write(65536, buf1.as_ref()).await.expect("Write failed");
device.write(65536 + 8192, buf2.as_ref()).await.expect("Write failed");
}
{
let mut buf = device.allocate_buffer(16384);
device.read(65536, buf.as_mut()).await.expect("Read failed");
assert_eq!(buf.as_slice()[..8192], vec![0xaa as u8; 8192]);
assert_eq!(buf.as_slice()[8192..], vec![0xbb as u8; 8192]);
}
device.close().await.expect("Close failed");
}
#[fasync::run_singlethreaded(test)]
async fn test_read_write_past_end_of_file_fails() {
let (_path, file) = create_file();
let device = FileBackedDevice::new(file);
{
let mut buf = device.allocate_buffer(8192);
let offset = (device.size() - buf.len() + device.block_size() as usize) as u64;
buf.as_mut_slice().fill(0xaa as u8);
device.write(offset, buf.as_ref()).await.expect_err("Write should have failed");
device.read(offset, buf.as_mut()).await.expect_err("Read should have failed");
}
device.close().await.expect("Close failed");
}
#[fasync::run_singlethreaded(test)]
async fn test_writes_persist() {
let (path, file) = create_file();
let device = FileBackedDevice::new(file);
{
let mut buf1 = device.allocate_buffer(8192);
let mut buf2 = device.allocate_buffer(8192);
buf1.as_mut_slice().fill(0xaa as u8);
buf2.as_mut_slice().fill(0xbb as u8);
device.write(65536, buf1.as_ref()).await.expect("Write failed");
device.write(65536 + 8192, buf2.as_ref()).await.expect("Write failed");
}
device.close().await.expect("Close failed");
let file = File::open(path.as_path()).expect("Open failed");
let device = FileBackedDevice::new(file);
{
let mut buf = device.allocate_buffer(16384);
device.read(65536, buf.as_mut()).await.expect("Read failed");
assert_eq!(buf.as_slice()[..8192], vec![0xaa as u8; 8192]);
assert_eq!(buf.as_slice()[8192..], vec![0xbb as u8; 8192]);
}
device.close().await.expect("Close failed");
}
}