blob: ef7144b4e5d4f23105c80c42d39b1d4dec446921 [file] [log] [blame]
//! HTTP Server
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.
//!
//! There are two levels of APIs provide for constructing HTTP servers:
//!
//! - The higher-level [`Server`](Server) type.
//! - The lower-level [`conn`](server::conn) module.
//!
//! # Server
//!
//! The [`Server`](Server) is main way to start listening for HTTP requests.
//! It wraps a listener with a [`MakeService`](::service), and then should
//! be executed to start serving requests.
//!
//! [`Server`](Server) accepts connections in both HTTP1 and HTTP2 by default.
//!
//! ## Example
//!
//! ```no_run
//! extern crate hyper;
//!
//! use hyper::{Body, Response, Server};
//! use hyper::service::service_fn_ok;
//!
//! # #[cfg(feature = "runtime")]
//! fn main() {
//! # use hyper::rt::Future;
//! // Construct our SocketAddr to listen on...
//! let addr = ([127, 0, 0, 1], 3000).into();
//!
//! // And a MakeService to handle each connection...
//! let make_service = || {
//! service_fn_ok(|_req| {
//! Response::new(Body::from("Hello World"))
//! })
//! };
//!
//! // Then bind and serve...
//! let server = Server::bind(&addr)
//! .serve(make_service);
//!
//! // Finally, spawn `server` onto an Executor...
//! hyper::rt::run(server.map_err(|e| {
//! eprintln!("server error: {}", e);
//! }));
//! }
//! # #[cfg(not(feature = "runtime"))]
//! # fn main() {}
//! ```
pub mod conn;
mod shutdown;
#[cfg(feature = "runtime")] mod tcp;
use std::fmt;
#[cfg(feature = "runtime")] use std::net::{SocketAddr, TcpListener as StdTcpListener};
#[cfg(feature = "runtime")] use std::time::Duration;
use futures::{Future, Stream, Poll};
use tokio_io::{AsyncRead, AsyncWrite};
#[cfg(feature = "runtime")] use tokio_reactor;
use body::{Body, Payload};
use common::exec::{Exec, H2Exec, NewSvcExec};
use service::{MakeServiceRef, Service};
// Renamed `Http` as `Http_` for now so that people upgrading don't see an
// error that `hyper::server::Http` is private...
use self::conn::{Http as Http_, NoopWatcher, SpawnAll};
use self::shutdown::{Graceful, GracefulWatcher};
#[cfg(feature = "runtime")] use self::tcp::AddrIncoming;
/// A listening HTTP server that accepts connections in both HTTP1 and HTTP2 by default.
///
/// `Server` is a `Future` mapping a bound listener with a set of service
/// handlers. It is built using the [`Builder`](Builder), and the future
/// completes when the server has been shutdown. It should be run by an
/// `Executor`.
pub struct Server<I, S, E = Exec> {
spawn_all: SpawnAll<I, S, E>,
}
/// A builder for a [`Server`](Server).
#[derive(Debug)]
pub struct Builder<I, E = Exec> {
incoming: I,
protocol: Http_<E>,
}
// ===== impl Server =====
impl<I> Server<I, ()> {
/// Starts a [`Builder`](Builder) with the provided incoming stream.
pub fn builder(incoming: I) -> Builder<I> {
Builder {
incoming,
protocol: Http_::new(),
}
}
}
#[cfg(feature = "runtime")]
impl Server<AddrIncoming, ()> {
/// Binds to the provided address, and returns a [`Builder`](Builder).
///
/// # Panics
///
/// This method will panic if binding to the address fails. For a method
/// to bind to an address and return a `Result`, see `Server::try_bind`.
pub fn bind(addr: &SocketAddr) -> Builder<AddrIncoming> {
let incoming = AddrIncoming::new(addr, None)
.unwrap_or_else(|e| {
panic!("error binding to {}: {}", addr, e);
});
Server::builder(incoming)
}
/// Tries to bind to the provided address, and returns a [`Builder`](Builder).
pub fn try_bind(addr: &SocketAddr) -> ::Result<Builder<AddrIncoming>> {
AddrIncoming::new(addr, None)
.map(Server::builder)
}
/// Create a new instance from a `std::net::TcpListener` instance.
pub fn from_tcp(listener: StdTcpListener) -> Result<Builder<AddrIncoming>, ::Error> {
let handle = tokio_reactor::Handle::default();
AddrIncoming::from_std(listener, &handle)
.map(Server::builder)
}
}
#[cfg(feature = "runtime")]
impl<S> Server<AddrIncoming, S> {
/// Returns the local address that this server is bound to.
pub fn local_addr(&self) -> SocketAddr {
self.spawn_all.local_addr()
}
}
impl<I, S, E, B> Server<I, S, E>
where
I: Stream,
I::Error: Into<Box<::std::error::Error + Send + Sync>>,
I::Item: AsyncRead + AsyncWrite + Send + 'static,
S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
S::Error: Into<Box<::std::error::Error + Send + Sync>>,
S::Service: 'static,
B: Payload,
E: H2Exec<<S::Service as Service>::Future, B>,
E: NewSvcExec<I::Item, S::Future, S::Service, E, GracefulWatcher>,
{
/// Prepares a server to handle graceful shutdown when the provided future
/// completes.
///
/// # Example
///
/// ```
/// # extern crate hyper;
/// # extern crate futures;
/// # use futures::Future;
/// # fn main() {}
/// # #[cfg(feature = "runtime")]
/// # fn run() {
/// # use hyper::{Body, Response, Server};
/// # use hyper::service::service_fn_ok;
/// # let new_service = || {
/// # service_fn_ok(|_req| {
/// # Response::new(Body::from("Hello World"))
/// # })
/// # };
///
/// // Make a server from the previous examples...
/// let server = Server::bind(&([127, 0, 0, 1], 3000).into())
/// .serve(new_service);
///
/// // Prepare some signal for when the server should start
/// // shutting down...
/// let (tx, rx) = futures::sync::oneshot::channel::<()>();
///
/// let graceful = server
/// .with_graceful_shutdown(rx)
/// .map_err(|err| eprintln!("server error: {}", err));
///
/// // Spawn `server` onto an Executor...
/// hyper::rt::spawn(graceful);
///
/// // And later, trigger the signal by calling `tx.send(())`.
/// let _ = tx.send(());
/// # }
/// ```
pub fn with_graceful_shutdown<F>(self, signal: F) -> Graceful<I, S, F, E>
where
F: Future<Item=()>
{
Graceful::new(self.spawn_all, signal)
}
}
impl<I, S, B, E> Future for Server<I, S, E>
where
I: Stream,
I::Error: Into<Box<::std::error::Error + Send + Sync>>,
I::Item: AsyncRead + AsyncWrite + Send + 'static,
S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
S::Error: Into<Box<::std::error::Error + Send + Sync>>,
S::Service: 'static,
B: Payload,
E: H2Exec<<S::Service as Service>::Future, B>,
E: NewSvcExec<I::Item, S::Future, S::Service, E, NoopWatcher>,
{
type Item = ();
type Error = ::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
self.spawn_all.poll_watch(&NoopWatcher)
}
}
impl<I: fmt::Debug, S: fmt::Debug> fmt::Debug for Server<I, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Server")
.field("listener", &self.spawn_all.incoming_ref())
.finish()
}
}
// ===== impl Builder =====
impl<I, E> Builder<I, E> {
/// Start a new builder, wrapping an incoming stream and low-level options.
///
/// For a more convenient constructor, see [`Server::bind`](Server::bind).
pub fn new(incoming: I, protocol: Http_<E>) -> Self {
Builder {
incoming,
protocol,
}
}
/// Sets whether to use keep-alive for HTTP/1 connections.
///
/// Default is `true`.
pub fn http1_keepalive(mut self, val: bool) -> Self {
self.protocol.keep_alive(val);
self
}
/// Set whether HTTP/1 connections should support half-closures.
///
/// Clients can chose to shutdown their write-side while waiting
/// for the server to respond. Setting this to `false` will
/// automatically close any connection immediately if `read`
/// detects an EOF.
///
/// Default is `true`.
pub fn http1_half_close(mut self, val: bool) -> Self {
self.protocol.http1_half_close(val);
self
}
/// Sets whether HTTP/1 is required.
///
/// Default is `false`.
pub fn http1_only(mut self, val: bool) -> Self {
self.protocol.http1_only(val);
self
}
// Sets whether to bunch up HTTP/1 writes until the read buffer is empty.
//
// This isn't really desirable in most cases, only really being useful in
// silly pipeline benchmarks.
#[doc(hidden)]
pub fn http1_pipeline_flush(mut self, val: bool) -> Self {
self.protocol.pipeline_flush(val);
self
}
/// Set whether HTTP/1 connections should try to use vectored writes,
/// or always flatten into a single buffer.
///
/// # Note
///
/// Setting this to `false` may mean more copies of body data,
/// but may also improve performance when an IO transport doesn't
/// support vectored writes well, such as most TLS implementations.
///
/// Default is `true`.
pub fn http1_writev(mut self, val: bool) -> Self {
self.protocol.http1_writev(val);
self
}
/// Sets whether HTTP/2 is required.
///
/// Default is `false`.
pub fn http2_only(mut self, val: bool) -> Self {
self.protocol.http2_only(val);
self
}
/// Set the maximum buffer size.
///
/// Default is ~ 400kb.
pub fn http1_max_buf_size(mut self, val: usize) -> Self {
self.protocol.max_buf_size(val);
self
}
/// Sets the `Executor` to deal with connection tasks.
///
/// Default is `tokio::spawn`.
pub fn executor<E2>(self, executor: E2) -> Builder<I, E2> {
Builder {
incoming: self.incoming,
protocol: self.protocol.with_executor(executor),
}
}
/// Consume this `Builder`, creating a [`Server`](Server).
///
/// # Example
///
/// ```
/// # extern crate hyper;
/// # fn main() {}
/// # #[cfg(feature = "runtime")]
/// # fn run() {
/// use hyper::{Body, Response, Server};
/// use hyper::service::service_fn_ok;
///
/// // Construct our SocketAddr to listen on...
/// let addr = ([127, 0, 0, 1], 3000).into();
///
/// // And a NewService to handle each connection...
/// let new_service = || {
/// service_fn_ok(|_req| {
/// Response::new(Body::from("Hello World"))
/// })
/// };
///
/// // Then bind and serve...
/// let server = Server::bind(&addr)
/// .serve(new_service);
///
/// // Finally, spawn `server` onto an Executor...
/// # }
/// ```
pub fn serve<S, B>(self, new_service: S) -> Server<I, S, E>
where
I: Stream,
I::Error: Into<Box<::std::error::Error + Send + Sync>>,
I::Item: AsyncRead + AsyncWrite + Send + 'static,
S: MakeServiceRef<I::Item, ReqBody=Body, ResBody=B>,
S::Error: Into<Box<::std::error::Error + Send + Sync>>,
S::Service: 'static,
B: Payload,
E: NewSvcExec<I::Item, S::Future, S::Service, E, NoopWatcher>,
E: H2Exec<<S::Service as Service>::Future, B>,
{
let serve = self.protocol.serve_incoming(self.incoming, new_service);
let spawn_all = serve.spawn_all();
Server {
spawn_all,
}
}
}
#[cfg(feature = "runtime")]
impl<E> Builder<AddrIncoming, E> {
/// Set whether TCP keepalive messages are enabled on accepted connections.
///
/// If `None` is specified, keepalive is disabled, otherwise the duration
/// specified will be the time to remain idle before sending TCP keepalive
/// probes.
pub fn tcp_keepalive(mut self, keepalive: Option<Duration>) -> Self {
self.incoming.set_keepalive(keepalive);
self
}
/// Set the value of `TCP_NODELAY` option for accepted connections.
pub fn tcp_nodelay(mut self, enabled: bool) -> Self {
self.incoming.set_nodelay(enabled);
self
}
/// Set whether to sleep on accept errors.
///
/// A possible scenario is that the process has hit the max open files
/// allowed, and so trying to accept a new connection will fail with
/// EMFILE. In some cases, it's preferable to just wait for some time, if
/// the application will likely close some files (or connections), and try
/// to accept the connection again. If this option is true, the error will
/// be logged at the error level, since it is still a big deal, and then
/// the listener will sleep for 1 second.
///
/// In other cases, hitting the max open files should be treat similarly
/// to being out-of-memory, and simply error (and shutdown). Setting this
/// option to false will allow that.
///
/// For more details see [`AddrIncoming::set_sleep_on_errors`]
pub fn tcp_sleep_on_accept_errors(mut self, val: bool) -> Self {
self.incoming.set_sleep_on_errors(val);
self
}
}