| /*- |
| * Copyright 2021 Intel Corp |
| * Copyright 2021 Rubicon Communications, LLC (Netgate) |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| // clang-format off |
| #include "igc_api.h" |
| |
| static s32 igc_init_nvm_params_i225(struct igc_hw *hw); |
| static s32 igc_init_mac_params_i225(struct igc_hw *hw); |
| static s32 igc_init_phy_params_i225(struct igc_hw *hw); |
| static s32 igc_reset_hw_i225(struct igc_hw *hw); |
| static s32 igc_acquire_nvm_i225(struct igc_hw *hw); |
| static void igc_release_nvm_i225(struct igc_hw *hw); |
| static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw); |
| static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data); |
| static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw); |
| |
| /** |
| * igc_init_nvm_params_i225 - Init NVM func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 igc_init_nvm_params_i225(struct igc_hw *hw) |
| { |
| struct igc_nvm_info *nvm = &hw->nvm; |
| u32 eecd = IGC_READ_REG(hw, IGC_EECD); |
| u16 size; |
| |
| DEBUGFUNC("igc_init_nvm_params_i225"); |
| |
| size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >> |
| IGC_EECD_SIZE_EX_SHIFT); |
| /* |
| * Added to a constant, "size" becomes the left-shift value |
| * for setting word_size. |
| */ |
| size += NVM_WORD_SIZE_BASE_SHIFT; |
| |
| /* Just in case size is out of range, cap it to the largest |
| * EEPROM size supported |
| */ |
| if (size > 15) |
| size = 15; |
| |
| nvm->word_size = (u16)(1 << size); |
| nvm->opcode_bits = 8; |
| nvm->delay_usec = 1; |
| nvm->type = igc_nvm_eeprom_spi; |
| |
| |
| nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8; |
| nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? |
| 16 : 8; |
| |
| if (nvm->word_size == (1 << 15)) |
| nvm->page_size = 128; |
| |
| nvm->ops.acquire = igc_acquire_nvm_i225; |
| nvm->ops.release = igc_release_nvm_i225; |
| if (igc_get_flash_presence_i225(hw)) { |
| hw->nvm.type = igc_nvm_flash_hw; |
| nvm->ops.read = igc_read_nvm_srrd_i225; |
| nvm->ops.write = igc_write_nvm_srwr_i225; |
| nvm->ops.validate = igc_validate_nvm_checksum_i225; |
| nvm->ops.update = igc_update_nvm_checksum_i225; |
| } else { |
| hw->nvm.type = igc_nvm_invm; |
| nvm->ops.write = igc_null_write_nvm; |
| nvm->ops.validate = igc_null_ops_generic; |
| nvm->ops.update = igc_null_ops_generic; |
| } |
| |
| return IGC_SUCCESS; |
| } |
| |
| /** |
| * igc_init_mac_params_i225 - Init MAC func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 igc_init_mac_params_i225(struct igc_hw *hw) |
| { |
| struct igc_mac_info *mac = &hw->mac; |
| struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225; |
| |
| DEBUGFUNC("igc_init_mac_params_i225"); |
| |
| /* Initialize function pointer */ |
| igc_init_mac_ops_generic(hw); |
| |
| /* Set media type */ |
| hw->phy.media_type = igc_media_type_copper; |
| /* Set mta register count */ |
| mac->mta_reg_count = 128; |
| /* Set rar entry count */ |
| mac->rar_entry_count = IGC_RAR_ENTRIES_BASE; |
| |
| /* reset */ |
| mac->ops.reset_hw = igc_reset_hw_i225; |
| /* hw initialization */ |
| mac->ops.init_hw = igc_init_hw_i225; |
| /* link setup */ |
| mac->ops.setup_link = igc_setup_link_generic; |
| /* check for link */ |
| mac->ops.check_for_link = igc_check_for_link_i225; |
| /* link info */ |
| mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic; |
| /* acquire SW_FW sync */ |
| mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; |
| /* release SW_FW sync */ |
| mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; |
| |
| /* Allow a single clear of the SW semaphore on I225 */ |
| dev_spec->clear_semaphore_once = true; |
| mac->ops.setup_physical_interface = igc_setup_copper_link_i225; |
| |
| /* Set if part includes ASF firmware */ |
| mac->asf_firmware_present = true; |
| |
| /* multicast address update */ |
| mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic; |
| |
| mac->ops.write_vfta = igc_write_vfta_generic; |
| |
| return IGC_SUCCESS; |
| } |
| |
| /** |
| * igc_init_phy_params_i225 - Init PHY func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 igc_init_phy_params_i225(struct igc_hw *hw) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| s32 ret_val = IGC_SUCCESS; |
| |
| DEBUGFUNC("igc_init_phy_params_i225"); |
| |
| |
| if (hw->phy.media_type != igc_media_type_copper) { |
| phy->type = igc_phy_none; |
| goto out; |
| } |
| |
| phy->ops.power_up = igc_power_up_phy_copper; |
| phy->ops.power_down = igc_power_down_phy_copper_base; |
| |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500; |
| |
| phy->reset_delay_us = 100; |
| |
| phy->ops.acquire = igc_acquire_phy_base; |
| phy->ops.check_reset_block = igc_check_reset_block_generic; |
| phy->ops.release = igc_release_phy_base; |
| phy->ops.reset = igc_phy_hw_reset_generic; |
| phy->ops.read_reg = igc_read_phy_reg_gpy; |
| phy->ops.write_reg = igc_write_phy_reg_gpy; |
| |
| /* Make sure the PHY is in a good state. Several people have reported |
| * firmware leaving the PHY's page select register set to something |
| * other than the default of zero, which causes the PHY ID read to |
| * access something other than the intended register. |
| */ |
| ret_val = hw->phy.ops.reset(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igc_get_phy_id(hw); |
| /* Verify phy id and set remaining function pointers */ |
| switch (phy->id) { |
| case I225_I_PHY_ID: |
| default: |
| phy->type = igc_phy_i225; |
| phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225; |
| phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225; |
| /* TODO - complete with GPY PHY information */ |
| break; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_reset_hw_i225 - Reset hardware |
| * @hw: pointer to the HW structure |
| * |
| * This resets the hardware into a known state. |
| **/ |
| static s32 igc_reset_hw_i225(struct igc_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| |
| DEBUGFUNC("igc_reset_hw_i225"); |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = igc_disable_pcie_master_generic(hw); |
| if (ret_val) |
| DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
| |
| DEBUGOUT("Masking off all interrupts\n"); |
| IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); |
| |
| IGC_WRITE_REG(hw, IGC_RCTL, 0); |
| IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP); |
| IGC_WRITE_FLUSH(hw); |
| |
| msec_delay(10); |
| |
| ctrl = IGC_READ_REG(hw, IGC_CTRL); |
| |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST); |
| |
| ret_val = igc_get_auto_rd_done_generic(hw); |
| if (ret_val) { |
| /* |
| * When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| DEBUGOUT("Auto Read Done did not complete\n"); |
| } |
| |
| /* Clear any pending interrupt events. */ |
| IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); |
| IGC_READ_REG(hw, IGC_ICR); |
| |
| /* Install any alternate MAC address into RAR0 */ |
| ret_val = igc_check_alt_mac_addr_generic(hw); |
| |
| return ret_val; |
| } |
| |
| /* igc_acquire_nvm_i225 - Request for access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -IGC_ERR_NVM (-1). |
| */ |
| static s32 igc_acquire_nvm_i225(struct igc_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("igc_acquire_nvm_i225"); |
| |
| ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); |
| |
| return ret_val; |
| } |
| |
| /* igc_release_nvm_i225 - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| * then release the semaphores acquired. |
| */ |
| static void igc_release_nvm_i225(struct igc_hw *hw) |
| { |
| DEBUGFUNC("igc_release_nvm_i225"); |
| |
| igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); |
| } |
| |
| /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| * will also specify which port we're acquiring the lock for. |
| */ |
| s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| u32 swmask = mask; |
| u32 fwmask = mask << 16; |
| s32 ret_val = IGC_SUCCESS; |
| s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| |
| DEBUGFUNC("igc_acquire_swfw_sync_i225"); |
| |
| while (i < timeout) { |
| if (igc_get_hw_semaphore_i225(hw)) { |
| ret_val = -IGC_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* Firmware currently using resource (fwmask) |
| * or other software thread using resource (swmask) |
| */ |
| igc_put_hw_semaphore_generic(hw); |
| msec_delay_irq(5); |
| i++; |
| } |
| |
| if (i == timeout) { |
| DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| ret_val = -IGC_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync |= swmask; |
| IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); |
| |
| igc_put_hw_semaphore_generic(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /* igc_release_swfw_sync_i225 - Release SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| * will also specify which port we're releasing the lock for. |
| */ |
| void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| |
| DEBUGFUNC("igc_release_swfw_sync_i225"); |
| |
| while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS) |
| ; /* Empty */ |
| |
| swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); |
| swfw_sync &= ~mask; |
| IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); |
| |
| igc_put_hw_semaphore_generic(hw); |
| } |
| |
| /* |
| * igc_setup_copper_link_i225 - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Configures the link for auto-neg or forced speed and duplex. Then we check |
| * for link, once link is established calls to configure collision distance |
| * and flow control are called. |
| */ |
| s32 igc_setup_copper_link_i225(struct igc_hw *hw) |
| { |
| u32 phpm_reg; |
| s32 ret_val; |
| u32 ctrl; |
| |
| DEBUGFUNC("igc_setup_copper_link_i225"); |
| |
| ctrl = IGC_READ_REG(hw, IGC_CTRL); |
| ctrl |= IGC_CTRL_SLU; |
| ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX); |
| IGC_WRITE_REG(hw, IGC_CTRL, ctrl); |
| |
| phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM); |
| phpm_reg &= ~IGC_I225_PHPM_GO_LINKD; |
| IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg); |
| |
| ret_val = igc_setup_copper_link_generic(hw); |
| |
| return ret_val; |
| } |
| |
| /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| */ |
| static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw) |
| { |
| u32 swsm; |
| s32 timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| |
| DEBUGFUNC("igc_get_hw_semaphore_i225"); |
| |
| /* Get the SW semaphore */ |
| while (i < timeout) { |
| swsm = IGC_READ_REG(hw, IGC_SWSM); |
| if (!(swsm & IGC_SWSM_SMBI)) |
| break; |
| |
| usec_delay(50); |
| i++; |
| } |
| |
| if (i == timeout) { |
| /* In rare circumstances, the SW semaphore may already be held |
| * unintentionally. Clear the semaphore once before giving up. |
| */ |
| if (hw->dev_spec._i225.clear_semaphore_once) { |
| hw->dev_spec._i225.clear_semaphore_once = false; |
| igc_put_hw_semaphore_generic(hw); |
| for (i = 0; i < timeout; i++) { |
| swsm = IGC_READ_REG(hw, IGC_SWSM); |
| if (!(swsm & IGC_SWSM_SMBI)) |
| break; |
| |
| usec_delay(50); |
| } |
| } |
| |
| /* If we do not have the semaphore here, we have to give up. */ |
| if (i == timeout) { |
| DEBUGOUT("Driver can't access device -\n"); |
| DEBUGOUT("SMBI bit is set.\n"); |
| return -IGC_ERR_NVM; |
| } |
| } |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < timeout; i++) { |
| swsm = IGC_READ_REG(hw, IGC_SWSM); |
| IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI) |
| break; |
| |
| usec_delay(50); |
| } |
| |
| if (i == timeout) { |
| /* Release semaphores */ |
| igc_put_hw_semaphore_generic(hw); |
| DEBUGOUT("Driver can't access the NVM\n"); |
| return -IGC_ERR_NVM; |
| } |
| |
| return IGC_SUCCESS; |
| } |
| |
| /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the Shadow Ram to read |
| * @words: number of words to read |
| * @data: word read from the Shadow Ram |
| * |
| * Reads a 16 bit word from the Shadow Ram using the EERD register. |
| * Uses necessary synchronization semaphores. |
| */ |
| s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 status = IGC_SUCCESS; |
| u16 i, count; |
| |
| DEBUGFUNC("igc_read_nvm_srrd_i225"); |
| |
| /* We cannot hold synchronization semaphores for too long, |
| * because of forceful takeover procedure. However it is more efficient |
| * to read in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { |
| count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? |
| IGC_EERD_EEWR_MAX_COUNT : (words - i); |
| if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { |
| status = igc_read_nvm_eerd(hw, offset, count, |
| data + i); |
| hw->nvm.ops.release(hw); |
| } else { |
| status = IGC_ERR_SWFW_SYNC; |
| } |
| |
| if (status != IGC_SUCCESS) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR |
| * @hw: pointer to the HW structure |
| * @offset: offset within the Shadow RAM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the Shadow RAM |
| * |
| * Writes data to Shadow RAM at offset using EEWR register. |
| * |
| * If igc_update_nvm_checksum is not called after this function , the |
| * data will not be committed to FLASH and also Shadow RAM will most likely |
| * contain an invalid checksum. |
| * |
| * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
| * partially written. |
| */ |
| s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 status = IGC_SUCCESS; |
| u16 i, count; |
| |
| DEBUGFUNC("igc_write_nvm_srwr_i225"); |
| |
| /* We cannot hold synchronization semaphores for too long, |
| * because of forceful takeover procedure. However it is more efficient |
| * to write in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { |
| count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? |
| IGC_EERD_EEWR_MAX_COUNT : (words - i); |
| if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { |
| status = __igc_write_nvm_srwr(hw, offset, count, |
| data + i); |
| hw->nvm.ops.release(hw); |
| } else { |
| status = IGC_ERR_SWFW_SYNC; |
| } |
| |
| if (status != IGC_SUCCESS) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR |
| * @hw: pointer to the HW structure |
| * @offset: offset within the Shadow Ram to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the Shadow Ram |
| * |
| * Writes data to Shadow Ram at offset using EEWR register. |
| * |
| * If igc_update_nvm_checksum is not called after this function , the |
| * Shadow Ram will most likely contain an invalid checksum. |
| */ |
| static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct igc_nvm_info *nvm = &hw->nvm; |
| u32 i, k, eewr = 0; |
| u32 attempts = 100000; |
| s32 ret_val = IGC_SUCCESS; |
| |
| DEBUGFUNC("__igc_write_nvm_srwr"); |
| |
| /* A check for invalid values: offset too large, too many words, |
| * too many words for the offset, and not enough words. |
| */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| DEBUGOUT("nvm parameter(s) out of bounds\n"); |
| ret_val = -IGC_ERR_NVM; |
| goto out; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | |
| (data[i] << IGC_NVM_RW_REG_DATA) | |
| IGC_NVM_RW_REG_START; |
| |
| IGC_WRITE_REG(hw, IGC_SRWR, eewr); |
| |
| for (k = 0; k < attempts; k++) { |
| if (IGC_NVM_RW_REG_DONE & |
| IGC_READ_REG(hw, IGC_SRWR)) { |
| ret_val = IGC_SUCCESS; |
| break; |
| } |
| usec_delay(5); |
| } |
| |
| if (ret_val != IGC_SUCCESS) { |
| DEBUGOUT("Shadow RAM write EEWR timed out\n"); |
| break; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| */ |
| s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw) |
| { |
| s32 status = IGC_SUCCESS; |
| s32 (*read_op_ptr)(struct igc_hw *, u16, u16, u16 *); |
| |
| DEBUGFUNC("igc_validate_nvm_checksum_i225"); |
| |
| if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { |
| /* Replace the read function with semaphore grabbing with |
| * the one that skips this for a while. |
| * We have semaphore taken already here. |
| */ |
| read_op_ptr = hw->nvm.ops.read; |
| hw->nvm.ops.read = igc_read_nvm_eerd; |
| |
| status = igc_validate_nvm_checksum_generic(hw); |
| |
| /* Revert original read operation. */ |
| hw->nvm.ops.read = read_op_ptr; |
| |
| hw->nvm.ops.release(hw); |
| } else { |
| status = IGC_ERR_SWFW_SYNC; |
| } |
| |
| return status; |
| } |
| |
| /* igc_update_nvm_checksum_i225 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. Next commit EEPROM data onto the Flash. |
| */ |
| s32 igc_update_nvm_checksum_i225(struct igc_hw *hw) |
| { |
| s32 ret_val; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| DEBUGFUNC("igc_update_nvm_checksum_i225"); |
| |
| /* Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); |
| if (ret_val != IGC_SUCCESS) { |
| DEBUGOUT("EEPROM read failed\n"); |
| goto out; |
| } |
| |
| if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { |
| /* Do not use hw->nvm.ops.write, hw->nvm.ops.read |
| * because we do not want to take the synchronization |
| * semaphores twice here. |
| */ |
| |
| for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw->nvm.ops.release(hw); |
| DEBUGOUT("NVM Read Error while updating\n"); |
| DEBUGOUT("checksum.\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16)NVM_SUM - checksum; |
| ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, |
| &checksum); |
| if (ret_val != IGC_SUCCESS) { |
| hw->nvm.ops.release(hw); |
| DEBUGOUT("NVM Write Error while updating checksum.\n"); |
| goto out; |
| } |
| |
| hw->nvm.ops.release(hw); |
| |
| ret_val = igc_update_flash_i225(hw); |
| } else { |
| ret_val = IGC_ERR_SWFW_SYNC; |
| } |
| out: |
| return ret_val; |
| } |
| |
| /* igc_get_flash_presence_i225 - Check if flash device is detected. |
| * @hw: pointer to the HW structure |
| */ |
| bool igc_get_flash_presence_i225(struct igc_hw *hw) |
| { |
| u32 eec = 0; |
| bool ret_val = false; |
| |
| DEBUGFUNC("igc_get_flash_presence_i225"); |
| |
| eec = IGC_READ_REG(hw, IGC_EECD); |
| |
| if (eec & IGC_EECD_FLASH_DETECTED_I225) |
| ret_val = true; |
| |
| return ret_val; |
| } |
| |
| /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst |
| * Counter in FLSWCNT register. |
| * |
| * @hw: pointer to the HW structure |
| * @burst_counter: size in bytes of the Flash burst to read or write |
| */ |
| s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, |
| u32 burst_counter) |
| { |
| s32 ret_val = IGC_SUCCESS; |
| |
| DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225"); |
| |
| /* Validate input data */ |
| if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) { |
| /* Write FLSWCNT - burst counter */ |
| IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter); |
| } else { |
| ret_val = IGC_ERR_INVALID_ARGUMENT; |
| } |
| |
| return ret_val; |
| } |
| |
| /* igc_write_erase_flash_command_i225 - write/erase to a sector |
| * region on a given address. |
| * |
| * @hw: pointer to the HW structure |
| * @opcode: opcode to be used for the write command |
| * @address: the offset to write into the FLASH image |
| */ |
| s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode, |
| u32 address) |
| { |
| u32 flswctl = 0; |
| s32 timeout = IGC_NVM_GRANT_ATTEMPTS; |
| s32 ret_val = IGC_SUCCESS; |
| |
| DEBUGFUNC("igc_write_erase_flash_command_i225"); |
| |
| flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); |
| /* Polling done bit on FLSWCTL register */ |
| while (timeout) { |
| if (flswctl & IGC_FLSWCTL_DONE) |
| break; |
| usec_delay(5); |
| flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Flash transaction was not done\n"); |
| return -IGC_ERR_NVM; |
| } |
| |
| /* Build and issue command on FLSWCTL register */ |
| flswctl = address | opcode; |
| IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl); |
| |
| /* Check if issued command is valid on FLSWCTL register */ |
| flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); |
| if (!(flswctl & IGC_FLSWCTL_CMDV)) { |
| DEBUGOUT("Write flash command failed\n"); |
| ret_val = IGC_ERR_INVALID_ARGUMENT; |
| } |
| |
| return ret_val; |
| } |
| |
| /* igc_update_flash_i225 - Commit EEPROM to the flash |
| * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC |
| * register makes the FW load the internal shadow RAM into the flash. |
| * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0 |
| * then FW is not active so the SW is responsible shadow RAM dump. |
| * |
| * @hw: pointer to the HW structure |
| */ |
| s32 igc_update_flash_i225(struct igc_hw *hw) |
| { |
| u16 current_offset_data = 0; |
| u32 block_sw_protect = 1; |
| u16 base_address = 0x0; |
| u32 i, fw_valid_bit; |
| u16 current_offset; |
| s32 ret_val = 0; |
| u32 flup; |
| |
| DEBUGFUNC("igc_update_flash_i225"); |
| |
| block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) & |
| IGC_FLSECU_BLK_SW_ACCESS_I225; |
| fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & |
| IGC_FWSM_FW_VALID_I225; |
| if (fw_valid_bit) { |
| ret_val = igc_pool_flash_update_done_i225(hw); |
| if (ret_val == -IGC_ERR_NVM) { |
| DEBUGOUT("Flash update time out\n"); |
| goto out; |
| } |
| |
| flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225; |
| IGC_WRITE_REG(hw, IGC_EECD, flup); |
| |
| ret_val = igc_pool_flash_update_done_i225(hw); |
| if (ret_val == IGC_SUCCESS) |
| DEBUGOUT("Flash update complete\n"); |
| else |
| DEBUGOUT("Flash update time out\n"); |
| } else if (!block_sw_protect) { |
| /* FW is not active and security protection is disabled. |
| * therefore, SW is in charge of shadow RAM dump. |
| * Check which sector is valid. if sector 0 is valid, |
| * base address remains 0x0. otherwise, sector 1 is |
| * valid and it's base address is 0x1000 |
| */ |
| if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225) |
| base_address = 0x1000; |
| |
| /* Valid sector erase */ |
| ret_val = igc_write_erase_flash_command_i225(hw, |
| IGC_I225_ERASE_CMD_OPCODE, |
| base_address); |
| if (!ret_val) { |
| DEBUGOUT("Sector erase failed\n"); |
| goto out; |
| } |
| |
| current_offset = base_address; |
| |
| /* Write */ |
| for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) { |
| /* Set burst write length */ |
| ret_val = igc_set_flsw_flash_burst_counter_i225(hw, |
| 0x2); |
| if (ret_val != IGC_SUCCESS) |
| break; |
| |
| /* Set address and opcode */ |
| ret_val = igc_write_erase_flash_command_i225(hw, |
| IGC_I225_WRITE_CMD_OPCODE, |
| 2 * current_offset); |
| if (ret_val != IGC_SUCCESS) |
| break; |
| |
| ret_val = igc_read_nvm_eerd(hw, current_offset, |
| 1, ¤t_offset_data); |
| if (ret_val) { |
| DEBUGOUT("Failed to read from EEPROM\n"); |
| goto out; |
| } |
| |
| /* Write CurrentOffseData to FLSWDATA register */ |
| IGC_WRITE_REG(hw, IGC_I225_FLSWDATA, |
| current_offset_data); |
| current_offset++; |
| |
| /* Wait till operation has finished */ |
| ret_val = igc_poll_eerd_eewr_done(hw, |
| IGC_NVM_POLL_READ); |
| if (ret_val) |
| break; |
| |
| usec_delay(1000); |
| } |
| } |
| out: |
| return ret_val; |
| } |
| |
| /* igc_pool_flash_update_done_i225 - Pool FLUDONE status. |
| * @hw: pointer to the HW structure |
| */ |
| s32 igc_pool_flash_update_done_i225(struct igc_hw *hw) |
| { |
| s32 ret_val = -IGC_ERR_NVM; |
| u32 i, reg; |
| |
| DEBUGFUNC("igc_pool_flash_update_done_i225"); |
| |
| for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { |
| reg = IGC_READ_REG(hw, IGC_EECD); |
| if (reg & IGC_EECD_FLUDONE_I225) { |
| ret_val = IGC_SUCCESS; |
| break; |
| } |
| usec_delay(5); |
| } |
| |
| return ret_val; |
| } |
| |
| /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds. |
| * @hw: pointer to the HW structure |
| * @link: bool indicating link status |
| * |
| * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC |
| * settings, otherwise specify that there is no LTR requirement. |
| */ |
| static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link) |
| { |
| u16 speed, duplex; |
| u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; |
| s32 size; |
| |
| DEBUGFUNC("igc_set_ltr_i225"); |
| |
| /* If we do not have link, LTR thresholds are zero. */ |
| if (link) { |
| hw->mac.ops.get_link_up_info(hw, &speed, &duplex); |
| |
| /* Check if using copper interface with EEE enabled or if the |
| * link speed is 10 Mbps. |
| */ |
| if ((hw->phy.media_type == igc_media_type_copper) && |
| !(hw->dev_spec._i225.eee_disable) && |
| (speed != SPEED_10)) { |
| /* EEE enabled, so send LTRMAX threshold. */ |
| ltrc = IGC_READ_REG(hw, IGC_LTRC) | |
| IGC_LTRC_EEEMS_EN; |
| IGC_WRITE_REG(hw, IGC_LTRC, ltrc); |
| |
| /* Calculate tw_system (nsec). */ |
| if (speed == SPEED_100) { |
| tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) & |
| IGC_TW_SYSTEM_100_MASK) >> |
| IGC_TW_SYSTEM_100_SHIFT) * 500; |
| } else { |
| tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) & |
| IGC_TW_SYSTEM_1000_MASK) * 500; |
| } |
| } else { |
| tw_system = 0; |
| } |
| |
| /* Get the Rx packet buffer size. */ |
| size = IGC_READ_REG(hw, IGC_RXPBS) & |
| IGC_RXPBS_SIZE_I225_MASK; |
| |
| /* Calculations vary based on DMAC settings. */ |
| if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) { |
| size -= (IGC_READ_REG(hw, IGC_DMACR) & |
| IGC_DMACR_DMACTHR_MASK) >> |
| IGC_DMACR_DMACTHR_SHIFT; |
| /* Convert size to bits. */ |
| size *= 1024 * 8; |
| } else { |
| /* Convert size to bytes, subtract the MTU, and then |
| * convert the size to bits. |
| */ |
| size *= 1024; |
| size -= hw->dev_spec._i225.mtu; |
| size *= 8; |
| } |
| |
| if (size < 0) { |
| DEBUGOUT1("Invalid effective Rx buffer size %d\n", |
| size); |
| return -IGC_ERR_CONFIG; |
| } |
| |
| /* Calculate the thresholds. Since speed is in Mbps, simplify |
| * the calculation by multiplying size/speed by 1000 for result |
| * to be in nsec before dividing by the scale in nsec. Set the |
| * scale such that the LTR threshold fits in the register. |
| */ |
| ltr_min = (1000 * size) / speed; |
| ltr_max = ltr_min + tw_system; |
| scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : |
| IGC_LTRMINV_SCALE_32768; |
| scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : |
| IGC_LTRMAXV_SCALE_32768; |
| ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; |
| ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; |
| |
| /* Only write the LTR thresholds if they differ from before. */ |
| ltrv = IGC_READ_REG(hw, IGC_LTRMINV); |
| if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { |
| ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | |
| (scale_min << IGC_LTRMINV_SCALE_SHIFT); |
| IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv); |
| } |
| |
| ltrv = IGC_READ_REG(hw, IGC_LTRMAXV); |
| if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { |
| ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | |
| (scale_min << IGC_LTRMAXV_SCALE_SHIFT); |
| IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv); |
| } |
| } |
| |
| return IGC_SUCCESS; |
| } |
| |
| /* igc_check_for_link_i225 - Check for link |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see of the link status of the hardware has changed. If a |
| * change in link status has been detected, then we read the PHY registers |
| * to get the current speed/duplex if link exists. |
| */ |
| s32 igc_check_for_link_i225(struct igc_hw *hw) |
| { |
| struct igc_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| bool link = false; |
| |
| DEBUGFUNC("igc_check_for_link_i225"); |
| |
| /* We only want to go out to the PHY registers to see if |
| * Auto-Neg has completed and/or if our link status has |
| * changed. The get_link_status flag is set upon receiving |
| * a Link Status Change or Rx Sequence Error interrupt. |
| */ |
| if (!mac->get_link_status) { |
| ret_val = IGC_SUCCESS; |
| goto out; |
| } |
| |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| goto out; |
| |
| if (!link) |
| goto out; /* No link detected */ |
| |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| goto out; |
| |
| if (!link) |
| goto out; /* No link detected */ |
| |
| mac->get_link_status = false; |
| |
| /* Check if there was DownShift, must be checked |
| * immediately after link-up |
| */ |
| igc_check_downshift_generic(hw); |
| |
| /* If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!mac->autoneg) |
| goto out; |
| |
| /* Auto-Neg is enabled. Auto Speed Detection takes care |
| * of MAC speed/duplex configuration. So we only need to |
| * configure Collision Distance in the MAC. |
| */ |
| mac->ops.config_collision_dist(hw); |
| |
| /* Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = igc_config_fc_after_link_up_generic(hw); |
| if (ret_val) |
| DEBUGOUT("Error configuring flow control\n"); |
| out: |
| /* Now that we are aware of our link settings, we can set the LTR |
| * thresholds. |
| */ |
| ret_val = igc_set_ltr_i225(hw, link); |
| |
| return ret_val; |
| } |
| |
| /* igc_init_function_pointers_i225 - Init func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * Called to initialize all function pointers and parameters. |
| */ |
| void igc_init_function_pointers_i225(struct igc_hw *hw) |
| { |
| igc_init_mac_ops_generic(hw); |
| igc_init_phy_ops_generic(hw); |
| igc_init_nvm_ops_generic(hw); |
| hw->mac.ops.init_params = igc_init_mac_params_i225; |
| hw->nvm.ops.init_params = igc_init_nvm_params_i225; |
| hw->phy.ops.init_params = igc_init_phy_params_i225; |
| } |
| |
| /* igc_init_hw_i225 - Init hw for I225 |
| * @hw: pointer to the HW structure |
| * |
| * Called to initialize hw for i225 hw family. |
| */ |
| s32 igc_init_hw_i225(struct igc_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("igc_init_hw_i225"); |
| |
| ret_val = igc_init_hw_base(hw); |
| return ret_val; |
| } |
| |
| /* |
| * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Note: since I225 does not actually support LPLU, this function |
| * simply enables/disables 1G and 2.5G speeds in D0. |
| */ |
| s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active) |
| { |
| u32 data; |
| |
| DEBUGFUNC("igc_set_d0_lplu_state_i225"); |
| |
| data = IGC_READ_REG(hw, IGC_I225_PHPM); |
| |
| if (active) { |
| data |= IGC_I225_PHPM_DIS_1000; |
| data |= IGC_I225_PHPM_DIS_2500; |
| } else { |
| data &= ~IGC_I225_PHPM_DIS_1000; |
| data &= ~IGC_I225_PHPM_DIS_2500; |
| } |
| |
| IGC_WRITE_REG(hw, IGC_I225_PHPM, data); |
| return IGC_SUCCESS; |
| } |
| |
| /* |
| * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Note: since I225 does not actually support LPLU, this function |
| * simply enables/disables 100M, 1G and 2.5G speeds in D3. |
| */ |
| s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active) |
| { |
| u32 data; |
| |
| DEBUGFUNC("igc_set_d3_lplu_state_i225"); |
| |
| data = IGC_READ_REG(hw, IGC_I225_PHPM); |
| |
| if (active) { |
| data |= IGC_I225_PHPM_DIS_100_D3; |
| data |= IGC_I225_PHPM_DIS_1000_D3; |
| data |= IGC_I225_PHPM_DIS_2500_D3; |
| } else { |
| data &= ~IGC_I225_PHPM_DIS_100_D3; |
| data &= ~IGC_I225_PHPM_DIS_1000_D3; |
| data &= ~IGC_I225_PHPM_DIS_2500_D3; |
| } |
| |
| IGC_WRITE_REG(hw, IGC_I225_PHPM, data); |
| return IGC_SUCCESS; |
| } |
| |
| /** |
| * igc_set_eee_i225 - Enable/disable EEE support |
| * @hw: pointer to the HW structure |
| * @adv2p5G: boolean flag enabling 2.5G EEE advertisement |
| * @adv1G: boolean flag enabling 1G EEE advertisement |
| * @adv100M: boolean flag enabling 100M EEE advertisement |
| * |
| * Enable/disable EEE based on setting in dev_spec structure. |
| * |
| **/ |
| s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, |
| bool adv100M) |
| { |
| u32 ipcnfg, eeer; |
| |
| DEBUGFUNC("igc_set_eee_i225"); |
| |
| if (hw->mac.type != igc_i225 || |
| hw->phy.media_type != igc_media_type_copper) |
| goto out; |
| ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG); |
| eeer = IGC_READ_REG(hw, IGC_EEER); |
| |
| /* enable or disable per user setting */ |
| if (!(hw->dev_spec._i225.eee_disable)) { |
| u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU); |
| |
| if (adv100M) |
| ipcnfg |= IGC_IPCNFG_EEE_100M_AN; |
| else |
| ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; |
| |
| if (adv1G) |
| ipcnfg |= IGC_IPCNFG_EEE_1G_AN; |
| else |
| ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; |
| |
| if (adv2p5G) |
| ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; |
| else |
| ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; |
| |
| eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | |
| IGC_EEER_LPI_FC); |
| |
| /* This bit should not be set in normal operation. */ |
| if (eee_su & IGC_EEE_SU_LPI_CLK_STP) |
| DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); |
| } else { |
| ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | |
| IGC_IPCNFG_EEE_100M_AN); |
| eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | |
| IGC_EEER_LPI_FC); |
| } |
| IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg); |
| IGC_WRITE_REG(hw, IGC_EEER, eeer); |
| IGC_READ_REG(hw, IGC_IPCNFG); |
| IGC_READ_REG(hw, IGC_EEER); |
| out: |
| |
| return IGC_SUCCESS; |
| } |
| // clang-format off |