blob: 6a9c23aa21a4daab67da5980ee69c6aaff686082 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
package main
import (
"encoding/binary"
"fmt"
"log"
"sync"
"syscall/zx"
"syscall/zx/fdio"
"syscall/zx/mxerror"
"syscall/zx/zxsocket"
"syscall/zx/zxwait"
"time"
"app/context"
"fidl/fuchsia/devicesettings"
"github.com/google/netstack/tcpip"
"github.com/google/netstack/tcpip/buffer"
"github.com/google/netstack/tcpip/header"
"github.com/google/netstack/tcpip/network/ipv4"
"github.com/google/netstack/tcpip/network/ipv6"
"github.com/google/netstack/tcpip/stack"
"github.com/google/netstack/tcpip/transport/tcp"
"github.com/google/netstack/tcpip/transport/udp"
"github.com/google/netstack/waiter"
)
const debug = true
const debug2 = false
// TODO: Replace these with a better tracing mechanism (NET-757)
const logListen = false
const logAccept = false
const ZX_SOCKET_HALF_CLOSE = 1
const ZXSIO_SIGNAL_INCOMING = zx.SignalUser0
const ZXSIO_SIGNAL_OUTGOING = zx.SignalUser1
const ZXSIO_SIGNAL_CONNECTED = zx.SignalUser3
const LOCAL_SIGNAL_CLOSING = zx.SignalUser5
const defaultNIC = 2
var (
ioctlNetcGetNumIfs = fdio.IoctlNum(fdio.IoctlKindDefault, fdio.IoctlFamilyNetconfig, 1)
ioctlNetcGetIfInfoAt = fdio.IoctlNum(fdio.IoctlKindDefault, fdio.IoctlFamilyNetconfig, 2)
ioctlNetcGetNodename = fdio.IoctlNum(fdio.IoctlKindDefault, fdio.IoctlFamilyNetconfig, 8)
)
func sendSignal(s zx.Socket, sig zx.Signals, peer bool) error {
var err error
if peer {
err = s.Handle().SignalPeer(0, sig)
} else {
err = s.Handle().Signal(0, sig)
}
switch status := mxerror.Status(err); status {
case zx.ErrOk:
case zx.ErrBadHandle, zx.ErrPeerClosed:
// The peer might have closed the handle.
default:
return err
}
return nil
}
func signalConnectFailure(s zx.Socket) error {
return sendSignal(s, ZXSIO_SIGNAL_OUTGOING, true)
}
func signalConnectSuccess(s zx.Socket, outgoing bool) error {
// CONNECTED should be sent to the peer before it is sent locally.
// That ensures the peer detects the connection before any data is written by
// loopSocketRead.
err := sendSignal(s, ZXSIO_SIGNAL_OUTGOING|ZXSIO_SIGNAL_CONNECTED, true)
if err != nil {
return err
}
return sendSignal(s, ZXSIO_SIGNAL_CONNECTED, false)
}
func newSocketServer(stk *stack.Stack, ctx *context.Context) (*socketServer, error) {
a := socketServer{
stack: stk,
io: make(map[cookie]*iostate),
next: 1,
}
return &a, nil
}
func (s *socketServer) setNetstack(ns *netstack) {
s.ns = ns
}
type cookie int64
type iostate struct {
wq *waiter.Queue
ep tcpip.Endpoint
netProto tcpip.NetworkProtocolNumber // IPv4 or IPv6
transProto tcpip.TransportProtocolNumber // TCP or UDP
dataHandle zx.Socket // used to communicate with libc
mu sync.Mutex
refs int
lastError *tcpip.Error // if not-nil, next error returned via getsockopt
writeLoopDone chan struct{}
controlLoopDone chan struct{}
listenLoopClosing chan struct{} // tell the listen loop to close
listenLoopDone chan struct{} // report that the listen loops has closed
dgramLoopClosing chan struct{} // tell the dgram loop to close
}
// loopSocketWrite connects libc write to the network stack for TCP sockets.
//
// As written, we have two netstack threads per socket.
// That's not so bad for small client work, but even a client OS is
// eventually going to feel the overhead of this.
func (ios *iostate) loopSocketWrite(stk *stack.Stack) {
defer func() { ios.writeLoopDone <- struct{}{} }()
// Warm up.
_, err := zxwait.Wait(zx.Handle(ios.dataHandle),
zx.SignalSocketReadable|zx.SignalSocketReadDisabled|
zx.SignalSocketPeerClosed|LOCAL_SIGNAL_CLOSING,
zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrOk:
// NOP
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("loopSocketWrite: warmup failed: %v", err)
}
// The client might have written some data into the socket.
// Always continue to the 'for' loop below and try to read them
// even if the signals show the client has closed the dataHandle.
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
for {
// TODO: obviously allocating for each read is silly.
// A quick hack we can do is store these in a ring buffer,
// as the lifecycle of this buffer.View starts here, and
// ends in nearby code we control in link.go.
v := buffer.NewView(2048)
n, err := ios.dataHandle.Read([]byte(v), 0)
switch mxerror.Status(err) {
case zx.ErrOk:
// Success. Pass the data to the endpoint and loop.
case zx.ErrBadState:
// This side of the socket is closed.
err := ios.ep.Shutdown(tcpip.ShutdownWrite)
if err != nil {
log.Printf("loopSocketWrite: ShutdownWrite failed: %v", err)
}
return
case zx.ErrShouldWait:
obs, err := zxwait.Wait(zx.Handle(ios.dataHandle),
zx.SignalSocketReadable|zx.SignalSocketReadDisabled|
zx.SignalSocketPeerClosed|LOCAL_SIGNAL_CLOSING,
zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrOk:
// Handle signal below.
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("loopSocketWrite: wait failed: %v", err)
return
}
switch {
case obs&zx.SignalSocketReadDisabled != 0:
// The next Read will return zx.BadState.
continue
case obs&zx.SignalSocketReadable != 0:
continue
case obs&LOCAL_SIGNAL_CLOSING != 0:
return
case obs&zx.SignalSocketPeerClosed != 0:
return
}
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("socket read failed: %v", err) // TODO: communicate this
continue
}
if debug2 {
log.Printf("loopSocketWrite: sending packet n=%d, v=%q", n, v[:n])
}
ios.wq.EventRegister(&waitEntry, waiter.EventOut)
for {
_, err := ios.ep.Write(v[:n], nil)
if err == tcpip.ErrWouldBlock {
<-notifyCh
continue
}
break
}
ios.wq.EventUnregister(&waitEntry)
if err != nil {
log.Printf("loopSocketWrite: got endpoint error: %v (TODO)", err)
return
}
}
}
// loopSocketRead connects libc read to the network stack for TCP sockets.
func (ios *iostate) loopSocketRead(stk *stack.Stack) {
// Warm up.
writable := false
connected := false
for !(writable && connected) {
sigs := zx.Signals(zx.SignalSocketWriteDisabled | zx.SignalSocketPeerClosed | LOCAL_SIGNAL_CLOSING)
if !writable {
sigs |= zx.SignalSocketWritable
}
if !connected {
sigs |= ZXSIO_SIGNAL_CONNECTED
}
obs, err := zxwait.Wait(zx.Handle(ios.dataHandle), sigs, zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrOk:
// NOP
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("loopSocketRead: warmup failed: %v", err)
}
if obs&zx.SignalSocketWritable != 0 {
writable = true
}
if obs&ZXSIO_SIGNAL_CONNECTED != 0 {
connected = true
}
if obs&zx.SignalSocketPeerClosed != 0 {
return
}
if obs&LOCAL_SIGNAL_CLOSING != 0 {
return
}
if obs&zx.SignalSocketWriteDisabled != 0 {
err := ios.ep.Shutdown(tcpip.ShutdownRead)
if err != nil {
log.Printf("loopSocketRead: ShutdownRead failed: %v", err)
}
return
}
}
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
for {
ios.wq.EventRegister(&waitEntry, waiter.EventIn)
var v buffer.View
var err *tcpip.Error
for {
v, err = ios.ep.Read(nil)
if err == nil {
break
} else if err == tcpip.ErrWouldBlock || err == tcpip.ErrInvalidEndpointState || err == tcpip.ErrNotConnected {
if debug2 {
log.Printf("loopSocketRead read err=%v", err)
}
<-notifyCh
// TODO: get socket closed message from loopSocketWrite
continue
} else if err == tcpip.ErrClosedForReceive || err == tcpip.ErrConnectionRefused {
if err == tcpip.ErrConnectionRefused {
ios.lastError = err
}
_, err := ios.dataHandle.Write(nil, ZX_SOCKET_HALF_CLOSE)
switch mxerror.Status(err) {
case zx.ErrOk:
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
default:
log.Printf("socket read: send ZX_SOCKET_HALF_CLOSE failed: %v", err)
}
return
}
log.Printf("loopSocketRead got endpoint error: %v (TODO)", err)
return
}
ios.wq.EventUnregister(&waitEntry)
if debug2 {
log.Printf("loopSocketRead: got a buffer, len(v)=%d", len(v))
}
writeLoop:
for len(v) > 0 {
n, err := ios.dataHandle.Write([]byte(v), 0)
v = v[n:]
switch mxerror.Status(err) {
case zx.ErrOk:
// Success. Loop and keep writing.
case zx.ErrBadState:
// This side of the socket is closed.
err := ios.ep.Shutdown(tcpip.ShutdownRead)
if err != nil {
log.Printf("loopSocketRead: ShutdownRead failed: %v", err)
}
return
case zx.ErrShouldWait:
if debug2 {
log.Printf("loopSocketRead: got zx.ErrShouldWait")
}
obs, err := zxwait.Wait(zx.Handle(ios.dataHandle),
zx.SignalSocketWritable|zx.SignalSocketWriteDisabled|
zx.SignalSocketPeerClosed|LOCAL_SIGNAL_CLOSING,
zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrOk:
// Handle signal below.
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("loopSocketRead: wait failed: %v", err)
return
}
switch {
case obs&zx.SignalSocketPeerClosed != 0:
return
case obs&LOCAL_SIGNAL_CLOSING != 0:
return
case obs&zx.SignalSocketWriteDisabled != 0:
// The next Write will return zx.ErrBadState.
continue
case obs&zx.SignalSocketWritable != 0:
continue
}
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("socket write failed: %v", err) // TODO: communicate this
break writeLoop
}
}
}
}
// loopDgramRead connects libc read to the network stack for UDP messages.
func (ios *iostate) loopDgramRead(stk *stack.Stack) {
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
for {
ios.wq.EventRegister(&waitEntry, waiter.EventIn)
var sender tcpip.FullAddress
var v buffer.View
var err *tcpip.Error
for {
v, err = ios.ep.Read(&sender)
if err == nil {
break
} else if err == tcpip.ErrWouldBlock {
select {
case <-notifyCh:
continue
case <-ios.dgramLoopClosing:
return
}
} else if err == tcpip.ErrClosedForReceive {
if debug2 {
log.Printf("TODO loopDgramRead closed")
}
// TODO _, err := ios.dataHandle.Write(nil, ZX_SOCKET_HALF_CLOSE)
return
}
// TODO communicate to user
log.Printf("loopDgramRead got endpoint error: %v (TODO)", err)
return
}
ios.wq.EventUnregister(&waitEntry)
out := make([]byte, c_fdio_socket_msg_hdr_len+len(v))
writeSocketMsgHdr(out, sender)
copy(out[c_fdio_socket_msg_hdr_len:], v)
writeLoop:
for {
_, err := ios.dataHandle.Write(out, 0)
switch mxerror.Status(err) {
case zx.ErrOk:
break writeLoop
case zx.ErrBadState:
return // This side of the socket is closed.
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("socket write failed: %v", err) // TODO: communicate this
break writeLoop
}
}
}
}
// loopDgramWrite connects libc write to the network stack for UDP messages.
func (ios *iostate) loopDgramWrite(stk *stack.Stack) {
defer func() { ios.writeLoopDone <- struct{}{} }()
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
for {
v := buffer.NewView(2048)
n, err := ios.dataHandle.Read([]byte(v), 0)
switch mxerror.Status(err) {
case zx.ErrOk:
// Success. Pass the data to the endpoint and loop.
case zx.ErrBadState:
return // This side of the socket is closed.
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
case zx.ErrShouldWait:
obs, err := zxwait.Wait(zx.Handle(ios.dataHandle),
zx.SignalSocketReadable|zx.SignalSocketPeerClosed|LOCAL_SIGNAL_CLOSING,
zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
case zx.ErrOk:
switch {
case obs&zx.SignalChannelReadable != 0:
continue
case obs&LOCAL_SIGNAL_CLOSING != 0:
return
case obs&zx.SignalSocketPeerClosed != 0:
return
}
default:
log.Printf("loopDgramWrite wait failed: %v", err)
return
}
default:
log.Printf("loopDgramWrite failed: %v", err) // TODO: communicate this
continue
}
v = v[:n:n]
receiver, err := readSocketMsgHdr(v)
if err != nil {
// TODO communicate
log.Printf("loopDgramWrite: bad socket msg header: %v", err)
continue
}
ios.wq.EventRegister(&waitEntry, waiter.EventOut)
for {
_, err := ios.ep.Write(v[c_fdio_socket_msg_hdr_len:], receiver)
if err == tcpip.ErrWouldBlock {
<-notifyCh
continue
}
break
}
ios.wq.EventUnregister(&waitEntry)
if err != nil {
log.Printf("loopDgramWrite: got endpoint error: %v (TODO)", err)
return
}
}
}
func (ios *iostate) loopControl(s *socketServer, cookie int64) {
synthesizeClose := true
defer func() {
if synthesizeClose {
zxsocket.Handler(0, zxsocket.ServerHandler(s.zxsocketHandler), cookie)
}
ios.controlLoopDone <- struct{}{}
}()
for {
err := zxsocket.Handler(ios.dataHandle, zxsocket.ServerHandler(s.zxsocketHandler), cookie)
switch mxerror.Status(err) {
case zx.ErrOk:
// Success. Pass the data to the endpoint and loop.
case zx.ErrBadState:
return // This side of the socket is closed.
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
case zx.ErrShouldWait:
obs, err := zxwait.Wait(zx.Handle(ios.dataHandle),
zx.SignalSocketControlReadable|zx.SignalSocketPeerClosed|LOCAL_SIGNAL_CLOSING,
zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
case zx.ErrOk:
switch {
case obs&zx.SignalSocketControlReadable != 0:
continue
case obs&LOCAL_SIGNAL_CLOSING != 0:
return
case obs&zx.SignalSocketPeerClosed != 0:
return
}
default:
log.Printf("loopControl wait failed: %v", err)
return
}
default:
if err == zxsocket.ErrDisconnectNoCallback {
// We received OpClose.
synthesizeClose = false
return
}
log.Printf("loopControl failed: %v", err) // TODO: communicate this
continue
}
}
}
func (s *socketServer) newIostate(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, wq *waiter.Queue, ep tcpip.Endpoint, isAccept bool) (localS, peerS zx.Socket, reterr error) {
ios := &iostate{
netProto: netProto,
transProto: transProto,
wq: wq,
ep: ep,
refs: 1,
}
switch transProto {
case tcp.ProtocolNumber, udp.ProtocolNumber, ipv4.PingProtocolNumber:
var t uint32
if transProto == tcp.ProtocolNumber {
t = zx.SocketStream
} else {
t = zx.SocketDatagram
}
t |= zx.SocketHasControl
if !isAccept {
t |= zx.SocketHasAccept
}
var err error
localS, peerS, err = zx.NewSocket(t)
if err != nil {
return zx.Socket(zx.HandleInvalid), zx.Socket(zx.HandleInvalid), err
}
default:
panic(fmt.Sprintf("unknown transport protocol number: %v", transProto))
}
ios.dataHandle = localS
s.mu.Lock()
newCookie := s.next
s.next++
s.io[newCookie] = ios
s.mu.Unlock()
defer func() {
if reterr != nil {
ios.dataHandle.Close()
peerS.Close()
s.mu.Lock()
delete(s.io, newCookie)
s.mu.Unlock()
}
}()
if ep != nil {
// This must be initialized before starting the control loop below, or it will race with opClose.
ios.writeLoopDone = make(chan struct{})
}
ios.controlLoopDone = make(chan struct{})
go ios.loopControl(s, int64(newCookie))
switch transProto {
case tcp.ProtocolNumber:
if ep != nil {
go ios.loopSocketRead(s.stack)
go ios.loopSocketWrite(s.stack)
}
case udp.ProtocolNumber, ipv4.PingProtocolNumber:
ios.dgramLoopClosing = make(chan struct{})
go ios.loopDgramRead(s.stack)
go ios.loopDgramWrite(s.stack)
}
return localS, peerS, nil
}
type socketServer struct {
stack *stack.Stack
ns *netstack
mu sync.Mutex
next cookie
io map[cookie]*iostate
}
func (s *socketServer) opSocket(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber) (zx.Socket, error) {
wq := new(waiter.Queue)
ep, e := s.stack.NewEndpoint(transProto, netProto, wq)
if e != nil {
if debug {
log.Printf("socket: new endpoint: %v", e)
}
return zx.Socket(zx.HandleInvalid), mxerror.Errorf(zx.ErrInternal, "socket: new endpoint: %v", e)
}
if netProto == ipv6.ProtocolNumber {
if err := ep.SetSockOpt(tcpip.V6OnlyOption(0)); err != nil {
log.Printf("socket: setsockopt v6only option failed: %v", err)
}
}
_, peerS, err := s.newIostate(netProto, transProto, wq, ep, false)
if err != nil {
if debug {
log.Printf("socket: new iostate: %v", err)
}
return zx.Socket(zx.HandleInvalid), err
}
return peerS, nil
}
func errStatus(err error) zx.Status {
if err == nil {
return zx.ErrOk
}
if s, ok := err.(zx.Error); ok {
return s.Status
}
log.Printf("%v", err)
return zx.ErrInternal
}
func mxNetError(e *tcpip.Error) zx.Status {
switch e {
case tcpip.ErrUnknownProtocol:
return zx.ErrProtocolNotSupported
case tcpip.ErrDuplicateAddress, tcpip.ErrPortInUse:
return zx.ErrAddressInUse
case tcpip.ErrNoRoute:
return zx.ErrAddressUnreachable
case tcpip.ErrAlreadyBound:
// Note that tcpip.ErrAlreadyBound and zx.ErrAlreadyBound correspond to different
// errors. tcpip.ErrAlreadyBound is returned when attempting to bind socket when
// it's already bound. zx.ErrAlreadyBound is used to indicate that the local
// address is already used by someone else.
return zx.ErrInvalidArgs
case tcpip.ErrInvalidEndpointState, tcpip.ErrAlreadyConnecting, tcpip.ErrAlreadyConnected:
return zx.ErrBadState
case tcpip.ErrNoPortAvailable:
return zx.ErrNoResources
case tcpip.ErrUnknownProtocolOption, tcpip.ErrBadLocalAddress, tcpip.ErrDestinationRequired:
return zx.ErrInvalidArgs
case tcpip.ErrClosedForSend, tcpip.ErrClosedForReceive, tcpip.ErrConnectionReset:
return zx.ErrConnectionReset
case tcpip.ErrWouldBlock:
return zx.ErrShouldWait
case tcpip.ErrConnectionRefused:
return zx.ErrConnectionRefused
case tcpip.ErrTimeout:
return zx.ErrTimedOut
case tcpip.ErrConnectStarted:
return zx.ErrShouldWait
case tcpip.ErrNotSupported, tcpip.ErrQueueSizeNotSupported:
return zx.ErrNotSupported
case tcpip.ErrNotConnected:
return zx.ErrNotConnected
case tcpip.ErrConnectionAborted:
return zx.ErrConnectionAborted
}
log.Printf("%v", e)
return zx.ErrInternal
}
func (s *socketServer) opGetSockOpt(ios *iostate, msg *zxsocket.Msg) zx.Status {
var val c_mxrio_sockopt_req_reply
if err := val.Decode(msg.Data[:msg.Datalen]); err != nil {
if debug {
log.Printf("getsockopt: decode argument: %v", err)
}
return errStatus(err)
}
if ios.ep == nil {
if debug {
log.Printf("getsockopt: no socket")
}
return zx.ErrBadState
}
if opt := val.Unpack(); opt != nil {
switch o := opt.(type) {
case tcpip.ErrorOption:
ios.mu.Lock()
err := ios.lastError
ios.lastError = nil
ios.mu.Unlock()
if err == nil {
err = ios.ep.GetSockOpt(o)
}
errno := uint32(0)
if err != nil {
// TODO: should this be a unix errno?
errno = uint32(mxNetError(err))
}
binary.LittleEndian.PutUint32(val.optval[:], errno)
val.optlen = c_socklen(4)
case tcpip.SendBufferSizeOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.ReceiveBufferSizeOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.ReceiveQueueSizeOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.NoDelayOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.ReuseAddressOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.V6OnlyOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.MulticastTTLOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.KeepaliveEnabledOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.KeepaliveIdleOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(time.Duration(o).Seconds()))
val.optlen = c_socklen(4)
case tcpip.KeepaliveIntervalOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(time.Duration(o).Seconds()))
val.optlen = c_socklen(4)
case tcpip.KeepaliveCountOption:
ios.ep.GetSockOpt(&o)
binary.LittleEndian.PutUint32(val.optval[:], uint32(o))
val.optlen = c_socklen(4)
case tcpip.InfoOption:
ios.ep.GetSockOpt(&o)
info := c_mxrio_sockopt_tcp_info{
// Microseconds.
rtt: uint32(o.Rtt.Nanoseconds() / 1000),
rttvar: uint32(o.Rttvar.Nanoseconds() / 1000),
}
info.Encode(&val)
default:
binary.LittleEndian.PutUint32(val.optval[:], 0)
val.optlen = c_socklen(4)
}
} else {
val.optlen = 0
}
val.Encode(msg)
return zx.ErrOk
}
func (s *socketServer) opSetSockOpt(ios *iostate, msg *zxsocket.Msg) zx.Status {
var val c_mxrio_sockopt_req_reply
if err := val.Decode(msg.Data[:msg.Datalen]); err != nil {
if debug {
log.Printf("setsockopt: decode argument: %v", err)
}
return errStatus(err)
}
if ios.ep == nil {
if debug {
log.Printf("setsockopt: no socket")
}
return zx.ErrBadState
}
if opt := val.Unpack(); opt != nil {
if err := ios.ep.SetSockOpt(opt); err != nil {
return mxNetError(err)
}
}
msg.Datalen = 0
msg.SetOff(0)
return zx.ErrOk
}
func (s *socketServer) opBind(ios *iostate, msg *zxsocket.Msg) (status zx.Status) {
addr, err := readSockaddrIn(msg.Data[:msg.Datalen])
if err != nil {
if debug {
log.Printf("bind: bad input: %v", err)
}
return errStatus(err)
}
if debug2 {
defer func() {
log.Printf("bind(%s): %v", *addr, status)
}()
}
if ios.ep == nil {
if debug {
log.Printf("bind: no socket")
}
return zx.ErrBadState
}
if err := ios.ep.Bind(*addr, nil); err != nil {
return mxNetError(err)
}
if logListen {
if ios.transProto == udp.ProtocolNumber {
log.Printf("UDP bind (%v, %v)", addr.Addr, addr.Port)
}
}
msg.Datalen = 0
msg.SetOff(0)
return zx.ErrOk
}
func (s *socketServer) buildIfInfos() *c_netc_get_if_info {
rep := &c_netc_get_if_info{}
s.ns.mu.Lock()
defer s.ns.mu.Unlock()
index := uint32(0)
for nicid, ifs := range s.ns.ifStates {
if ifs.nic.Addr == header.IPv4Loopback {
continue
}
rep.info[index].index = uint16(index + 1)
rep.info[index].flags |= NETC_IFF_UP
copy(rep.info[index].name[:], ifs.nic.Name)
writeSockaddrStorage(&rep.info[index].addr, tcpip.FullAddress{NIC: nicid, Addr: ifs.nic.Addr})
writeSockaddrStorage(&rep.info[index].netmask, tcpip.FullAddress{NIC: nicid, Addr: tcpip.Address(ifs.nic.Netmask)})
// Long-hand for: broadaddr = ifs.nic.Addr | ^ifs.nic.Netmask
broadaddr := []byte(ifs.nic.Addr)
for i := range broadaddr {
broadaddr[i] |= ^ifs.nic.Netmask[i]
}
writeSockaddrStorage(&rep.info[index].broadaddr, tcpip.FullAddress{NIC: nicid, Addr: tcpip.Address(broadaddr)})
index++
}
rep.n_info = index
return rep
}
// We remember the interface list from the last time ioctlNetcGetNumIfs was called. This avoids
// a race condition if the interface list changes between calls to ioctlNetcGetIfInfoAt.
var lastIfInfo *c_netc_get_if_info
func (s *socketServer) opIoctl(ios *iostate, msg *zxsocket.Msg) zx.Status {
// TODO: deprecated in favor of FIDL service. Remove.
switch msg.IoctlOp() {
case ioctlNetcGetNumIfs:
lastIfInfo = s.buildIfInfos()
binary.LittleEndian.PutUint32(msg.Data[:msg.Arg], lastIfInfo.n_info)
msg.Datalen = 4
return zx.ErrOk
case ioctlNetcGetIfInfoAt:
if lastIfInfo == nil {
if debug {
log.Printf("ioctlNetcGetIfInfoAt: called before ioctlNetcGetNumIfs")
}
return zx.ErrBadState
}
d := msg.Data[:msg.Datalen]
if len(d) != 4 {
if debug {
log.Printf("ioctlNetcGetIfInfoAt: bad input length %d", len(d))
}
return zx.ErrInvalidArgs
}
requestedIndex := binary.LittleEndian.Uint32(d)
if requestedIndex >= lastIfInfo.n_info {
if debug {
log.Printf("ioctlNetcGetIfInfoAt: index out of range (%d vs %d)", requestedIndex, lastIfInfo.n_info)
}
return zx.ErrInvalidArgs
}
lastIfInfo.info[requestedIndex].Encode(msg)
return zx.ErrOk
case ioctlNetcGetNodename:
nodename, status, err := ns.deviceSettings.GetString(deviceSettingsManagerNodenameKey)
if err != nil {
log.Printf("ioctlNetcGetNodename: error accessing device settings: %s\n", err)
nodename = defaultNodename // defined in netstack.go
}
if status != devicesettings.StatusOk {
var reportStatus string
switch status {
case devicesettings.StatusErrNotSet:
reportStatus = "key not set"
case devicesettings.StatusErrInvalidSetting:
reportStatus = "invalid setting"
case devicesettings.StatusErrRead:
reportStatus = "error reading key"
case devicesettings.StatusErrIncorrectType:
reportStatus = "value type was incorrect"
case devicesettings.StatusErrUnknown:
reportStatus = "unknown"
}
log.Println("ioctlNetcGetNodename: falling back to default nodename.")
log.Printf("ioctlNetcGetNodename: device settings error: %s\n", reportStatus)
nodename = defaultNodename // defined in netstack.go
}
msg.Datalen = uint32(copy(msg.Data[:msg.Arg], nodename))
msg.Data[msg.Datalen] = 0
return zx.ErrOk
}
if debug {
log.Printf("opIoctl op=0x%x, datalen=%d", msg.Op(), msg.Datalen)
}
return zx.ErrInvalidArgs
}
func fdioSockAddrReply(a tcpip.FullAddress, msg *zxsocket.Msg) zx.Status {
var err error
rep := c_mxrio_sockaddr_reply{}
rep.len, err = writeSockaddrStorage(&rep.addr, a)
if err != nil {
return errStatus(err)
}
rep.Encode(msg)
msg.SetOff(0)
return zx.ErrOk
}
func (s *socketServer) opGetSockName(ios *iostate, msg *zxsocket.Msg) zx.Status {
a, err := ios.ep.GetLocalAddress()
if err != nil {
return mxNetError(err)
}
if debug2 {
log.Printf("getsockname(): %v", a)
}
return fdioSockAddrReply(a, msg)
}
func (s *socketServer) opGetPeerName(ios *iostate, msg *zxsocket.Msg) (status zx.Status) {
if ios.ep == nil {
return zx.ErrBadState
}
a, err := ios.ep.GetRemoteAddress()
if err != nil {
return mxNetError(err)
}
return fdioSockAddrReply(a, msg)
}
func (s *socketServer) loopListen(ios *iostate, inCh chan struct{}) {
defer func() { ios.listenLoopDone <- struct{}{} }()
// When an incoming connection is available, wait for the listening socket to
// enter a shareable state, then share it with zircon.
for {
select {
case <-inCh:
// NOP
case <-ios.listenLoopClosing:
return
}
obs, err := zxwait.Wait(zx.Handle(ios.dataHandle),
zx.SignalSocketShare|zx.SignalSocketPeerClosed|LOCAL_SIGNAL_CLOSING,
zx.TimensecInfinite)
switch mxerror.Status(err) {
case zx.ErrOk:
switch {
case obs&zx.SignalSocketShare != 0:
// NOP
case obs&LOCAL_SIGNAL_CLOSING != 0:
return
case obs&zx.SignalSocketPeerClosed != 0:
return
}
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
return
default:
log.Printf("listen: wait failed: %v", err)
}
newep, newwq, e := ios.ep.Accept()
if e == tcpip.ErrWouldBlock {
log.Printf("listen: internal error. Accept returned ErrWouldBlock")
continue
}
if e != nil {
if debug {
log.Printf("listen: accept failed: %v", e)
}
return
}
if logAccept {
localAddr, err := newep.GetLocalAddress()
remoteAddr, err2 := newep.GetRemoteAddress()
if err == nil && err2 == nil {
log.Printf("TCP accept: local(%v, %v), remote(%v, %v)", localAddr.Addr, localAddr.Port, remoteAddr.Addr, remoteAddr.Port)
}
}
localS, peerS, err := s.newIostate(ios.netProto, ios.transProto, newwq, newep, true)
if err != nil {
if debug {
log.Printf("listen: newIostate failed: %v", err)
}
return
}
if err := ios.dataHandle.Share(zx.Handle(peerS)); err != nil {
log.Printf("listen: Share failed: %v", err)
return
}
if err := signalConnectSuccess(localS, false); err != nil {
log.Printf("listen: signalConnectSuccess failed: %v", err)
return
}
}
}
func (s *socketServer) opListen(ios *iostate, msg *zxsocket.Msg) (status zx.Status) {
d := msg.Data[:msg.Datalen]
if len(d) != 4 {
if debug {
log.Printf("listen: bad input length %d", len(d))
}
return zx.ErrInvalidArgs
}
backlog := binary.LittleEndian.Uint32(d)
if ios.ep == nil {
if debug {
log.Printf("listen: no socket")
}
return zx.ErrBadState
}
inEntry, inCh := waiter.NewChannelEntry(nil)
ios.wq.EventRegister(&inEntry, waiter.EventIn)
if err := ios.ep.Listen(int(backlog)); err != nil {
if debug {
log.Printf("listen: %v", err)
}
return mxNetError(err)
}
if logListen {
addr, err := ios.ep.GetLocalAddress()
if err == nil {
log.Printf("TCP listen: (%v, %v)", addr.Addr, addr.Port)
}
}
ios.listenLoopClosing = make(chan struct{})
ios.listenLoopDone = make(chan struct{})
go func() {
s.loopListen(ios, inCh)
ios.wq.EventUnregister(&inEntry)
}()
msg.Datalen = 0
msg.SetOff(0)
return zx.ErrOk
}
func (s *socketServer) opConnect(ios *iostate, msg *zxsocket.Msg) (status zx.Status) {
if msg.Datalen == 0 {
if ios.transProto == udp.ProtocolNumber {
// connect() can be called with no address to
// disassociate UDP sockets.
ios.ep.Shutdown(tcpip.ShutdownRead)
return zx.ErrOk
}
if debug {
log.Printf("connect: no input")
}
return zx.ErrInvalidArgs
}
addr, err := readSockaddrIn(msg.Data[:msg.Datalen])
if err != nil {
if debug {
log.Printf("connect: bad input: %v", err)
}
return errStatus(err)
}
if debug2 {
defer func() {
log.Printf("connect(%s): %v", *addr, status)
}()
}
if addr.Addr == "" {
// TODO: Not ideal. We should pass an empty addr to the endpoint,
// and netstack should find the first local interface that it can
// connect to. Until that exists, we assume localhost.
switch ios.netProto {
case ipv4.ProtocolNumber:
addr.Addr = header.IPv4Loopback
case ipv6.ProtocolNumber:
addr.Addr = header.IPv6Loopback
}
}
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
ios.wq.EventRegister(&waitEntry, waiter.EventOut)
e := ios.ep.Connect(*addr)
msg.SetOff(0)
msg.Datalen = 0
if e == tcpip.ErrConnectStarted {
go func() {
<-notifyCh
ios.wq.EventUnregister(&waitEntry)
e = ios.ep.GetSockOpt(tcpip.ErrorOption{})
if e != nil {
ios.mu.Lock()
ios.lastError = e
ios.mu.Unlock()
if err := signalConnectFailure(ios.dataHandle); err != nil {
log.Printf("connect: signalConnectFailure failed: %v", err)
}
return
}
if err := signalConnectSuccess(ios.dataHandle, true); err != nil {
log.Printf("connect: signalConnectSuccess failed: %v", err)
}
}()
return zx.ErrShouldWait
}
ios.wq.EventUnregister(&waitEntry)
if e != nil {
log.Printf("connect: addr=%v, %v", *addr, e)
return mxNetError(e)
}
if debug2 {
log.Printf("connect: connected")
}
if ios.transProto == tcp.ProtocolNumber {
if err := signalConnectSuccess(ios.dataHandle, true); err != nil {
return errStatus(err)
}
}
return zx.ErrOk
}
func (s *socketServer) opClose(ios *iostate, cookie cookie) zx.Status {
s.mu.Lock()
delete(s.io, cookie)
s.mu.Unlock()
// Signal that we're about to close. This tells the various message loops to finish
// processing, and let us know when they're done.
err := ios.dataHandle.Handle().Signal(0, LOCAL_SIGNAL_CLOSING)
if ios.listenLoopClosing != nil {
ios.listenLoopClosing <- struct{}{}
}
if ios.dgramLoopClosing != nil {
ios.dgramLoopClosing <- struct{}{}
}
go func() {
switch mxerror.Status(err) {
case zx.ErrOk:
if ios.writeLoopDone != nil {
<-ios.writeLoopDone
}
if ios.controlLoopDone != nil {
<-ios.controlLoopDone
}
if ios.listenLoopDone != nil {
<-ios.listenLoopDone
}
case zx.ErrBadHandle, zx.ErrCanceled, zx.ErrPeerClosed:
// Ignore.
default:
log.Printf("close: signal failed: %v", err)
}
if ios.ep != nil {
ios.ep.Close()
}
ios.dataHandle.Close()
}()
return zx.ErrOk
}
func (s *socketServer) zxsocketHandler(msg *zxsocket.Msg, rh zx.Socket, cookieVal int64) zx.Status {
cookie := cookie(cookieVal)
op := msg.Op()
if debug2 {
log.Printf("zxsocketHandler: op=%v, len=%d, arg=%v, hcount=%d", op, msg.Datalen, msg.Arg, msg.Hcount)
}
s.mu.Lock()
ios := s.io[cookie]
s.mu.Unlock()
if ios == nil {
if op == zxsocket.OpClose && rh == 0 {
// The close op was synthesized by Dispatcher (because the peer channel was closed).
return zx.ErrOk
}
log.Printf("zxsioHandler: request (op:%v) dropped because of the state mismatch", op)
return zx.ErrBadState
}
switch op {
case zxsocket.OpConnect:
return s.opConnect(ios, msg)
case zxsocket.OpClose:
return s.opClose(ios, cookie)
case zxsocket.OpBind:
return s.opBind(ios, msg)
case zxsocket.OpListen:
return s.opListen(ios, msg)
case zxsocket.OpIoctl:
return s.opIoctl(ios, msg)
case zxsocket.OpGetSockname:
return s.opGetSockName(ios, msg)
case zxsocket.OpGetPeerName:
return s.opGetPeerName(ios, msg)
case zxsocket.OpGetSockOpt:
return s.opGetSockOpt(ios, msg)
case zxsocket.OpSetSockOpt:
return s.opSetSockOpt(ios, msg)
default:
log.Printf("zxsocketHandler: unknown socket op: %v", op)
return zx.ErrNotSupported
}
return zx.ErrBadState
// TODO do_halfclose
}