| /****************************************************************************** |
| SPDX-License-Identifier: BSD-3-Clause |
| |
| Copyright (c) 2001-2015, Intel Corporation |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| 3. Neither the name of the Intel Corporation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| |
| ******************************************************************************/ |
| /*$FreeBSD$*/ |
| |
| |
| #include "e1000_api.h" |
| |
| |
| static s32 e1000_init_phy_params_vf(struct e1000_hw *hw); |
| static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); |
| static void e1000_release_vf(struct e1000_hw *hw); |
| static s32 e1000_acquire_vf(struct e1000_hw *hw); |
| static s32 e1000_setup_link_vf(struct e1000_hw *hw); |
| static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); |
| static s32 e1000_init_mac_params_vf(struct e1000_hw *hw); |
| static s32 e1000_check_for_link_vf(struct e1000_hw *hw); |
| static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex); |
| static s32 e1000_init_hw_vf(struct e1000_hw *hw); |
| static s32 e1000_reset_hw_vf(struct e1000_hw *hw); |
| static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); |
| static int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); |
| static s32 e1000_read_mac_addr_vf(struct e1000_hw *); |
| |
| /** |
| * e1000_init_phy_params_vf - Inits PHY params |
| * @hw: pointer to the HW structure |
| * |
| * Doesn't do much - there's no PHY available to the VF. |
| **/ |
| static s32 e1000_init_phy_params_vf(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_init_phy_params_vf"); |
| hw->phy.type = e1000_phy_vf; |
| hw->phy.ops.acquire = e1000_acquire_vf; |
| hw->phy.ops.release = e1000_release_vf; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_nvm_params_vf - Inits NVM params |
| * @hw: pointer to the HW structure |
| * |
| * Doesn't do much - there's no NVM available to the VF. |
| **/ |
| static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_init_nvm_params_vf"); |
| hw->nvm.type = e1000_nvm_none; |
| hw->nvm.ops.acquire = e1000_acquire_vf; |
| hw->nvm.ops.release = e1000_release_vf; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_mac_params_vf - Inits MAC params |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| DEBUGFUNC("e1000_init_mac_params_vf"); |
| |
| /* Set media type */ |
| /* |
| * Virtual functions don't care what they're media type is as they |
| * have no direct access to the PHY, or the media. That is handled |
| * by the physical function driver. |
| */ |
| hw->phy.media_type = e1000_media_type_unknown; |
| |
| /* No ASF features for the VF driver */ |
| mac->asf_firmware_present = FALSE; |
| /* ARC subsystem not supported */ |
| mac->arc_subsystem_valid = FALSE; |
| /* Disable adaptive IFS mode so the generic funcs don't do anything */ |
| mac->adaptive_ifs = FALSE; |
| /* VF's have no MTA Registers - PF feature only */ |
| mac->mta_reg_count = 128; |
| /* VF's have no access to RAR entries */ |
| mac->rar_entry_count = 1; |
| |
| /* Function pointers */ |
| /* link setup */ |
| mac->ops.setup_link = e1000_setup_link_vf; |
| /* bus type/speed/width */ |
| mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; |
| /* reset */ |
| mac->ops.reset_hw = e1000_reset_hw_vf; |
| /* hw initialization */ |
| mac->ops.init_hw = e1000_init_hw_vf; |
| /* check for link */ |
| mac->ops.check_for_link = e1000_check_for_link_vf; |
| /* link info */ |
| mac->ops.get_link_up_info = e1000_get_link_up_info_vf; |
| /* multicast address update */ |
| mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; |
| /* set mac address */ |
| mac->ops.rar_set = e1000_rar_set_vf; |
| /* read mac address */ |
| mac->ops.read_mac_addr = e1000_read_mac_addr_vf; |
| |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_function_pointers_vf - Inits function pointers |
| * @hw: pointer to the HW structure |
| **/ |
| void e1000_init_function_pointers_vf(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_init_function_pointers_vf"); |
| |
| hw->mac.ops.init_params = e1000_init_mac_params_vf; |
| hw->nvm.ops.init_params = e1000_init_nvm_params_vf; |
| hw->phy.ops.init_params = e1000_init_phy_params_vf; |
| hw->mbx.ops.init_params = e1000_init_mbx_params_vf; |
| } |
| |
| /** |
| * e1000_acquire_vf - Acquire rights to access PHY or NVM. |
| * @hw: pointer to the HW structure |
| * |
| * There is no PHY or NVM so we want all attempts to acquire these to fail. |
| * In addition, the MAC registers to access PHY/NVM don't exist so we don't |
| * even want any SW to attempt to use them. |
| **/ |
| static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| return -E1000_ERR_PHY; |
| } |
| |
| /** |
| * e1000_release_vf - Release PHY or NVM |
| * @hw: pointer to the HW structure |
| * |
| * There is no PHY or NVM so we want all attempts to acquire these to fail. |
| * In addition, the MAC registers to access PHY/NVM don't exist so we don't |
| * even want any SW to attempt to use them. |
| **/ |
| static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| return; |
| } |
| |
| /** |
| * e1000_setup_link_vf - Sets up link. |
| * @hw: pointer to the HW structure |
| * |
| * Virtual functions cannot change link. |
| **/ |
| static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_setup_link_vf"); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_bus_info_pcie_vf - Gets the bus info. |
| * @hw: pointer to the HW structure |
| * |
| * Virtual functions are not really on their own bus. |
| **/ |
| static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| |
| DEBUGFUNC("e1000_get_bus_info_pcie_vf"); |
| |
| /* Do not set type PCI-E because we don't want disable master to run */ |
| bus->type = e1000_bus_type_reserved; |
| bus->speed = e1000_bus_speed_2500; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_link_up_info_vf - Gets link info. |
| * @hw: pointer to the HW structure |
| * @speed: pointer to 16 bit value to store link speed. |
| * @duplex: pointer to 16 bit value to store duplex. |
| * |
| * Since we cannot read the PHY and get accurate link info, we must rely upon |
| * the status register's data which is often stale and inaccurate. |
| **/ |
| static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| s32 status; |
| |
| DEBUGFUNC("e1000_get_link_up_info_vf"); |
| |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| DEBUGOUT("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| DEBUGOUT("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| DEBUGOUT("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| DEBUGOUT("Full Duplex\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| DEBUGOUT("Half Duplex\n"); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_reset_hw_vf - Resets the HW |
| * @hw: pointer to the HW structure |
| * |
| * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. |
| * This is all the reset we can perform on a VF. |
| **/ |
| static s32 e1000_reset_hw_vf(struct e1000_hw *hw) |
| { |
| struct e1000_mbx_info *mbx = &hw->mbx; |
| u32 timeout = E1000_VF_INIT_TIMEOUT; |
| s32 ret_val = -E1000_ERR_MAC_INIT; |
| u32 ctrl, msgbuf[3]; |
| u8 *addr = (u8 *)(&msgbuf[1]); |
| |
| DEBUGFUNC("e1000_reset_hw_vf"); |
| |
| DEBUGOUT("Issuing a function level reset to MAC\n"); |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); |
| |
| /* we cannot reset while the RSTI / RSTD bits are asserted */ |
| while (!mbx->ops.check_for_rst(hw, 0) && timeout) { |
| timeout--; |
| usec_delay(5); |
| } |
| |
| if (timeout) { |
| /* mailbox timeout can now become active */ |
| mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; |
| |
| msgbuf[0] = E1000_VF_RESET; |
| mbx->ops.write_posted(hw, msgbuf, 1, 0); |
| |
| msec_delay(10); |
| |
| /* set our "perm_addr" based on info provided by PF */ |
| ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); |
| if (!ret_val) { |
| if (msgbuf[0] == (E1000_VF_RESET | |
| E1000_VT_MSGTYPE_ACK)) |
| memcpy(hw->mac.perm_addr, addr, 6); |
| else |
| ret_val = -E1000_ERR_MAC_INIT; |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_hw_vf - Inits the HW |
| * @hw: pointer to the HW structure |
| * |
| * Not much to do here except clear the PF Reset indication if there is one. |
| **/ |
| static s32 e1000_init_hw_vf(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_init_hw_vf"); |
| |
| /* attempt to set and restore our mac address */ |
| e1000_rar_set_vf(hw, hw->mac.addr, 0); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_rar_set_vf - set device MAC address |
| * @hw: pointer to the HW structure |
| * @addr: pointer to the receive address |
| * @index receive address array register |
| **/ |
| static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, |
| u32 E1000_UNUSEDARG index) |
| { |
| struct e1000_mbx_info *mbx = &hw->mbx; |
| u32 msgbuf[3]; |
| u8 *msg_addr = (u8 *)(&msgbuf[1]); |
| s32 ret_val; |
| |
| memset(msgbuf, 0, 12); |
| msgbuf[0] = E1000_VF_SET_MAC_ADDR; |
| memcpy(msg_addr, addr, 6); |
| ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); |
| |
| if (!ret_val) |
| ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); |
| |
| msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| |
| /* if nacked the address was rejected, use "perm_addr" */ |
| if (!ret_val && |
| (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) |
| e1000_read_mac_addr_vf(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_hash_mc_addr_vf - Generate a multicast hash value |
| * @hw: pointer to the HW structure |
| * @mc_addr: pointer to a multicast address |
| * |
| * Generates a multicast address hash value which is used to determine |
| * the multicast filter table array address and new table value. |
| **/ |
| static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) |
| { |
| u32 hash_value, hash_mask; |
| u8 bit_shift = 0; |
| |
| DEBUGFUNC("e1000_hash_mc_addr_generic"); |
| |
| /* Register count multiplied by bits per register */ |
| hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
| |
| /* |
| * The bit_shift is the number of left-shifts |
| * where 0xFF would still fall within the hash mask. |
| */ |
| while (hash_mask >> bit_shift != 0xFF) |
| bit_shift++; |
| |
| hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
| (((u16) mc_addr[5]) << bit_shift))); |
| |
| return hash_value; |
| } |
| |
| static void e1000_write_msg_read_ack(struct e1000_hw *hw, |
| u32 *msg, u16 size) |
| { |
| struct e1000_mbx_info *mbx = &hw->mbx; |
| u32 retmsg[E1000_VFMAILBOX_SIZE]; |
| s32 retval = mbx->ops.write_posted(hw, msg, size, 0); |
| |
| if (!retval) |
| mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); |
| } |
| |
| /** |
| * e1000_update_mc_addr_list_vf - Update Multicast addresses |
| * @hw: pointer to the HW structure |
| * @mc_addr_list: array of multicast addresses to program |
| * @mc_addr_count: number of multicast addresses to program |
| * |
| * Updates the Multicast Table Array. |
| * The caller must have a packed mc_addr_list of multicast addresses. |
| **/ |
| void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, |
| u8 *mc_addr_list, u32 mc_addr_count) |
| { |
| u32 msgbuf[E1000_VFMAILBOX_SIZE]; |
| u16 *hash_list = (u16 *)&msgbuf[1]; |
| u32 hash_value; |
| u32 i; |
| |
| DEBUGFUNC("e1000_update_mc_addr_list_vf"); |
| |
| /* Each entry in the list uses 1 16 bit word. We have 30 |
| * 16 bit words available in our HW msg buffer (minus 1 for the |
| * msg type). That's 30 hash values if we pack 'em right. If |
| * there are more than 30 MC addresses to add then punt the |
| * extras for now and then add code to handle more than 30 later. |
| * It would be unusual for a server to request that many multi-cast |
| * addresses except for in large enterprise network environments. |
| */ |
| |
| DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); |
| |
| if (mc_addr_count > 30) { |
| msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; |
| mc_addr_count = 30; |
| } |
| |
| msgbuf[0] = E1000_VF_SET_MULTICAST; |
| msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; |
| |
| for (i = 0; i < mc_addr_count; i++) { |
| hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); |
| DEBUGOUT1("Hash value = 0x%03X\n", hash_value); |
| hash_list[i] = hash_value & 0x0FFF; |
| mc_addr_list += ETH_ADDR_LEN; |
| } |
| |
| e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); |
| } |
| |
| /** |
| * e1000_vfta_set_vf - Set/Unset vlan filter table address |
| * @hw: pointer to the HW structure |
| * @vid: determines the vfta register and bit to set/unset |
| * @set: if TRUE then set bit, else clear bit |
| **/ |
| void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) |
| { |
| u32 msgbuf[2]; |
| |
| msgbuf[0] = E1000_VF_SET_VLAN; |
| msgbuf[1] = vid; |
| /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ |
| if (set) |
| msgbuf[0] |= E1000_VF_SET_VLAN_ADD; |
| |
| e1000_write_msg_read_ack(hw, msgbuf, 2); |
| } |
| |
| /** e1000_rlpml_set_vf - Set the maximum receive packet length |
| * @hw: pointer to the HW structure |
| * @max_size: value to assign to max frame size |
| **/ |
| void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) |
| { |
| u32 msgbuf[2]; |
| |
| msgbuf[0] = E1000_VF_SET_LPE; |
| msgbuf[1] = max_size; |
| |
| e1000_write_msg_read_ack(hw, msgbuf, 2); |
| } |
| |
| /** |
| * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc |
| * @hw: pointer to the HW structure |
| * @uni: boolean indicating unicast promisc status |
| * @multi: boolean indicating multicast promisc status |
| **/ |
| s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) |
| { |
| struct e1000_mbx_info *mbx = &hw->mbx; |
| u32 msgbuf = E1000_VF_SET_PROMISC; |
| s32 ret_val; |
| |
| switch (type) { |
| case e1000_promisc_multicast: |
| msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; |
| break; |
| case e1000_promisc_enabled: |
| msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; |
| __FALLTHROUGH; |
| case e1000_promisc_unicast: |
| msgbuf |= E1000_VF_SET_PROMISC_UNICAST; |
| __FALLTHROUGH; |
| case e1000_promisc_disabled: |
| break; |
| default: |
| return -E1000_ERR_MAC_INIT; |
| } |
| |
| ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); |
| |
| if (!ret_val) |
| ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); |
| |
| if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) |
| ret_val = -E1000_ERR_MAC_INIT; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_mac_addr_vf - Read device MAC address |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) |
| { |
| int i; |
| |
| for (i = 0; i < ETH_ADDR_LEN; i++) |
| hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_check_for_link_vf - Check for link for a virtual interface |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see if the underlying PF is still talking to the VF and |
| * if it is then it reports the link state to the hardware, otherwise |
| * it reports link down and returns an error. |
| **/ |
| static s32 e1000_check_for_link_vf(struct e1000_hw *hw) |
| { |
| struct e1000_mbx_info *mbx = &hw->mbx; |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val = E1000_SUCCESS; |
| u32 in_msg = 0; |
| |
| DEBUGFUNC("e1000_check_for_link_vf"); |
| |
| /* |
| * We only want to run this if there has been a rst asserted. |
| * in this case that could mean a link change, device reset, |
| * or a virtual function reset |
| */ |
| |
| /* If we were hit with a reset or timeout drop the link */ |
| if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) |
| mac->get_link_status = TRUE; |
| |
| if (!mac->get_link_status) |
| goto out; |
| |
| /* if link status is down no point in checking to see if pf is up */ |
| if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) |
| goto out; |
| |
| /* if the read failed it could just be a mailbox collision, best wait |
| * until we are called again and don't report an error */ |
| if (mbx->ops.read(hw, &in_msg, 1, 0)) |
| goto out; |
| |
| /* if incoming message isn't clear to send we are waiting on response */ |
| if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { |
| /* message is not CTS and is NACK we have lost CTS status */ |
| if (in_msg & E1000_VT_MSGTYPE_NACK) |
| ret_val = -E1000_ERR_MAC_INIT; |
| goto out; |
| } |
| |
| /* at this point we know the PF is talking to us, check and see if |
| * we are still accepting timeout or if we had a timeout failure. |
| * if we failed then we will need to reinit */ |
| if (!mbx->timeout) { |
| ret_val = -E1000_ERR_MAC_INIT; |
| goto out; |
| } |
| |
| /* if we passed all the tests above then the link is up and we no |
| * longer need to check for link */ |
| mac->get_link_status = FALSE; |
| |
| out: |
| return ret_val; |
| } |
| |