| /****************************************************************************** |
| SPDX-License-Identifier: BSD-3-Clause |
| |
| Copyright (c) 2001-2015, Intel Corporation |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| 3. Neither the name of the Intel Corporation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| |
| ******************************************************************************/ |
| /*$FreeBSD$*/ |
| |
| #include "e1000_api.h" |
| |
| static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
| static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, |
| u16 *data, bool read, bool page_set); |
| static u32 e1000_get_phy_addr_for_hv_page(u32 page); |
| static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, |
| u16 *data, bool read); |
| |
| /* Cable length tables */ |
| static const u16 e1000_m88_cable_length_table[] = { |
| 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; |
| #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ |
| (sizeof(e1000_m88_cable_length_table) / \ |
| sizeof(e1000_m88_cable_length_table[0])) |
| |
| static const u16 e1000_igp_2_cable_length_table[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, |
| 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, |
| 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, |
| 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, |
| 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, |
| 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, |
| 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, |
| 124}; |
| #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ |
| (sizeof(e1000_igp_2_cable_length_table) / \ |
| sizeof(e1000_igp_2_cable_length_table[0])) |
| |
| /** |
| * e1000_init_phy_ops_generic - Initialize PHY function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Setups up the function pointers to no-op functions |
| **/ |
| void e1000_init_phy_ops_generic(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| DEBUGFUNC("e1000_init_phy_ops_generic"); |
| |
| /* Initialize function pointers */ |
| phy->ops.init_params = e1000_null_ops_generic; |
| phy->ops.acquire = e1000_null_ops_generic; |
| phy->ops.check_polarity = e1000_null_ops_generic; |
| phy->ops.check_reset_block = e1000_null_ops_generic; |
| phy->ops.commit = e1000_null_ops_generic; |
| phy->ops.force_speed_duplex = e1000_null_ops_generic; |
| phy->ops.get_cfg_done = e1000_null_ops_generic; |
| phy->ops.get_cable_length = e1000_null_ops_generic; |
| phy->ops.get_info = e1000_null_ops_generic; |
| phy->ops.set_page = e1000_null_set_page; |
| phy->ops.read_reg = e1000_null_read_reg; |
| phy->ops.read_reg_locked = e1000_null_read_reg; |
| phy->ops.read_reg_page = e1000_null_read_reg; |
| phy->ops.release = e1000_null_phy_generic; |
| phy->ops.reset = e1000_null_ops_generic; |
| phy->ops.set_d0_lplu_state = e1000_null_lplu_state; |
| phy->ops.set_d3_lplu_state = e1000_null_lplu_state; |
| phy->ops.write_reg = e1000_null_write_reg; |
| phy->ops.write_reg_locked = e1000_null_write_reg; |
| phy->ops.write_reg_page = e1000_null_write_reg; |
| phy->ops.power_up = e1000_null_phy_generic; |
| phy->ops.power_down = e1000_null_phy_generic; |
| phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; |
| phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; |
| phy->ops.cfg_on_link_up = e1000_null_ops_generic; |
| } |
| |
| /** |
| * e1000_null_set_page - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, |
| u16 E1000_UNUSEDARG data) |
| { |
| DEBUGFUNC("e1000_null_set_page"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_null_read_reg - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, |
| u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) |
| { |
| DEBUGFUNC("e1000_null_read_reg"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_null_phy_generic - No-op function, return void |
| * @hw: pointer to the HW structure |
| **/ |
| void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_null_phy_generic"); |
| return; |
| } |
| |
| /** |
| * e1000_null_lplu_state - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, |
| bool E1000_UNUSEDARG active) |
| { |
| DEBUGFUNC("e1000_null_lplu_state"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_null_write_reg - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, |
| u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) |
| { |
| DEBUGFUNC("e1000_null_write_reg"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_i2c_byte_null - No-op function, return 0 |
| * @hw: pointer to hardware structure |
| * @byte_offset: byte offset to write |
| * @dev_addr: device address |
| * @data: data value read |
| * |
| **/ |
| s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, |
| u8 E1000_UNUSEDARG byte_offset, |
| u8 E1000_UNUSEDARG dev_addr, |
| u8 E1000_UNUSEDARG *data) |
| { |
| DEBUGFUNC("e1000_read_i2c_byte_null"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_i2c_byte_null - No-op function, return 0 |
| * @hw: pointer to hardware structure |
| * @byte_offset: byte offset to write |
| * @dev_addr: device address |
| * @data: data value to write |
| * |
| **/ |
| s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, |
| u8 E1000_UNUSEDARG byte_offset, |
| u8 E1000_UNUSEDARG dev_addr, |
| u8 E1000_UNUSEDARG data) |
| { |
| DEBUGFUNC("e1000_write_i2c_byte_null"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_check_reset_block_generic - Check if PHY reset is blocked |
| * @hw: pointer to the HW structure |
| * |
| * Read the PHY management control register and check whether a PHY reset |
| * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise |
| * return E1000_BLK_PHY_RESET (12). |
| **/ |
| s32 e1000_check_reset_block_generic(struct e1000_hw *hw) |
| { |
| u32 manc; |
| |
| DEBUGFUNC("e1000_check_reset_block"); |
| |
| manc = E1000_READ_REG(hw, E1000_MANC); |
| |
| return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| E1000_BLK_PHY_RESET : E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_phy_id - Retrieve the PHY ID and revision |
| * @hw: pointer to the HW structure |
| * |
| * Reads the PHY registers and stores the PHY ID and possibly the PHY |
| * revision in the hardware structure. |
| **/ |
| s32 e1000_get_phy_id(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| u16 phy_id; |
| u16 retry_count = 0; |
| |
| DEBUGFUNC("e1000_get_phy_id"); |
| |
| if (!phy->ops.read_reg) |
| return E1000_SUCCESS; |
| |
| while (retry_count < 2) { |
| ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); |
| if (ret_val) |
| return ret_val; |
| |
| phy->id = (u32)(phy_id << 16); |
| usec_delay(20); |
| ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); |
| if (ret_val) |
| return ret_val; |
| |
| phy->id |= (u32)(phy_id & PHY_REVISION_MASK); |
| phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
| |
| if (phy->id != 0 && phy->id != PHY_REVISION_MASK) |
| return E1000_SUCCESS; |
| |
| retry_count++; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_reset_dsp_generic - Reset PHY DSP |
| * @hw: pointer to the HW structure |
| * |
| * Reset the digital signal processor. |
| **/ |
| s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_phy_reset_dsp_generic"); |
| |
| if (!hw->phy.ops.write_reg) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); |
| if (ret_val) |
| return ret_val; |
| |
| return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); |
| } |
| |
| /** |
| * e1000_read_phy_reg_mdic - Read MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the MDI control register in the PHY at offset and stores the |
| * information read to data. |
| **/ |
| s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, mdic = 0; |
| |
| DEBUGFUNC("e1000_read_phy_reg_mdic"); |
| |
| if (offset > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT1("PHY Address %d is out of range", offset); |
| return -E1000_ERR_PARAM; |
| } |
| |
| /* Set up Op-code, Phy Address, and register offset in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = ((offset << E1000_MDIC_REG_SHIFT) | |
| (phy->addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_READ)); |
| |
| E1000_WRITE_REG(hw, E1000_MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed |
| * Increasing the time out as testing showed failures with |
| * the lower time out |
| */ |
| for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { |
| usec_delay_irq(50); |
| mdic = E1000_READ_REG(hw, E1000_MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Read did not complete"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| DEBUGOUT("MDI Error"); |
| return -E1000_ERR_PHY; |
| } |
| if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { |
| DEBUGOUT2("MDI Read offset error - requested %d, returned %d", |
| offset, |
| (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); |
| return -E1000_ERR_PHY; |
| } |
| *data = (u16) mdic; |
| |
| /* Allow some time after each MDIC transaction to avoid |
| * reading duplicate data in the next MDIC transaction. |
| */ |
| if (hw->mac.type == e1000_pch2lan) |
| usec_delay_irq(100); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_phy_reg_mdic - Write MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write to register at offset |
| * |
| * Writes data to MDI control register in the PHY at offset. |
| **/ |
| s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, mdic = 0; |
| |
| DEBUGFUNC("e1000_write_phy_reg_mdic"); |
| |
| if (offset > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT1("PHY Address %d is out of range", offset); |
| return -E1000_ERR_PARAM; |
| } |
| |
| /* Set up Op-code, Phy Address, and register offset in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = (((u32)data) | |
| (offset << E1000_MDIC_REG_SHIFT) | |
| (phy->addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_WRITE)); |
| |
| E1000_WRITE_REG(hw, E1000_MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed |
| * Increasing the time out as testing showed failures with |
| * the lower time out |
| */ |
| for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { |
| usec_delay_irq(50); |
| mdic = E1000_READ_REG(hw, E1000_MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Write did not complete"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| DEBUGOUT("MDI Error"); |
| return -E1000_ERR_PHY; |
| } |
| if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { |
| DEBUGOUT2("MDI Write offset error - requested %d, returned %d", |
| offset, |
| (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Allow some time after each MDIC transaction to avoid |
| * reading duplicate data in the next MDIC transaction. |
| */ |
| if (hw->mac.type == e1000_pch2lan) |
| usec_delay_irq(100); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_phy_reg_i2c - Read PHY register using i2c |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the PHY register at offset using the i2c interface and stores the |
| * retrieved information in data. |
| **/ |
| s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, i2ccmd = 0; |
| |
| DEBUGFUNC("e1000_read_phy_reg_i2c"); |
| |
| /* Set up Op-code, Phy Address, and register address in the I2CCMD |
| * register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | |
| (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | |
| (E1000_I2CCMD_OPCODE_READ)); |
| |
| E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); |
| |
| /* Poll the ready bit to see if the I2C read completed */ |
| for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { |
| usec_delay(50); |
| i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); |
| if (i2ccmd & E1000_I2CCMD_READY) |
| break; |
| } |
| if (!(i2ccmd & E1000_I2CCMD_READY)) { |
| DEBUGOUT("I2CCMD Read did not complete"); |
| return -E1000_ERR_PHY; |
| } |
| if (i2ccmd & E1000_I2CCMD_ERROR) { |
| DEBUGOUT("I2CCMD Error bit set"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Need to byte-swap the 16-bit value. */ |
| *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_phy_reg_i2c - Write PHY register using i2c |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Writes the data to PHY register at the offset using the i2c interface. |
| **/ |
| s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i, i2ccmd = 0; |
| u16 phy_data_swapped; |
| |
| DEBUGFUNC("e1000_write_phy_reg_i2c"); |
| |
| /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ |
| if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { |
| DEBUGOUT1("PHY I2C Address %d is out of range.", |
| hw->phy.addr); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /* Swap the data bytes for the I2C interface */ |
| phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); |
| |
| /* Set up Op-code, Phy Address, and register address in the I2CCMD |
| * register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | |
| (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | |
| E1000_I2CCMD_OPCODE_WRITE | |
| phy_data_swapped); |
| |
| E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); |
| |
| /* Poll the ready bit to see if the I2C read completed */ |
| for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { |
| usec_delay(50); |
| i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); |
| if (i2ccmd & E1000_I2CCMD_READY) |
| break; |
| } |
| if (!(i2ccmd & E1000_I2CCMD_READY)) { |
| DEBUGOUT("I2CCMD Write did not complete"); |
| return -E1000_ERR_PHY; |
| } |
| if (i2ccmd & E1000_I2CCMD_ERROR) { |
| DEBUGOUT("I2CCMD Error bit set"); |
| return -E1000_ERR_PHY; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_sfp_data_byte - Reads SFP module data. |
| * @hw: pointer to the HW structure |
| * @offset: byte location offset to be read |
| * @data: read data buffer pointer |
| * |
| * Reads one byte from SFP module data stored |
| * in SFP resided EEPROM memory or SFP diagnostic area. |
| * Function should be called with |
| * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access |
| * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters |
| * access |
| **/ |
| s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) |
| { |
| u32 i = 0; |
| u32 i2ccmd = 0; |
| u32 data_local = 0; |
| |
| DEBUGFUNC("e1000_read_sfp_data_byte"); |
| |
| if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { |
| DEBUGOUT("I2CCMD command address exceeds upper limit"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Set up Op-code, EEPROM Address,in the I2CCMD |
| * register. The MAC will take care of interfacing with the |
| * EEPROM to retrieve the desired data. |
| */ |
| i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | |
| E1000_I2CCMD_OPCODE_READ); |
| |
| E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); |
| |
| /* Poll the ready bit to see if the I2C read completed */ |
| for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { |
| usec_delay(50); |
| data_local = E1000_READ_REG(hw, E1000_I2CCMD); |
| if (data_local & E1000_I2CCMD_READY) |
| break; |
| } |
| if (!(data_local & E1000_I2CCMD_READY)) { |
| DEBUGOUT("I2CCMD Read did not complete"); |
| return -E1000_ERR_PHY; |
| } |
| if (data_local & E1000_I2CCMD_ERROR) { |
| DEBUGOUT("I2CCMD Error bit set"); |
| return -E1000_ERR_PHY; |
| } |
| *data = (u8) data_local & 0xFF; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_sfp_data_byte - Writes SFP module data. |
| * @hw: pointer to the HW structure |
| * @offset: byte location offset to write to |
| * @data: data to write |
| * |
| * Writes one byte to SFP module data stored |
| * in SFP resided EEPROM memory or SFP diagnostic area. |
| * Function should be called with |
| * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access |
| * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters |
| * access |
| **/ |
| s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) |
| { |
| u32 i = 0; |
| u32 i2ccmd = 0; |
| u32 data_local = 0; |
| |
| DEBUGFUNC("e1000_write_sfp_data_byte"); |
| |
| if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { |
| DEBUGOUT("I2CCMD command address exceeds upper limit"); |
| return -E1000_ERR_PHY; |
| } |
| /* The programming interface is 16 bits wide |
| * so we need to read the whole word first |
| * then update appropriate byte lane and write |
| * the updated word back. |
| */ |
| /* Set up Op-code, EEPROM Address,in the I2CCMD |
| * register. The MAC will take care of interfacing |
| * with an EEPROM to write the data given. |
| */ |
| i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | |
| E1000_I2CCMD_OPCODE_READ); |
| /* Set a command to read single word */ |
| E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); |
| for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { |
| usec_delay(50); |
| /* Poll the ready bit to see if lastly |
| * launched I2C operation completed |
| */ |
| i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); |
| if (i2ccmd & E1000_I2CCMD_READY) { |
| /* Check if this is READ or WRITE phase */ |
| if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == |
| E1000_I2CCMD_OPCODE_READ) { |
| /* Write the selected byte |
| * lane and update whole word |
| */ |
| data_local = i2ccmd & 0xFF00; |
| data_local |= data; |
| i2ccmd = ((offset << |
| E1000_I2CCMD_REG_ADDR_SHIFT) | |
| E1000_I2CCMD_OPCODE_WRITE | data_local); |
| E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); |
| } else { |
| break; |
| } |
| } |
| } |
| if (!(i2ccmd & E1000_I2CCMD_READY)) { |
| DEBUGOUT("I2CCMD Write did not complete"); |
| return -E1000_ERR_PHY; |
| } |
| if (i2ccmd & E1000_I2CCMD_ERROR) { |
| DEBUGOUT("I2CCMD Error bit set"); |
| return -E1000_ERR_PHY; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_phy_reg_m88 - Read m88 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore, if necessary, then reads the PHY register at offset |
| * and storing the retrieved information in data. Release any acquired |
| * semaphores before exiting. |
| **/ |
| s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_read_phy_reg_m88"); |
| |
| if (!hw->phy.ops.acquire) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_m88 - Write m88 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_write_phy_reg_m88"); |
| |
| if (!hw->phy.ops.acquire) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_page_igp - Set page as on IGP-like PHY(s) |
| * @hw: pointer to the HW structure |
| * @page: page to set (shifted left when necessary) |
| * |
| * Sets PHY page required for PHY register access. Assumes semaphore is |
| * already acquired. Note, this function sets phy.addr to 1 so the caller |
| * must set it appropriately (if necessary) after this function returns. |
| **/ |
| s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) |
| { |
| DEBUGFUNC("e1000_set_page_igp"); |
| |
| DEBUGOUT1("Setting page 0x%x", page); |
| |
| hw->phy.addr = 1; |
| |
| return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); |
| } |
| |
| /** |
| * __e1000_read_phy_reg_igp - Read igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * @locked: semaphore has already been acquired or not |
| * |
| * Acquires semaphore, if necessary, then reads the PHY register at offset |
| * and stores the retrieved information in data. Release any acquired |
| * semaphores before exiting. |
| **/ |
| static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, |
| bool locked) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("__e1000_read_phy_reg_igp"); |
| |
| if (!locked) { |
| if (!hw->phy.ops.acquire) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| IGP01E1000_PHY_PAGE_SELECT, |
| (u16)offset); |
| if (!ret_val) |
| ret_val = e1000_read_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| if (!locked) |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_phy_reg_igp - Read igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore then reads the PHY register at offset and stores the |
| * retrieved information in data. |
| * Release the acquired semaphore before exiting. |
| **/ |
| s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| return __e1000_read_phy_reg_igp(hw, offset, data, FALSE); |
| } |
| |
| /** |
| * e1000_read_phy_reg_igp_locked - Read igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the PHY register at offset and stores the retrieved information |
| * in data. Assumes semaphore already acquired. |
| **/ |
| s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| return __e1000_read_phy_reg_igp(hw, offset, data, TRUE); |
| } |
| |
| /** |
| * e1000_write_phy_reg_igp - Write igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * @locked: semaphore has already been acquired or not |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, |
| bool locked) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_write_phy_reg_igp"); |
| |
| if (!locked) { |
| if (!hw->phy.ops.acquire) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| IGP01E1000_PHY_PAGE_SELECT, |
| (u16)offset); |
| if (!ret_val) |
| ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & |
| offset, |
| data); |
| if (!locked) |
| hw->phy.ops.release(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_igp - Write igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| return __e1000_write_phy_reg_igp(hw, offset, data, FALSE); |
| } |
| |
| /** |
| * e1000_write_phy_reg_igp_locked - Write igp PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Writes the data to PHY register at the offset. |
| * Assumes semaphore already acquired. |
| **/ |
| s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| return __e1000_write_phy_reg_igp(hw, offset, data, TRUE); |
| } |
| |
| /** |
| * __e1000_read_kmrn_reg - Read kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * @locked: semaphore has already been acquired or not |
| * |
| * Acquires semaphore, if necessary. Then reads the PHY register at offset |
| * using the kumeran interface. The information retrieved is stored in data. |
| * Release any acquired semaphores before exiting. |
| **/ |
| static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, |
| bool locked) |
| { |
| u32 kmrnctrlsta; |
| |
| DEBUGFUNC("__e1000_read_kmrn_reg"); |
| |
| if (!locked) { |
| s32 ret_val = E1000_SUCCESS; |
| |
| if (!hw->phy.ops.acquire) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
| E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); |
| E1000_WRITE_FLUSH(hw); |
| |
| usec_delay(2); |
| |
| kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); |
| *data = (u16)kmrnctrlsta; |
| |
| if (!locked) |
| hw->phy.ops.release(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_kmrn_reg_generic - Read kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore then reads the PHY register at offset using the |
| * kumeran interface. The information retrieved is stored in data. |
| * Release the acquired semaphore before exiting. |
| **/ |
| s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| return __e1000_read_kmrn_reg(hw, offset, data, FALSE); |
| } |
| |
| /** |
| * e1000_read_kmrn_reg_locked - Read kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the PHY register at offset using the kumeran interface. The |
| * information retrieved is stored in data. |
| * Assumes semaphore already acquired. |
| **/ |
| s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| return __e1000_read_kmrn_reg(hw, offset, data, TRUE); |
| } |
| |
| /** |
| * __e1000_write_kmrn_reg - Write kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * @locked: semaphore has already been acquired or not |
| * |
| * Acquires semaphore, if necessary. Then write the data to PHY register |
| * at the offset using the kumeran interface. Release any acquired semaphores |
| * before exiting. |
| **/ |
| static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, |
| bool locked) |
| { |
| u32 kmrnctrlsta; |
| |
| DEBUGFUNC("e1000_write_kmrn_reg_generic"); |
| |
| if (!locked) { |
| s32 ret_val = E1000_SUCCESS; |
| |
| if (!hw->phy.ops.acquire) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| E1000_KMRNCTRLSTA_OFFSET) | data; |
| E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); |
| E1000_WRITE_FLUSH(hw); |
| |
| usec_delay(2); |
| |
| if (!locked) |
| hw->phy.ops.release(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_kmrn_reg_generic - Write kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore then writes the data to the PHY register at the offset |
| * using the kumeran interface. Release the acquired semaphore before exiting. |
| **/ |
| s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| return __e1000_write_kmrn_reg(hw, offset, data, FALSE); |
| } |
| |
| /** |
| * e1000_write_kmrn_reg_locked - Write kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Write the data to PHY register at the offset using the kumeran interface. |
| * Assumes semaphore already acquired. |
| **/ |
| s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| return __e1000_write_kmrn_reg(hw, offset, data, TRUE); |
| } |
| |
| /** |
| * e1000_set_master_slave_mode - Setup PHY for Master/slave mode |
| * @hw: pointer to the HW structure |
| * |
| * Sets up Master/slave mode |
| **/ |
| static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| /* Resolve Master/Slave mode */ |
| ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* load defaults for future use */ |
| hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? |
| ((phy_data & CR_1000T_MS_VALUE) ? |
| e1000_ms_force_master : |
| e1000_ms_force_slave) : e1000_ms_auto; |
| |
| switch (hw->phy.ms_type) { |
| case e1000_ms_force_master: |
| phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_force_slave: |
| phy_data |= CR_1000T_MS_ENABLE; |
| phy_data &= ~(CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_auto: |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| __FALLTHROUGH; |
| default: |
| break; |
| } |
| |
| return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); |
| } |
| |
| /** |
| * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Sets up Carrier-sense on Transmit and downshift values. |
| **/ |
| s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_setup_82577"); |
| |
| if (hw->phy.type == e1000_phy_82580) { |
| ret_val = hw->phy.ops.reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error resetting the PHY."); |
| return ret_val; |
| } |
| } |
| |
| /* Enable CRS on Tx. This must be set for half-duplex operation. */ |
| ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; |
| |
| /* Enable downshift */ |
| phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; |
| |
| ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Set MDI/MDIX mode */ |
| ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; |
| /* Options: |
| * 0 - Auto (default) |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| */ |
| switch (hw->phy.mdix) { |
| case 1: |
| break; |
| case 2: |
| phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; |
| break; |
| case 0: |
| default: |
| phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; |
| break; |
| } |
| ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| return e1000_set_master_slave_mode(hw); |
| } |
| |
| /** |
| * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock |
| * and downshift values are set also. |
| **/ |
| s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_setup_m88"); |
| |
| |
| /* Enable CRS on Tx. This must be set for half-duplex operation. */ |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* For BM PHY this bit is downshift enable */ |
| if (phy->type != e1000_phy_bm) |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| |
| switch (phy->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| if (phy->disable_polarity_correction) |
| phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| |
| /* Enable downshift on BM (disabled by default) */ |
| if (phy->type == e1000_phy_bm) { |
| /* For 82574/82583, first disable then enable downshift */ |
| if (phy->id == BME1000_E_PHY_ID_R2) { |
| phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; |
| ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| /* Commit the changes. */ |
| ret_val = phy->ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error committing the PHY changes"); |
| return ret_val; |
| } |
| } |
| |
| phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; |
| } |
| |
| ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((phy->type == e1000_phy_m88) && |
| (phy->revision < E1000_REVISION_4) && |
| (phy->id != BME1000_E_PHY_ID_R2)) { |
| /* Force TX_CLK in the Extended PHY Specific Control Register |
| * to 25MHz clock. |
| */ |
| ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| |
| if ((phy->revision == E1000_REVISION_2) && |
| (phy->id == M88E1111_I_PHY_ID)) { |
| /* 82573L PHY - set the downshift counter to 5x. */ |
| phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; |
| phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| } else { |
| /* Configure Master and Slave downshift values */ |
| phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| } |
| ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { |
| /* Set PHY page 0, register 29 to 0x0003 */ |
| ret_val = phy->ops.write_reg(hw, 29, 0x0003); |
| if (ret_val) |
| return ret_val; |
| |
| /* Set PHY page 0, register 30 to 0x0000 */ |
| ret_val = phy->ops.write_reg(hw, 30, 0x0000); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Commit the changes. */ |
| ret_val = phy->ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error committing the PHY changes"); |
| return ret_val; |
| } |
| |
| if (phy->type == e1000_phy_82578) { |
| ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* 82578 PHY - set the downshift count to 1x. */ |
| phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; |
| phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; |
| ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. |
| * Also enables and sets the downshift parameters. |
| **/ |
| s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); |
| |
| |
| /* Enable CRS on Tx. This must be set for half-duplex operation. */ |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| |
| switch (phy->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| /* M88E1112 does not support this mode) */ |
| if (phy->id != M88E1112_E_PHY_ID) { |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| } |
| __FALLTHROUGH; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| if (phy->disable_polarity_correction) |
| phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| |
| /* Enable downshift and setting it to X6 */ |
| if (phy->id == M88E1543_E_PHY_ID) { |
| phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; |
| ret_val = |
| phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error committing the PHY changes"); |
| return ret_val; |
| } |
| } |
| |
| phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; |
| phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; |
| phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; |
| |
| ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Commit the changes. */ |
| ret_val = phy->ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error committing the PHY changes"); |
| return ret_val; |
| } |
| |
| ret_val = e1000_set_master_slave_mode(hw); |
| if (ret_val) |
| return ret_val; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_copper_link_setup_igp - Setup igp PHY's for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for |
| * igp PHY's. |
| **/ |
| s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| DEBUGFUNC("e1000_copper_link_setup_igp"); |
| |
| |
| ret_val = hw->phy.ops.reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error resetting the PHY."); |
| return ret_val; |
| } |
| |
| /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid |
| * timeout issues when LFS is enabled. |
| */ |
| msec_delay(100); |
| |
| /* The NVM settings will configure LPLU in D3 for |
| * non-IGP1 PHYs. |
| */ |
| if (phy->type == e1000_phy_igp) { |
| /* disable lplu d3 during driver init */ |
| ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE); |
| if (ret_val) { |
| DEBUGOUT("Error Disabling LPLU D3"); |
| return ret_val; |
| } |
| } |
| |
| /* disable lplu d0 during driver init */ |
| if (hw->phy.ops.set_d0_lplu_state) { |
| ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE); |
| if (ret_val) { |
| DEBUGOUT("Error Disabling LPLU D0"); |
| return ret_val; |
| } |
| } |
| /* Configure mdi-mdix settings */ |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| |
| switch (phy->mdix) { |
| case 1: |
| data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 2: |
| data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 0: |
| default: |
| data |= IGP01E1000_PSCR_AUTO_MDIX; |
| break; |
| } |
| ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* set auto-master slave resolution settings */ |
| if (hw->mac.autoneg) { |
| /* when autonegotiation advertisement is only 1000Mbps then we |
| * should disable SmartSpeed and enable Auto MasterSlave |
| * resolution as hardware default. |
| */ |
| if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { |
| /* Disable SmartSpeed */ |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Set auto Master/Slave resolution process */ |
| ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~CR_1000T_MS_ENABLE; |
| ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_set_master_slave_mode(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation |
| * @hw: pointer to the HW structure |
| * |
| * Reads the MII auto-neg advertisement register and/or the 1000T control |
| * register and if the PHY is already setup for auto-negotiation, then |
| * return successful. Otherwise, setup advertisement and flow control to |
| * the appropriate values for the wanted auto-negotiation. |
| **/ |
| s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 mii_autoneg_adv_reg; |
| u16 mii_1000t_ctrl_reg = 0; |
| |
| DEBUGFUNC("e1000_phy_setup_autoneg"); |
| |
| phy->autoneg_advertised &= phy->autoneg_mask; |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy->autoneg_mask & ADVERTISE_1000_FULL) { |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, |
| &mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | |
| NWAY_AR_100TX_HD_CAPS | |
| NWAY_AR_10T_FD_CAPS | |
| NWAY_AR_10T_HD_CAPS); |
| mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); |
| |
| DEBUGOUT1("autoneg_advertised %x", phy->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_10_HALF) { |
| DEBUGOUT("Advertise 10mb Half duplex"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_10_FULL) { |
| DEBUGOUT("Advertise 10mb Full duplex"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_100_HALF) { |
| DEBUGOUT("Advertise 100mb Half duplex"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_100_FULL) { |
| DEBUGOUT("Advertise 100mb Full duplex"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (phy->autoneg_advertised & ADVERTISE_1000_HALF) |
| DEBUGOUT("Advertise 1000mb Half duplex request denied!"); |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { |
| DEBUGOUT("Advertise 1000mb Full duplex"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- |
| * negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and Tx flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->fc.current_mode) { |
| case e1000_fc_none: |
| /* Flow control (Rx & Tx) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_rx_pause: |
| /* Rx Flow control is enabled, and Tx Flow control is |
| * disabled, by a software over-ride. |
| * |
| * Since there really isn't a way to advertise that we are |
| * capable of Rx Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric Rx PAUSE. Later |
| * (in e1000_config_fc_after_link_up) we will disable the |
| * hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_tx_pause: |
| /* Tx Flow control is enabled, and Rx Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case e1000_fc_full: |
| /* Flow control (both Rx and Tx) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("Auto-Neg Advertising %x", mii_autoneg_adv_reg); |
| |
| if (phy->autoneg_mask & ADVERTISE_1000_FULL) |
| ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, |
| mii_1000t_ctrl_reg); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Performs initial bounds checking on autoneg advertisement parameter, then |
| * configure to advertise the full capability. Setup the PHY to autoneg |
| * and restart the negotiation process between the link partner. If |
| * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. |
| **/ |
| s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_ctrl; |
| |
| DEBUGFUNC("e1000_copper_link_autoneg"); |
| |
| /* Perform some bounds checking on the autoneg advertisement |
| * parameter. |
| */ |
| phy->autoneg_advertised &= phy->autoneg_mask; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (!phy->autoneg_advertised) |
| phy->autoneg_advertised = phy->autoneg_mask; |
| |
| DEBUGOUT("Reconfiguring auto-neg advertisement params"); |
| ret_val = e1000_phy_setup_autoneg(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Setting up Auto-Negotiation"); |
| return ret_val; |
| } |
| DEBUGOUT("Restarting Auto-Neg"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| if (phy->autoneg_wait_to_complete) { |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val) { |
| DEBUGOUT("Error while waiting for autoneg to complete"); |
| return ret_val; |
| } |
| } |
| |
| hw->mac.get_link_status = TRUE; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_setup_copper_link_generic - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Calls the appropriate function to configure the link for auto-neg or forced |
| * speed and duplex. Then we check for link, once link is established calls |
| * to configure collision distance and flow control are called. If link is |
| * not established, we return -E1000_ERR_PHY (-2). |
| **/ |
| s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| bool link; |
| |
| DEBUGFUNC("e1000_setup_copper_link_generic"); |
| |
| if (hw->mac.autoneg) { |
| /* Setup autoneg and flow control advertisement and perform |
| * autonegotiation. |
| */ |
| ret_val = e1000_copper_link_autoneg(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* PHY will be set to 10H, 10F, 100H or 100F |
| * depending on user settings. |
| */ |
| DEBUGOUT("Forcing Speed and Duplex"); |
| ret_val = hw->phy.ops.force_speed_duplex(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Forcing Speed and Duplex"); |
| return ret_val; |
| } |
| } |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, |
| &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (link) { |
| DEBUGOUT("Valid link established!!!"); |
| hw->mac.ops.config_collision_dist(hw); |
| ret_val = e1000_config_fc_after_link_up_generic(hw); |
| } else { |
| DEBUGOUT("Unable to establish link!!!"); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY |
| * @hw: pointer to the HW structure |
| * |
| * Calls the PHY setup function to force speed and duplex. Clears the |
| * auto-crossover to force MDI manually. Waits for link and returns |
| * successful if link up is successful, else -E1000_ERR_PHY (-2). |
| **/ |
| s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); |
| |
| ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000_phy_force_speed_duplex_setup(hw, &phy_data); |
| |
| ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| * forced whenever speed and duplex are forced. |
| */ |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| |
| ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("IGP PSCR: %X", phy_data); |
| |
| usec_delay(1); |
| |
| if (phy->autoneg_wait_to_complete) { |
| DEBUGOUT("Waiting for forced speed/duplex link on IGP phy."); |
| |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) |
| DEBUGOUT("Link taking longer than expected."); |
| |
| /* Try once more */ |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Calls the PHY setup function to force speed and duplex. Clears the |
| * auto-crossover to force MDI manually. Resets the PHY to commit the |
| * changes. If time expires while waiting for link up, we reset the DSP. |
| * After reset, TX_CLK and CRS on Tx must be set. Return successful upon |
| * successful completion, else return corresponding error code. |
| **/ |
| s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); |
| |
| /* I210 and I211 devices support Auto-Crossover in forced operation. */ |
| if (phy->type != e1000_phy_i210) { |
| /* Clear Auto-Crossover to force MDI manually. M88E1000 |
| * requires MDI forced whenever speed and duplex are forced. |
| */ |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("M88E1000 PSCR: %X", phy_data); |
| } |
| |
| ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000_phy_force_speed_duplex_setup(hw, &phy_data); |
| |
| ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Reset the phy to commit changes. */ |
| ret_val = hw->phy.ops.commit(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy->autoneg_wait_to_complete) { |
| DEBUGOUT("Waiting for forced speed/duplex link on M88 phy."); |
| |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| bool reset_dsp = TRUE; |
| |
| switch (hw->phy.id) { |
| case I347AT4_E_PHY_ID: |
| case M88E1340M_E_PHY_ID: |
| case M88E1112_E_PHY_ID: |
| case M88E1543_E_PHY_ID: |
| case M88E1512_E_PHY_ID: |
| case I210_I_PHY_ID: |
| reset_dsp = FALSE; |
| break; |
| default: |
| if (hw->phy.type != e1000_phy_m88) |
| reset_dsp = FALSE; |
| break; |
| } |
| |
| if (!reset_dsp) { |
| DEBUGOUT("Link taking longer than expected."); |
| } else { |
| /* We didn't get link. |
| * Reset the DSP and cross our fingers. |
| */ |
| ret_val = phy->ops.write_reg(hw, |
| M88E1000_PHY_PAGE_SELECT, |
| 0x001d); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_phy_reset_dsp_generic(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* Try once more */ |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (hw->phy.type != e1000_phy_m88) |
| return E1000_SUCCESS; |
| |
| if (hw->phy.id == I347AT4_E_PHY_ID || |
| hw->phy.id == M88E1340M_E_PHY_ID || |
| hw->phy.id == M88E1112_E_PHY_ID) |
| return E1000_SUCCESS; |
| if (hw->phy.id == I210_I_PHY_ID) |
| return E1000_SUCCESS; |
| if ((hw->phy.id == M88E1543_E_PHY_ID) || |
| (hw->phy.id == M88E1512_E_PHY_ID)) |
| return E1000_SUCCESS; |
| ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Resetting the phy means we need to re-force TX_CLK in the |
| * Extended PHY Specific Control Register to 25MHz clock from |
| * the reset value of 2.5MHz. |
| */ |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* In addition, we must re-enable CRS on Tx for both half and full |
| * duplex. |
| */ |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex |
| * @hw: pointer to the HW structure |
| * |
| * Forces the speed and duplex settings of the PHY. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| bool link; |
| |
| DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); |
| |
| ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000_phy_force_speed_duplex_setup(hw, &data); |
| |
| ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable MDI-X support for 10/100 */ |
| ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IFE_PMC_AUTO_MDIX; |
| data &= ~IFE_PMC_FORCE_MDIX; |
| |
| ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("IFE PMC: %X", data); |
| |
| usec_delay(1); |
| |
| if (phy->autoneg_wait_to_complete) { |
| DEBUGOUT("Waiting for forced speed/duplex link on IFE phy."); |
| |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) |
| DEBUGOUT("Link taking longer than expected."); |
| |
| /* Try once more */ |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex |
| * @hw: pointer to the HW structure |
| * @phy_ctrl: pointer to current value of PHY_CONTROL |
| * |
| * Forces speed and duplex on the PHY by doing the following: disable flow |
| * control, force speed/duplex on the MAC, disable auto speed detection, |
| * disable auto-negotiation, configure duplex, configure speed, configure |
| * the collision distance, write configuration to CTRL register. The |
| * caller must write to the PHY_CONTROL register for these settings to |
| * take affect. |
| **/ |
| void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 ctrl; |
| |
| DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); |
| |
| /* Turn off flow control when forcing speed/duplex */ |
| hw->fc.current_mode = e1000_fc_none; |
| |
| /* Force speed/duplex on the mac */ |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~E1000_CTRL_SPD_SEL; |
| |
| /* Disable Auto Speed Detection */ |
| ctrl &= ~E1000_CTRL_ASDE; |
| |
| /* Disable autoneg on the phy */ |
| *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; |
| |
| /* Forcing Full or Half Duplex? */ |
| if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { |
| ctrl &= ~E1000_CTRL_FD; |
| *phy_ctrl &= ~MII_CR_FULL_DUPLEX; |
| DEBUGOUT("Half Duplex"); |
| } else { |
| ctrl |= E1000_CTRL_FD; |
| *phy_ctrl |= MII_CR_FULL_DUPLEX; |
| DEBUGOUT("Full Duplex"); |
| } |
| |
| /* Forcing 10mb or 100mb? */ |
| if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { |
| ctrl |= E1000_CTRL_SPD_100; |
| *phy_ctrl |= MII_CR_SPEED_100; |
| *phy_ctrl &= ~MII_CR_SPEED_1000; |
| DEBUGOUT("Forcing 100mb"); |
| } else { |
| ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
| DEBUGOUT("Forcing 10mb"); |
| } |
| |
| hw->mac.ops.config_collision_dist(hw); |
| |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| } |
| |
| /** |
| * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 |
| * @hw: pointer to the HW structure |
| * @active: boolean used to enable/disable lplu |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * The low power link up (lplu) state is set to the power management level D3 |
| * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 |
| * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU |
| * is used during Dx states where the power conservation is most important. |
| * During driver activity, SmartSpeed should be enabled so performance is |
| * maintained. |
| **/ |
| s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| DEBUGFUNC("e1000_set_d3_lplu_state_generic"); |
| |
| if (!hw->phy.ops.read_reg) |
| return E1000_SUCCESS; |
| |
| ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!active) { |
| data &= ~IGP02E1000_PM_D3_LPLU; |
| ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| data); |
| if (ret_val) |
| return ret_val; |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| data |= IGP02E1000_PM_D3_LPLU; |
| ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_downshift_generic - Checks whether a downshift in speed occurred |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * A downshift is detected by querying the PHY link health. |
| **/ |
| s32 e1000_check_downshift_generic(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, offset, mask; |
| |
| DEBUGFUNC("e1000_check_downshift_generic"); |
| |
| switch (phy->type) { |
| case e1000_phy_i210: |
| case e1000_phy_m88: |
| case e1000_phy_gg82563: |
| case e1000_phy_bm: |
| case e1000_phy_82578: |
| offset = M88E1000_PHY_SPEC_STATUS; |
| mask = M88E1000_PSSR_DOWNSHIFT; |
| break; |
| case e1000_phy_igp: |
| case e1000_phy_igp_2: |
| case e1000_phy_igp_3: |
| offset = IGP01E1000_PHY_LINK_HEALTH; |
| mask = IGP01E1000_PLHR_SS_DOWNGRADE; |
| break; |
| default: |
| /* speed downshift not supported */ |
| phy->speed_downgraded = FALSE; |
| return E1000_SUCCESS; |
| } |
| |
| ret_val = phy->ops.read_reg(hw, offset, &phy_data); |
| |
| if (!ret_val) |
| phy->speed_downgraded = !!(phy_data & mask); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_polarity_m88 - Checks the polarity. |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| * |
| * Polarity is determined based on the PHY specific status register. |
| **/ |
| s32 e1000_check_polarity_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| |
| DEBUGFUNC("e1000_check_polarity_m88"); |
| |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); |
| |
| if (!ret_val) |
| phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_polarity_igp - Checks the polarity. |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
| * |
| * Polarity is determined based on the PHY port status register, and the |
| * current speed (since there is no polarity at 100Mbps). |
| **/ |
| s32 e1000_check_polarity_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data, offset, mask; |
| |
| DEBUGFUNC("e1000_check_polarity_igp"); |
| |
| /* Polarity is determined based on the speed of |
| * our connection. |
| */ |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| offset = IGP01E1000_PHY_PCS_INIT_REG; |
| mask = IGP01E1000_PHY_POLARITY_MASK; |
| } else { |
| /* This really only applies to 10Mbps since |
| * there is no polarity for 100Mbps (always 0). |
| */ |
| offset = IGP01E1000_PHY_PORT_STATUS; |
| mask = IGP01E1000_PSSR_POLARITY_REVERSED; |
| } |
| |
| ret_val = phy->ops.read_reg(hw, offset, &data); |
| |
| if (!ret_val) |
| phy->cable_polarity = ((data & mask) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_polarity_ife - Check cable polarity for IFE PHY |
| * @hw: pointer to the HW structure |
| * |
| * Polarity is determined on the polarity reversal feature being enabled. |
| **/ |
| s32 e1000_check_polarity_ife(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, offset, mask; |
| |
| DEBUGFUNC("e1000_check_polarity_ife"); |
| |
| /* Polarity is determined based on the reversal feature being enabled. |
| */ |
| if (phy->polarity_correction) { |
| offset = IFE_PHY_EXTENDED_STATUS_CONTROL; |
| mask = IFE_PESC_POLARITY_REVERSED; |
| } else { |
| offset = IFE_PHY_SPECIAL_CONTROL; |
| mask = IFE_PSC_FORCE_POLARITY; |
| } |
| |
| ret_val = phy->ops.read_reg(hw, offset, &phy_data); |
| |
| if (!ret_val) |
| phy->cable_polarity = ((phy_data & mask) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_wait_autoneg - Wait for auto-neg completion |
| * @hw: pointer to the HW structure |
| * |
| * Waits for auto-negotiation to complete or for the auto-negotiation time |
| * limit to expire, which ever happens first. |
| **/ |
| static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u16 i, phy_status; |
| |
| DEBUGFUNC("e1000_wait_autoneg"); |
| |
| if (!hw->phy.ops.read_reg) |
| return E1000_SUCCESS; |
| |
| /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ |
| for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| if (phy_status & MII_SR_AUTONEG_COMPLETE) |
| break; |
| msec_delay(100); |
| } |
| |
| /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation |
| * has completed. |
| */ |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_has_link_generic - Polls PHY for link |
| * @hw: pointer to the HW structure |
| * @iterations: number of times to poll for link |
| * @usec_interval: delay between polling attempts |
| * @success: pointer to whether polling was successful or not |
| * |
| * Polls the PHY status register for link, 'iterations' number of times. |
| **/ |
| s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, |
| u32 usec_interval, bool *success) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u16 i, phy_status; |
| |
| DEBUGFUNC("e1000_phy_has_link_generic"); |
| |
| if (!hw->phy.ops.read_reg) |
| return E1000_SUCCESS; |
| |
| for (i = 0; i < iterations; i++) { |
| /* Some PHYs require the PHY_STATUS register to be read |
| * twice due to the link bit being sticky. No harm doing |
| * it across the board. |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) { |
| /* If the first read fails, another entity may have |
| * ownership of the resources, wait and try again to |
| * see if they have relinquished the resources yet. |
| */ |
| if (usec_interval >= 1000) |
| msec_delay(usec_interval/1000); |
| else |
| usec_delay(usec_interval); |
| } |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| if (phy_status & MII_SR_LINK_STATUS) |
| break; |
| if (usec_interval >= 1000) |
| msec_delay(usec_interval/1000); |
| else |
| usec_delay(usec_interval); |
| } |
| |
| *success = (i < iterations); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_cable_length_m88 - Determine cable length for m88 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Reads the PHY specific status register to retrieve the cable length |
| * information. The cable length is determined by averaging the minimum and |
| * maximum values to get the "average" cable length. The m88 PHY has four |
| * possible cable length values, which are: |
| * Register Value Cable Length |
| * 0 < 50 meters |
| * 1 50 - 80 meters |
| * 2 80 - 110 meters |
| * 3 110 - 140 meters |
| * 4 > 140 meters |
| **/ |
| s32 e1000_get_cable_length_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, index; |
| |
| DEBUGFUNC("e1000_get_cable_length_m88"); |
| |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
| |
| if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) |
| return -E1000_ERR_PHY; |
| |
| phy->min_cable_length = e1000_m88_cable_length_table[index]; |
| phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; |
| |
| phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| |
| return E1000_SUCCESS; |
| } |
| |
| s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, phy_data2, is_cm; |
| u16 index, default_page; |
| |
| DEBUGFUNC("e1000_get_cable_length_m88_gen2"); |
| |
| switch (hw->phy.id) { |
| case I210_I_PHY_ID: |
| /* Get cable length from PHY Cable Diagnostics Control Reg */ |
| ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + |
| (I347AT4_PCDL + phy->addr), |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Check if the unit of cable length is meters or cm */ |
| ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + |
| I347AT4_PCDC, &phy_data2); |
| if (ret_val) |
| return ret_val; |
| |
| is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); |
| |
| /* Populate the phy structure with cable length in meters */ |
| phy->min_cable_length = phy_data / (is_cm ? 100 : 1); |
| phy->max_cable_length = phy_data / (is_cm ? 100 : 1); |
| phy->cable_length = phy_data / (is_cm ? 100 : 1); |
| break; |
| case M88E1543_E_PHY_ID: |
| case M88E1512_E_PHY_ID: |
| case M88E1340M_E_PHY_ID: |
| case I347AT4_E_PHY_ID: |
| /* Remember the original page select and set it to 7 */ |
| ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, |
| &default_page); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); |
| if (ret_val) |
| return ret_val; |
| |
| /* Get cable length from PHY Cable Diagnostics Control Reg */ |
| ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Check if the unit of cable length is meters or cm */ |
| ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); |
| if (ret_val) |
| return ret_val; |
| |
| is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); |
| |
| /* Populate the phy structure with cable length in meters */ |
| phy->min_cable_length = phy_data / (is_cm ? 100 : 1); |
| phy->max_cable_length = phy_data / (is_cm ? 100 : 1); |
| phy->cable_length = phy_data / (is_cm ? 100 : 1); |
| |
| /* Reset the page select to its original value */ |
| ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, |
| default_page); |
| if (ret_val) |
| return ret_val; |
| break; |
| |
| case M88E1112_E_PHY_ID: |
| /* Remember the original page select and set it to 5 */ |
| ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, |
| &default_page); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
| |
| if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) |
| return -E1000_ERR_PHY; |
| |
| phy->min_cable_length = e1000_m88_cable_length_table[index]; |
| phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; |
| |
| phy->cable_length = (phy->min_cable_length + |
| phy->max_cable_length) / 2; |
| |
| /* Reset the page select to its original value */ |
| ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, |
| default_page); |
| if (ret_val) |
| return ret_val; |
| |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY |
| * @hw: pointer to the HW structure |
| * |
| * The automatic gain control (agc) normalizes the amplitude of the |
| * received signal, adjusting for the attenuation produced by the |
| * cable. By reading the AGC registers, which represent the |
| * combination of coarse and fine gain value, the value can be put |
| * into a lookup table to obtain the approximate cable length |
| * for each channel. |
| **/ |
| s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, i, agc_value = 0; |
| u16 cur_agc_index, max_agc_index = 0; |
| u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; |
| static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { |
| IGP02E1000_PHY_AGC_A, |
| IGP02E1000_PHY_AGC_B, |
| IGP02E1000_PHY_AGC_C, |
| IGP02E1000_PHY_AGC_D |
| }; |
| |
| DEBUGFUNC("e1000_get_cable_length_igp_2"); |
| |
| /* Read the AGC registers for all channels */ |
| for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Getting bits 15:9, which represent the combination of |
| * coarse and fine gain values. The result is a number |
| * that can be put into the lookup table to obtain the |
| * approximate cable length. |
| */ |
| cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
| IGP02E1000_AGC_LENGTH_MASK); |
| |
| /* Array index bound check. */ |
| if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || |
| (cur_agc_index == 0)) |
| return -E1000_ERR_PHY; |
| |
| /* Remove min & max AGC values from calculation. */ |
| if (e1000_igp_2_cable_length_table[min_agc_index] > |
| e1000_igp_2_cable_length_table[cur_agc_index]) |
| min_agc_index = cur_agc_index; |
| if (e1000_igp_2_cable_length_table[max_agc_index] < |
| e1000_igp_2_cable_length_table[cur_agc_index]) |
| max_agc_index = cur_agc_index; |
| |
| agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; |
| } |
| |
| agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
| e1000_igp_2_cable_length_table[max_agc_index]); |
| agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
| |
| /* Calculate cable length with the error range of +/- 10 meters. */ |
| phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? |
| (agc_value - IGP02E1000_AGC_RANGE) : 0); |
| phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; |
| |
| phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_phy_info_m88 - Retrieve PHY information |
| * @hw: pointer to the HW structure |
| * |
| * Valid for only copper links. Read the PHY status register (sticky read) |
| * to verify that link is up. Read the PHY special control register to |
| * determine the polarity and 10base-T extended distance. Read the PHY |
| * special status register to determine MDI/MDIx and current speed. If |
| * speed is 1000, then determine cable length, local and remote receiver. |
| **/ |
| s32 e1000_get_phy_info_m88(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| DEBUGFUNC("e1000_get_phy_info_m88"); |
| |
| if (phy->media_type != e1000_media_type_copper) { |
| DEBUGOUT("Phy info is only valid for copper media"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| DEBUGOUT("Phy info is only valid if link is up"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->polarity_correction = !!(phy_data & |
| M88E1000_PSCR_POLARITY_REVERSAL); |
| |
| ret_val = e1000_check_polarity_m88(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); |
| |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
| ret_val = hw->phy.ops.get_cable_length(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| |
| phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| } else { |
| /* Set values to "undefined" */ |
| phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| phy->local_rx = e1000_1000t_rx_status_undefined; |
| phy->remote_rx = e1000_1000t_rx_status_undefined; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_phy_info_igp - Retrieve igp PHY information |
| * @hw: pointer to the HW structure |
| * |
| * Read PHY status to determine if link is up. If link is up, then |
| * set/determine 10base-T extended distance and polarity correction. Read |
| * PHY port status to determine MDI/MDIx and speed. Based on the speed, |
| * determine on the cable length, local and remote receiver. |
| **/ |
| s32 e1000_get_phy_info_igp(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| bool link; |
| |
| DEBUGFUNC("e1000_get_phy_info_igp"); |
| |
| ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| DEBUGOUT("Phy info is only valid if link is up"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| phy->polarity_correction = TRUE; |
| |
| ret_val = e1000_check_polarity_igp(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); |
| |
| if ((data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| ret_val = phy->ops.get_cable_length(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| |
| phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) |
| ? e1000_1000t_rx_status_ok |
| : e1000_1000t_rx_status_not_ok; |
| } else { |
| phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| phy->local_rx = e1000_1000t_rx_status_undefined; |
| phy->remote_rx = e1000_1000t_rx_status_undefined; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_phy_info_ife - Retrieves various IFE PHY states |
| * @hw: pointer to the HW structure |
| * |
| * Populates "phy" structure with various feature states. |
| **/ |
| s32 e1000_get_phy_info_ife(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| bool link; |
| |
| DEBUGFUNC("e1000_get_phy_info_ife"); |
| |
| ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| DEBUGOUT("Phy info is only valid if link is up"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); |
| |
| if (phy->polarity_correction) { |
| ret_val = e1000_check_polarity_ife(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Polarity is forced */ |
| phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal); |
| } |
| |
| ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); |
| |
| /* The following parameters are undefined for 10/100 operation. */ |
| phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| phy->local_rx = e1000_1000t_rx_status_undefined; |
| phy->remote_rx = e1000_1000t_rx_status_undefined; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_sw_reset_generic - PHY software reset |
| * @hw: pointer to the HW structure |
| * |
| * Does a software reset of the PHY by reading the PHY control register and |
| * setting/write the control register reset bit to the PHY. |
| **/ |
| s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_ctrl; |
| |
| DEBUGFUNC("e1000_phy_sw_reset_generic"); |
| |
| if (!hw->phy.ops.read_reg) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| phy_ctrl |= MII_CR_RESET; |
| ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); |
| if (ret_val) |
| return ret_val; |
| |
| usec_delay(1); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_hw_reset_generic - PHY hardware reset |
| * @hw: pointer to the HW structure |
| * |
| * Verify the reset block is not blocking us from resetting. Acquire |
| * semaphore (if necessary) and read/set/write the device control reset |
| * bit in the PHY. Wait the appropriate delay time for the device to |
| * reset and release the semaphore (if necessary). |
| **/ |
| s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u32 ctrl; |
| |
| DEBUGFUNC("e1000_phy_hw_reset_generic"); |
| |
| if (phy->ops.check_reset_block) { |
| ret_val = phy->ops.check_reset_block(hw); |
| if (ret_val) |
| return E1000_SUCCESS; |
| } |
| |
| ret_val = phy->ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); |
| E1000_WRITE_FLUSH(hw); |
| |
| usec_delay(phy->reset_delay_us); |
| |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| usec_delay(150); |
| |
| phy->ops.release(hw); |
| |
| return phy->ops.get_cfg_done(hw); |
| } |
| |
| /** |
| * e1000_get_cfg_done_generic - Generic configuration done |
| * @hw: pointer to the HW structure |
| * |
| * Generic function to wait 10 milli-seconds for configuration to complete |
| * and return success. |
| **/ |
| s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_get_cfg_done_generic"); |
| |
| msec_delay_irq(10); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_init_script_igp3 - Inits the IGP3 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. |
| **/ |
| s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) |
| { |
| DEBUGOUT("Running IGP 3 PHY init script"); |
| |
| /* PHY init IGP 3 */ |
| /* Enable rise/fall, 10-mode work in class-A */ |
| hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); |
| /* Remove all caps from Replica path filter */ |
| hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); |
| /* Bias trimming for ADC, AFE and Driver (Default) */ |
| hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); |
| /* Increase Hybrid poly bias */ |
| hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); |
| /* Add 4% to Tx amplitude in Gig mode */ |
| hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); |
| /* Disable trimming (TTT) */ |
| hw->phy.ops.write_reg(hw, 0x2011, 0x0000); |
| /* Poly DC correction to 94.6% + 2% for all channels */ |
| hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); |
| /* ABS DC correction to 95.9% */ |
| hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); |
| /* BG temp curve trim */ |
| hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); |
| /* Increasing ADC OPAMP stage 1 currents to max */ |
| hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); |
| /* Force 1000 ( required for enabling PHY regs configuration) */ |
| hw->phy.ops.write_reg(hw, 0x0000, 0x0140); |
| /* Set upd_freq to 6 */ |
| hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); |
| /* Disable NPDFE */ |
| hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); |
| /* Disable adaptive fixed FFE (Default) */ |
| hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); |
| /* Enable FFE hysteresis */ |
| hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); |
| /* Fixed FFE for short cable lengths */ |
| hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); |
| /* Fixed FFE for medium cable lengths */ |
| hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); |
| /* Fixed FFE for long cable lengths */ |
| hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); |
| /* Enable Adaptive Clip Threshold */ |
| hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); |
| /* AHT reset limit to 1 */ |
| hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); |
| /* Set AHT master delay to 127 msec */ |
| hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); |
| /* Set scan bits for AHT */ |
| hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); |
| /* Set AHT Preset bits */ |
| hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); |
| /* Change integ_factor of channel A to 3 */ |
| hw->phy.ops.write_reg(hw, 0x1895, 0x0003); |
| /* Change prop_factor of channels BCD to 8 */ |
| hw->phy.ops.write_reg(hw, 0x1796, 0x0008); |
| /* Change cg_icount + enable integbp for channels BCD */ |
| hw->phy.ops.write_reg(hw, 0x1798, 0xD008); |
| /* Change cg_icount + enable integbp + change prop_factor_master |
| * to 8 for channel A |
| */ |
| hw->phy.ops.write_reg(hw, 0x1898, 0xD918); |
| /* Disable AHT in Slave mode on channel A */ |
| hw->phy.ops.write_reg(hw, 0x187A, 0x0800); |
| /* Enable LPLU and disable AN to 1000 in non-D0a states, |
| * Enable SPD+B2B |
| */ |
| hw->phy.ops.write_reg(hw, 0x0019, 0x008D); |
| /* Enable restart AN on an1000_dis change */ |
| hw->phy.ops.write_reg(hw, 0x001B, 0x2080); |
| /* Enable wh_fifo read clock in 10/100 modes */ |
| hw->phy.ops.write_reg(hw, 0x0014, 0x0045); |
| /* Restart AN, Speed selection is 1000 */ |
| hw->phy.ops.write_reg(hw, 0x0000, 0x1340); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_phy_type_from_id - Get PHY type from id |
| * @phy_id: phy_id read from the phy |
| * |
| * Returns the phy type from the id. |
| **/ |
| enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) |
| { |
| enum e1000_phy_type phy_type = e1000_phy_unknown; |
| |
| switch (phy_id) { |
| case M88E1000_I_PHY_ID: |
| case M88E1000_E_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| case M88E1011_I_PHY_ID: |
| case M88E1543_E_PHY_ID: |
| case M88E1512_E_PHY_ID: |
| case I347AT4_E_PHY_ID: |
| case M88E1112_E_PHY_ID: |
| case M88E1340M_E_PHY_ID: |
| phy_type = e1000_phy_m88; |
| break; |
| case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ |
| phy_type = e1000_phy_igp_2; |
| break; |
| case GG82563_E_PHY_ID: |
| phy_type = e1000_phy_gg82563; |
| break; |
| case IGP03E1000_E_PHY_ID: |
| phy_type = e1000_phy_igp_3; |
| break; |
| case IFE_E_PHY_ID: |
| case IFE_PLUS_E_PHY_ID: |
| case IFE_C_E_PHY_ID: |
| phy_type = e1000_phy_ife; |
| break; |
| case BME1000_E_PHY_ID: |
| case BME1000_E_PHY_ID_R2: |
| phy_type = e1000_phy_bm; |
| break; |
| case I82578_E_PHY_ID: |
| phy_type = e1000_phy_82578; |
| break; |
| case I82577_E_PHY_ID: |
| phy_type = e1000_phy_82577; |
| break; |
| case I82579_E_PHY_ID: |
| phy_type = e1000_phy_82579; |
| break; |
| case I217_E_PHY_ID: |
| phy_type = e1000_phy_i217; |
| break; |
| case I82580_I_PHY_ID: |
| phy_type = e1000_phy_82580; |
| break; |
| case I210_I_PHY_ID: |
| phy_type = e1000_phy_i210; |
| break; |
| default: |
| phy_type = e1000_phy_unknown; |
| break; |
| } |
| return phy_type; |
| } |
| |
| /** |
| * e1000_determine_phy_address - Determines PHY address. |
| * @hw: pointer to the HW structure |
| * |
| * This uses a trial and error method to loop through possible PHY |
| * addresses. It tests each by reading the PHY ID registers and |
| * checking for a match. |
| **/ |
| s32 e1000_determine_phy_address(struct e1000_hw *hw) |
| { |
| u32 phy_addr = 0; |
| u32 i; |
| enum e1000_phy_type phy_type = e1000_phy_unknown; |
| |
| hw->phy.id = phy_type; |
| |
| for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { |
| hw->phy.addr = phy_addr; |
| i = 0; |
| |
| do { |
| e1000_get_phy_id(hw); |
| phy_type = e1000_get_phy_type_from_id(hw->phy.id); |
| |
| /* If phy_type is valid, break - we found our |
| * PHY address |
| */ |
| if (phy_type != e1000_phy_unknown) |
| return E1000_SUCCESS; |
| |
| msec_delay(1); |
| i++; |
| } while (i < 10); |
| } |
| |
| return -E1000_ERR_PHY_TYPE; |
| } |
| |
| /** |
| * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address |
| * @page: page to access |
| * |
| * Returns the phy address for the page requested. |
| **/ |
| static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) |
| { |
| u32 phy_addr = 2; |
| |
| if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) |
| phy_addr = 1; |
| |
| return phy_addr; |
| } |
| |
| /** |
| * e1000_write_phy_reg_bm - Write BM PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| u32 page = offset >> IGP_PAGE_SHIFT; |
| |
| DEBUGFUNC("e1000_write_phy_reg_bm"); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Page 800 works differently than the rest so it has its own func */ |
| if (page == BM_WUC_PAGE) { |
| ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, |
| FALSE, false); |
| goto release; |
| } |
| |
| hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| u32 page_shift, page_select; |
| |
| /* Page select is register 31 for phy address 1 and 22 for |
| * phy address 2 and 3. Page select is shifted only for |
| * phy address 1. |
| */ |
| if (hw->phy.addr == 1) { |
| page_shift = IGP_PAGE_SHIFT; |
| page_select = IGP01E1000_PHY_PAGE_SELECT; |
| } else { |
| page_shift = 0; |
| page_select = BM_PHY_PAGE_SELECT; |
| } |
| |
| /* Page is shifted left, PHY expects (page x 32) */ |
| ret_val = e1000_write_phy_reg_mdic(hw, page_select, |
| (page << page_shift)); |
| if (ret_val) |
| goto release; |
| } |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| release: |
| hw->phy.ops.release(hw); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_phy_reg_bm - Read BM PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore, if necessary, then reads the PHY register at offset |
| * and storing the retrieved information in data. Release any acquired |
| * semaphores before exiting. |
| **/ |
| s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| u32 page = offset >> IGP_PAGE_SHIFT; |
| |
| DEBUGFUNC("e1000_read_phy_reg_bm"); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Page 800 works differently than the rest so it has its own func */ |
| if (page == BM_WUC_PAGE) { |
| ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, |
| TRUE, FALSE); |
| goto release; |
| } |
| |
| hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| u32 page_shift, page_select; |
| |
| /* Page select is register 31 for phy address 1 and 22 for |
| * phy address 2 and 3. Page select is shifted only for |
| * phy address 1. |
| */ |
| if (hw->phy.addr == 1) { |
| page_shift = IGP_PAGE_SHIFT; |
| page_select = IGP01E1000_PHY_PAGE_SELECT; |
| } else { |
| page_shift = 0; |
| page_select = BM_PHY_PAGE_SELECT; |
| } |
| |
| /* Page is shifted left, PHY expects (page x 32) */ |
| ret_val = e1000_write_phy_reg_mdic(hw, page_select, |
| (page << page_shift)); |
| if (ret_val) |
| goto release; |
| } |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| release: |
| hw->phy.ops.release(hw); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_phy_reg_bm2 - Read BM PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquires semaphore, if necessary, then reads the PHY register at offset |
| * and storing the retrieved information in data. Release any acquired |
| * semaphores before exiting. |
| **/ |
| s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| u16 page = (u16)(offset >> IGP_PAGE_SHIFT); |
| |
| DEBUGFUNC("e1000_read_phy_reg_bm2"); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Page 800 works differently than the rest so it has its own func */ |
| if (page == BM_WUC_PAGE) { |
| ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, |
| TRUE, FALSE); |
| goto release; |
| } |
| |
| hw->phy.addr = 1; |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| /* Page is shifted left, PHY expects (page x 32) */ |
| ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, |
| page); |
| |
| if (ret_val) |
| goto release; |
| } |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| release: |
| hw->phy.ops.release(hw); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_bm2 - Write BM PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| **/ |
| s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| u16 page = (u16)(offset >> IGP_PAGE_SHIFT); |
| |
| DEBUGFUNC("e1000_write_phy_reg_bm2"); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Page 800 works differently than the rest so it has its own func */ |
| if (page == BM_WUC_PAGE) { |
| ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, |
| FALSE, false); |
| goto release; |
| } |
| |
| hw->phy.addr = 1; |
| |
| if (offset > MAX_PHY_MULTI_PAGE_REG) { |
| /* Page is shifted left, PHY expects (page x 32) */ |
| ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, |
| page); |
| |
| if (ret_val) |
| goto release; |
| } |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| release: |
| hw->phy.ops.release(hw); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers |
| * @hw: pointer to the HW structure |
| * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG |