| /****************************************************************************** |
| SPDX-License-Identifier: BSD-3-Clause |
| |
| Copyright (c) 2001-2015, Intel Corporation |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| 3. Neither the name of the Intel Corporation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| |
| ******************************************************************************/ |
| /*$FreeBSD$*/ |
| |
| #include "e1000_api.h" |
| |
| static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); |
| static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); |
| static void e1000_config_collision_dist_generic(struct e1000_hw *hw); |
| static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); |
| |
| /** |
| * e1000_init_mac_ops_generic - Initialize MAC function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Setups up the function pointers to no-op functions |
| **/ |
| void e1000_init_mac_ops_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| DEBUGFUNC("e1000_init_mac_ops_generic"); |
| |
| /* General Setup */ |
| mac->ops.init_params = e1000_null_ops_generic; |
| mac->ops.init_hw = e1000_null_ops_generic; |
| mac->ops.reset_hw = e1000_null_ops_generic; |
| mac->ops.setup_physical_interface = e1000_null_ops_generic; |
| mac->ops.get_bus_info = e1000_null_ops_generic; |
| mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; |
| mac->ops.read_mac_addr = e1000_read_mac_addr_generic; |
| mac->ops.config_collision_dist = e1000_config_collision_dist_generic; |
| mac->ops.clear_hw_cntrs = e1000_null_mac_generic; |
| /* LED */ |
| mac->ops.cleanup_led = e1000_null_ops_generic; |
| mac->ops.setup_led = e1000_null_ops_generic; |
| mac->ops.blink_led = e1000_null_ops_generic; |
| mac->ops.led_on = e1000_null_ops_generic; |
| mac->ops.led_off = e1000_null_ops_generic; |
| /* LINK */ |
| mac->ops.setup_link = e1000_null_ops_generic; |
| mac->ops.get_link_up_info = e1000_null_link_info; |
| mac->ops.check_for_link = e1000_null_ops_generic; |
| mac->ops.set_obff_timer = e1000_null_set_obff_timer; |
| /* Management */ |
| mac->ops.check_mng_mode = e1000_null_mng_mode; |
| /* VLAN, MC, etc. */ |
| mac->ops.update_mc_addr_list = e1000_null_update_mc; |
| mac->ops.clear_vfta = e1000_null_mac_generic; |
| mac->ops.write_vfta = e1000_null_write_vfta; |
| mac->ops.rar_set = e1000_rar_set_generic; |
| mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; |
| } |
| |
| /** |
| * e1000_null_ops_generic - No-op function, returns 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_null_ops_generic"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_null_mac_generic - No-op function, return void |
| * @hw: pointer to the HW structure |
| **/ |
| void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_null_mac_generic"); |
| return; |
| } |
| |
| /** |
| * e1000_null_link_info - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, |
| u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) |
| { |
| DEBUGFUNC("e1000_null_link_info"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_null_mng_mode - No-op function, return FALSE |
| * @hw: pointer to the HW structure |
| **/ |
| bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_null_mng_mode"); |
| return FALSE; |
| } |
| |
| /** |
| * e1000_null_update_mc - No-op function, return void |
| * @hw: pointer to the HW structure |
| **/ |
| void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, |
| u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) |
| { |
| DEBUGFUNC("e1000_null_update_mc"); |
| return; |
| } |
| |
| /** |
| * e1000_null_write_vfta - No-op function, return void |
| * @hw: pointer to the HW structure |
| **/ |
| void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, |
| u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) |
| { |
| DEBUGFUNC("e1000_null_write_vfta"); |
| return; |
| } |
| |
| /** |
| * e1000_null_rar_set - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, |
| u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) |
| { |
| DEBUGFUNC("e1000_null_rar_set"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_null_set_obff_timer - No-op function, return 0 |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_null_set_obff_timer(struct e1000_hw E1000_UNUSEDARG *hw, |
| u32 E1000_UNUSEDARG a) |
| { |
| DEBUGFUNC("e1000_null_set_obff_timer"); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_bus_info_pci_generic - Get PCI(x) bus information |
| * @hw: pointer to the HW structure |
| * |
| * Determines and stores the system bus information for a particular |
| * network interface. The following bus information is determined and stored: |
| * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. |
| **/ |
| s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_bus_info *bus = &hw->bus; |
| u32 status = E1000_READ_REG(hw, E1000_STATUS); |
| s32 ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_get_bus_info_pci_generic"); |
| |
| /* PCI or PCI-X? */ |
| bus->type = (status & E1000_STATUS_PCIX_MODE) |
| ? e1000_bus_type_pcix |
| : e1000_bus_type_pci; |
| |
| /* Bus speed */ |
| if (bus->type == e1000_bus_type_pci) { |
| bus->speed = (status & E1000_STATUS_PCI66) |
| ? e1000_bus_speed_66 |
| : e1000_bus_speed_33; |
| } else { |
| switch (status & E1000_STATUS_PCIX_SPEED) { |
| case E1000_STATUS_PCIX_SPEED_66: |
| bus->speed = e1000_bus_speed_66; |
| break; |
| case E1000_STATUS_PCIX_SPEED_100: |
| bus->speed = e1000_bus_speed_100; |
| break; |
| case E1000_STATUS_PCIX_SPEED_133: |
| bus->speed = e1000_bus_speed_133; |
| break; |
| default: |
| bus->speed = e1000_bus_speed_reserved; |
| break; |
| } |
| } |
| |
| /* Bus width */ |
| bus->width = (status & E1000_STATUS_BUS64) |
| ? e1000_bus_width_64 |
| : e1000_bus_width_32; |
| |
| /* Which PCI(-X) function? */ |
| mac->ops.set_lan_id(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_bus_info_pcie_generic - Get PCIe bus information |
| * @hw: pointer to the HW structure |
| * |
| * Determines and stores the system bus information for a particular |
| * network interface. The following bus information is determined and stored: |
| * bus speed, bus width, type (PCIe), and PCIe function. |
| **/ |
| s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_bus_info *bus = &hw->bus; |
| s32 ret_val; |
| u16 pcie_link_status; |
| |
| DEBUGFUNC("e1000_get_bus_info_pcie_generic"); |
| |
| bus->type = e1000_bus_type_pci_express; |
| |
| ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, |
| &pcie_link_status); |
| if (ret_val) { |
| bus->width = e1000_bus_width_unknown; |
| bus->speed = e1000_bus_speed_unknown; |
| } else { |
| switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { |
| case PCIE_LINK_SPEED_2500: |
| bus->speed = e1000_bus_speed_2500; |
| break; |
| case PCIE_LINK_SPEED_5000: |
| bus->speed = e1000_bus_speed_5000; |
| break; |
| default: |
| bus->speed = e1000_bus_speed_unknown; |
| break; |
| } |
| |
| bus->width = (enum e1000_bus_width)((pcie_link_status & |
| PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); |
| } |
| |
| mac->ops.set_lan_id(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices |
| * |
| * @hw: pointer to the HW structure |
| * |
| * Determines the LAN function id by reading memory-mapped registers |
| * and swaps the port value if requested. |
| **/ |
| static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| u32 reg; |
| |
| /* The status register reports the correct function number |
| * for the device regardless of function swap state. |
| */ |
| reg = E1000_READ_REG(hw, E1000_STATUS); |
| bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; |
| } |
| |
| /** |
| * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices |
| * @hw: pointer to the HW structure |
| * |
| * Determines the LAN function id by reading PCI config space. |
| **/ |
| void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| u16 pci_header_type; |
| u32 status; |
| |
| e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); |
| if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| bus->func = (status & E1000_STATUS_FUNC_MASK) |
| >> E1000_STATUS_FUNC_SHIFT; |
| } else { |
| bus->func = 0; |
| } |
| } |
| |
| /** |
| * e1000_set_lan_id_single_port - Set LAN id for a single port device |
| * @hw: pointer to the HW structure |
| * |
| * Sets the LAN function id to zero for a single port device. |
| **/ |
| void e1000_set_lan_id_single_port(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| |
| bus->func = 0; |
| } |
| |
| /** |
| * e1000_clear_vfta_generic - Clear VLAN filter table |
| * @hw: pointer to the HW structure |
| * |
| * Clears the register array which contains the VLAN filter table by |
| * setting all the values to 0. |
| **/ |
| void e1000_clear_vfta_generic(struct e1000_hw *hw) |
| { |
| u32 offset; |
| |
| DEBUGFUNC("e1000_clear_vfta_generic"); |
| |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| /** |
| * e1000_write_vfta_generic - Write value to VLAN filter table |
| * @hw: pointer to the HW structure |
| * @offset: register offset in VLAN filter table |
| * @value: register value written to VLAN filter table |
| * |
| * Writes value at the given offset in the register array which stores |
| * the VLAN filter table. |
| **/ |
| void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) |
| { |
| DEBUGFUNC("e1000_write_vfta_generic"); |
| |
| E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * e1000_init_rx_addrs_generic - Initialize receive address's |
| * @hw: pointer to the HW structure |
| * @rar_count: receive address registers |
| * |
| * Setup the receive address registers by setting the base receive address |
| * register to the devices MAC address and clearing all the other receive |
| * address registers to 0. |
| **/ |
| void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) |
| { |
| u32 i; |
| u8 mac_addr[ETH_ADDR_LEN] = {0}; |
| |
| DEBUGFUNC("e1000_init_rx_addrs_generic"); |
| |
| /* Setup the receive address */ |
| DEBUGOUT("Programming MAC Address into RAR[0]"); |
| |
| hw->mac.ops.rar_set(hw, hw->mac.addr, 0); |
| |
| /* Zero out the other (rar_entry_count - 1) receive addresses */ |
| DEBUGOUT1("Clearing RAR[1-%u]", rar_count-1); |
| for (i = 1; i < rar_count; i++) |
| hw->mac.ops.rar_set(hw, mac_addr, i); |
| } |
| |
| /** |
| * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr |
| * @hw: pointer to the HW structure |
| * |
| * Checks the nvm for an alternate MAC address. An alternate MAC address |
| * can be setup by pre-boot software and must be treated like a permanent |
| * address and must override the actual permanent MAC address. If an |
| * alternate MAC address is found it is programmed into RAR0, replacing |
| * the permanent address that was installed into RAR0 by the Si on reset. |
| * This function will return SUCCESS unless it encounters an error while |
| * reading the EEPROM. |
| **/ |
| s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) |
| { |
| u32 i; |
| s32 ret_val; |
| u16 offset, nvm_alt_mac_addr_offset, nvm_data; |
| u8 alt_mac_addr[ETH_ADDR_LEN]; |
| |
| DEBUGFUNC("e1000_check_alt_mac_addr_generic"); |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* not supported on older hardware or 82573 */ |
| if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573)) |
| return E1000_SUCCESS; |
| |
| /* Alternate MAC address is handled by the option ROM for 82580 |
| * and newer. SW support not required. |
| */ |
| if (hw->mac.type >= e1000_82580) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, |
| &nvm_alt_mac_addr_offset); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error"); |
| return ret_val; |
| } |
| |
| if ((nvm_alt_mac_addr_offset == 0xFFFF) || |
| (nvm_alt_mac_addr_offset == 0x0000)) |
| /* There is no Alternate MAC Address */ |
| return E1000_SUCCESS; |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; |
| if (hw->bus.func == E1000_FUNC_2) |
| nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; |
| |
| if (hw->bus.func == E1000_FUNC_3) |
| nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; |
| for (i = 0; i < ETH_ADDR_LEN; i += 2) { |
| offset = nvm_alt_mac_addr_offset + (i >> 1); |
| ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error"); |
| return ret_val; |
| } |
| |
| alt_mac_addr[i] = (u8)(nvm_data & 0xFF); |
| alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); |
| } |
| |
| /* if multicast bit is set, the alternate address will not be used */ |
| if (alt_mac_addr[0] & 0x01) { |
| DEBUGOUT("Ignoring Alternate Mac Address with MC bit set"); |
| return E1000_SUCCESS; |
| } |
| |
| /* We have a valid alternate MAC address, and we want to treat it the |
| * same as the normal permanent MAC address stored by the HW into the |
| * RAR. Do this by mapping this address into RAR0. |
| */ |
| hw->mac.ops.rar_set(hw, alt_mac_addr, 0); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_rar_set_generic - Set receive address register |
| * @hw: pointer to the HW structure |
| * @addr: pointer to the receive address |
| * @index: receive address array register |
| * |
| * Sets the receive address array register at index to the address passed |
| * in by addr. |
| **/ |
| static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) |
| { |
| u32 rar_low, rar_high; |
| |
| DEBUGFUNC("e1000_rar_set_generic"); |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
| ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
| |
| rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
| |
| /* If MAC address zero, no need to set the AV bit */ |
| if (rar_low || rar_high) |
| rar_high |= E1000_RAH_AV; |
| |
| /* Some bridges will combine consecutive 32-bit writes into |
| * a single burst write, which will malfunction on some parts. |
| * The flushes avoid this. |
| */ |
| E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); |
| E1000_WRITE_FLUSH(hw); |
| E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); |
| E1000_WRITE_FLUSH(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_hash_mc_addr_generic - Generate a multicast hash value |
| * @hw: pointer to the HW structure |
| * @mc_addr: pointer to a multicast address |
| * |
| * Generates a multicast address hash value which is used to determine |
| * the multicast filter table array address and new table value. |
| **/ |
| u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) |
| { |
| u32 hash_value, hash_mask; |
| u8 bit_shift = 0; |
| |
| DEBUGFUNC("e1000_hash_mc_addr_generic"); |
| |
| /* Register count multiplied by bits per register */ |
| hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
| |
| /* For a mc_filter_type of 0, bit_shift is the number of left-shifts |
| * where 0xFF would still fall within the hash mask. |
| */ |
| while (hash_mask >> bit_shift != 0xFF) |
| bit_shift++; |
| |
| /* The portion of the address that is used for the hash table |
| * is determined by the mc_filter_type setting. |
| * The algorithm is such that there is a total of 8 bits of shifting. |
| * The bit_shift for a mc_filter_type of 0 represents the number of |
| * left-shifts where the MSB of mc_addr[5] would still fall within |
| * the hash_mask. Case 0 does this exactly. Since there are a total |
| * of 8 bits of shifting, then mc_addr[4] will shift right the |
| * remaining number of bits. Thus 8 - bit_shift. The rest of the |
| * cases are a variation of this algorithm...essentially raising the |
| * number of bits to shift mc_addr[5] left, while still keeping the |
| * 8-bit shifting total. |
| * |
| * For example, given the following Destination MAC Address and an |
| * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), |
| * we can see that the bit_shift for case 0 is 4. These are the hash |
| * values resulting from each mc_filter_type... |
| * [0] [1] [2] [3] [4] [5] |
| * 01 AA 00 12 34 56 |
| * LSB MSB |
| * |
| * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 |
| * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 |
| * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 |
| * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 |
| */ |
| switch (hw->mac.mc_filter_type) { |
| default: |
| case 0: |
| break; |
| case 1: |
| bit_shift += 1; |
| break; |
| case 2: |
| bit_shift += 2; |
| break; |
| case 3: |
| bit_shift += 4; |
| break; |
| } |
| |
| hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
| (((u16) mc_addr[5]) << bit_shift))); |
| |
| return hash_value; |
| } |
| |
| /** |
| * e1000_update_mc_addr_list_generic - Update Multicast addresses |
| * @hw: pointer to the HW structure |
| * @mc_addr_list: array of multicast addresses to program |
| * @mc_addr_count: number of multicast addresses to program |
| * |
| * Updates entire Multicast Table Array. |
| * The caller must have a packed mc_addr_list of multicast addresses. |
| **/ |
| void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, |
| u8 *mc_addr_list, u32 mc_addr_count) |
| { |
| u32 hash_value, hash_bit, hash_reg; |
| int i; |
| |
| DEBUGFUNC("e1000_update_mc_addr_list_generic"); |
| |
| /* clear mta_shadow */ |
| memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); |
| |
| /* update mta_shadow from mc_addr_list */ |
| for (i = 0; (u32) i < mc_addr_count; i++) { |
| hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); |
| |
| hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); |
| hash_bit = hash_value & 0x1F; |
| |
| hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); |
| mc_addr_list += (ETH_ADDR_LEN); |
| } |
| |
| /* replace the entire MTA table */ |
| for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value |
| * @hw: pointer to the HW structure |
| * |
| * In certain situations, a system BIOS may report that the PCIx maximum |
| * memory read byte count (MMRBC) value is higher than than the actual |
| * value. We check the PCIx command register with the current PCIx status |
| * register. |
| **/ |
| void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) |
| { |
| u16 cmd_mmrbc; |
| u16 pcix_cmd; |
| u16 pcix_stat_hi_word; |
| u16 stat_mmrbc; |
| |
| DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); |
| |
| /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ |
| if (hw->bus.type != e1000_bus_type_pcix) |
| return; |
| |
| e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); |
| e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); |
| cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> |
| PCIX_COMMAND_MMRBC_SHIFT; |
| stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| PCIX_STATUS_HI_MMRBC_SHIFT; |
| if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| if (cmd_mmrbc > stat_mmrbc) { |
| pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; |
| pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); |
| } |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the base hardware counters by reading the counter registers. |
| **/ |
| void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); |
| |
| E1000_READ_REG(hw, E1000_CRCERRS); |
| E1000_READ_REG(hw, E1000_SYMERRS); |
| E1000_READ_REG(hw, E1000_MPC); |
| E1000_READ_REG(hw, E1000_SCC); |
| E1000_READ_REG(hw, E1000_ECOL); |
| E1000_READ_REG(hw, E1000_MCC); |
| E1000_READ_REG(hw, E1000_LATECOL); |
| E1000_READ_REG(hw, E1000_COLC); |
| E1000_READ_REG(hw, E1000_DC); |
| E1000_READ_REG(hw, E1000_SEC); |
| E1000_READ_REG(hw, E1000_RLEC); |
| E1000_READ_REG(hw, E1000_XONRXC); |
| E1000_READ_REG(hw, E1000_XONTXC); |
| E1000_READ_REG(hw, E1000_XOFFRXC); |
| E1000_READ_REG(hw, E1000_XOFFTXC); |
| E1000_READ_REG(hw, E1000_FCRUC); |
| E1000_READ_REG(hw, E1000_GPRC); |
| E1000_READ_REG(hw, E1000_BPRC); |
| E1000_READ_REG(hw, E1000_MPRC); |
| E1000_READ_REG(hw, E1000_GPTC); |
| E1000_READ_REG(hw, E1000_GORCL); |
| E1000_READ_REG(hw, E1000_GORCH); |
| E1000_READ_REG(hw, E1000_GOTCL); |
| E1000_READ_REG(hw, E1000_GOTCH); |
| E1000_READ_REG(hw, E1000_RNBC); |
| E1000_READ_REG(hw, E1000_RUC); |
| E1000_READ_REG(hw, E1000_RFC); |
| E1000_READ_REG(hw, E1000_ROC); |
| E1000_READ_REG(hw, E1000_RJC); |
| E1000_READ_REG(hw, E1000_TORL); |
| E1000_READ_REG(hw, E1000_TORH); |
| E1000_READ_REG(hw, E1000_TOTL); |
| E1000_READ_REG(hw, E1000_TOTH); |
| E1000_READ_REG(hw, E1000_TPR); |
| E1000_READ_REG(hw, E1000_TPT); |
| E1000_READ_REG(hw, E1000_MPTC); |
| E1000_READ_REG(hw, E1000_BPTC); |
| } |
| |
| /** |
| * e1000_check_for_copper_link_generic - Check for link (Copper) |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see of the link status of the hardware has changed. If a |
| * change in link status has been detected, then we read the PHY registers |
| * to get the current speed/duplex if link exists. |
| **/ |
| s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| bool link; |
| |
| DEBUGFUNC("e1000_check_for_copper_link"); |
| |
| /* We only want to go out to the PHY registers to see if Auto-Neg |
| * has completed and/or if our link status has changed. The |
| * get_link_status flag is set upon receiving a Link Status |
| * Change or Rx Sequence Error interrupt. |
| */ |
| if (!mac->get_link_status) |
| return E1000_SUCCESS; |
| |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) |
| return E1000_SUCCESS; /* No link detected */ |
| |
| mac->get_link_status = FALSE; |
| |
| /* Check if there was DownShift, must be checked |
| * immediately after link-up |
| */ |
| e1000_check_downshift_generic(hw); |
| |
| /* If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!mac->autoneg) |
| return -E1000_ERR_CONFIG; |
| |
| /* Auto-Neg is enabled. Auto Speed Detection takes care |
| * of MAC speed/duplex configuration. So we only need to |
| * configure Collision Distance in the MAC. |
| */ |
| mac->ops.config_collision_dist(hw); |
| |
| /* Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = e1000_config_fc_after_link_up_generic(hw); |
| if (ret_val) |
| DEBUGOUT("Error configuring flow control"); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_for_fiber_link_generic - Check for link (Fiber) |
| * @hw: pointer to the HW structure |
| * |
| * Checks for link up on the hardware. If link is not up and we have |
| * a signal, then we need to force link up. |
| **/ |
| s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 rxcw; |
| u32 ctrl; |
| u32 status; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_check_for_fiber_link_generic"); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| rxcw = E1000_READ_REG(hw, E1000_RXCW); |
| |
| /* If we don't have link (auto-negotiation failed or link partner |
| * cannot auto-negotiate), the cable is plugged in (we have signal), |
| * and our link partner is not trying to auto-negotiate with us (we |
| * are receiving idles or data), we need to force link up. We also |
| * need to give auto-negotiation time to complete, in case the cable |
| * was just plugged in. The autoneg_failed flag does this. |
| */ |
| /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
| if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && |
| !(rxcw & E1000_RXCW_C)) { |
| if (!mac->autoneg_failed) { |
| mac->autoneg_failed = TRUE; |
| return E1000_SUCCESS; |
| } |
| DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link."); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000_config_fc_after_link_up_generic(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring flow control"); |
| return ret_val; |
| } |
| } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| /* If we are forcing link and we are receiving /C/ ordered |
| * sets, re-enable auto-negotiation in the TXCW register |
| * and disable forced link in the Device Control register |
| * in an attempt to auto-negotiate with our link partner. |
| */ |
| DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link."); |
| E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); |
| E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| |
| mac->serdes_has_link = TRUE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_check_for_serdes_link_generic - Check for link (Serdes) |
| * @hw: pointer to the HW structure |
| * |
| * Checks for link up on the hardware. If link is not up and we have |
| * a signal, then we need to force link up. |
| **/ |
| s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 rxcw; |
| u32 ctrl; |
| u32 status; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_check_for_serdes_link_generic"); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| rxcw = E1000_READ_REG(hw, E1000_RXCW); |
| |
| /* If we don't have link (auto-negotiation failed or link partner |
| * cannot auto-negotiate), and our link partner is not trying to |
| * auto-negotiate with us (we are receiving idles or data), |
| * we need to force link up. We also need to give auto-negotiation |
| * time to complete. |
| */ |
| /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
| if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { |
| if (!mac->autoneg_failed) { |
| mac->autoneg_failed = TRUE; |
| return E1000_SUCCESS; |
| } |
| DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link."); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000_config_fc_after_link_up_generic(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring flow control"); |
| return ret_val; |
| } |
| } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| /* If we are forcing link and we are receiving /C/ ordered |
| * sets, re-enable auto-negotiation in the TXCW register |
| * and disable forced link in the Device Control register |
| * in an attempt to auto-negotiate with our link partner. |
| */ |
| DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link."); |
| E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); |
| E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| |
| mac->serdes_has_link = TRUE; |
| } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { |
| /* If we force link for non-auto-negotiation switch, check |
| * link status based on MAC synchronization for internal |
| * serdes media type. |
| */ |
| /* SYNCH bit and IV bit are sticky. */ |
| usec_delay(10); |
| rxcw = E1000_READ_REG(hw, E1000_RXCW); |
| if (rxcw & E1000_RXCW_SYNCH) { |
| if (!(rxcw & E1000_RXCW_IV)) { |
| mac->serdes_has_link = TRUE; |
| DEBUGOUT("SERDES: Link up - forced."); |
| } |
| } else { |
| mac->serdes_has_link = FALSE; |
| DEBUGOUT("SERDES: Link down - force failed."); |
| } |
| } |
| |
| if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| if (status & E1000_STATUS_LU) { |
| /* SYNCH bit and IV bit are sticky, so reread rxcw. */ |
| usec_delay(10); |
| rxcw = E1000_READ_REG(hw, E1000_RXCW); |
| if (rxcw & E1000_RXCW_SYNCH) { |
| if (!(rxcw & E1000_RXCW_IV)) { |
| mac->serdes_has_link = TRUE; |
| DEBUGOUT("SERDES: Link up - autoneg completed successfully."); |
| } else { |
| mac->serdes_has_link = FALSE; |
| DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg."); |
| } |
| } else { |
| mac->serdes_has_link = FALSE; |
| DEBUGOUT("SERDES: Link down - no sync."); |
| } |
| } else { |
| mac->serdes_has_link = FALSE; |
| DEBUGOUT("SERDES: Link down - autoneg failed"); |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_default_fc_generic - Set flow control default values |
| * @hw: pointer to the HW structure |
| * |
| * Read the EEPROM for the default values for flow control and store the |
| * values. |
| **/ |
| s32 e1000_set_default_fc_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 nvm_data; |
| u16 nvm_offset = 0; |
| |
| DEBUGFUNC("e1000_set_default_fc_generic"); |
| |
| /* Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| if (hw->mac.type == e1000_i350) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); |
| ret_val = hw->nvm.ops.read(hw, |
| NVM_INIT_CONTROL2_REG + |
| nvm_offset, |
| 1, &nvm_data); |
| } else { |
| ret_val = hw->nvm.ops.read(hw, |
| NVM_INIT_CONTROL2_REG, |
| 1, &nvm_data); |
| } |
| |
| |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error"); |
| return ret_val; |
| } |
| |
| if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) |
| hw->fc.requested_mode = e1000_fc_none; |
| else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == |
| NVM_WORD0F_ASM_DIR) |
| hw->fc.requested_mode = e1000_fc_tx_pause; |
| else |
| hw->fc.requested_mode = e1000_fc_full; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_link_generic - Setup flow control and link settings |
| * @hw: pointer to the HW structure |
| * |
| * Determines which flow control settings to use, then configures flow |
| * control. Calls the appropriate media-specific link configuration |
| * function. Assuming the adapter has a valid link partner, a valid link |
| * should be established. Assumes the hardware has previously been reset |
| * and the transmitter and receiver are not enabled. |
| **/ |
| s32 e1000_setup_link_generic(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_setup_link_generic"); |
| |
| /* In the case of the phy reset being blocked, we already have a link. |
| * We do not need to set it up again. |
| */ |
| if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) |
| return E1000_SUCCESS; |
| |
| /* If requested flow control is set to default, set flow control |
| * based on the EEPROM flow control settings. |
| */ |
| if (hw->fc.requested_mode == e1000_fc_default) { |
| ret_val = e1000_set_default_fc_generic(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Save off the requested flow control mode for use later. Depending |
| * on the link partner's capabilities, we may or may not use this mode. |
| */ |
| hw->fc.current_mode = hw->fc.requested_mode; |
| |
| DEBUGOUT1("After fix-ups FlowControl is now = %x", |
| hw->fc.current_mode); |
| |
| /* Call the necessary media_type subroutine to configure the link. */ |
| ret_val = hw->mac.ops.setup_physical_interface(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| DEBUGOUT("Initializing the Flow Control address, type and timer regs"); |
| E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); |
| E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| |
| E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); |
| |
| return e1000_set_fc_watermarks_generic(hw); |
| } |
| |
| /** |
| * e1000_commit_fc_settings_generic - Configure flow control |
| * @hw: pointer to the HW structure |
| * |
| * Write the flow control settings to the Transmit Config Word Register (TXCW) |
| * base on the flow control settings in e1000_mac_info. |
| **/ |
| s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 txcw; |
| |
| DEBUGFUNC("e1000_commit_fc_settings_generic"); |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the device accordingly. If auto-negotiation is enabled, then |
| * software will have to set the "PAUSE" bits to the correct value in |
| * the Transmit Config Word Register (TXCW) and re-start auto- |
| * negotiation. However, if auto-negotiation is disabled, then |
| * software will have to manually configure the two flow control enable |
| * bits in the CTRL register. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but we |
| * do not support receiving pause frames). |
| * 3: Both Rx and Tx flow control (symmetric) are enabled. |
| */ |
| switch (hw->fc.current_mode) { |
| case e1000_fc_none: |
| /* Flow control completely disabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| break; |
| case e1000_fc_rx_pause: |
| /* Rx Flow control is enabled and Tx Flow control is disabled |
| * by a software over-ride. Since there really isn't a way to |
| * advertise that we are capable of Rx Pause ONLY, we will |
| * advertise that we support both symmetric and asymmetric Rx |
| * PAUSE. Later, we will disable the adapter's ability to send |
| * PAUSE frames. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| case e1000_fc_tx_pause: |
| /* Tx Flow control is enabled, and Rx Flow control is disabled, |
| * by a software over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| break; |
| case e1000_fc_full: |
| /* Flow control (both Rx and Tx) is enabled by a software |
| * over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly"); |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_TXCW, txcw); |
| mac->txcw = txcw; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_poll_fiber_serdes_link_generic - Poll for link up |
| * @hw: pointer to the HW structure |
| * |
| * Polls for link up by reading the status register, if link fails to come |
| * up with auto-negotiation, then the link is forced if a signal is detected. |
| **/ |
| s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 i, status; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); |
| |
| /* If we have a signal (the cable is plugged in, or assumed TRUE for |
| * serdes media) then poll for a "Link-Up" indication in the Device |
| * Status Register. Time-out if a link isn't seen in 500 milliseconds |
| * seconds (Auto-negotiation should complete in less than 500 |
| * milliseconds even if the other end is doing it in SW). |
| */ |
| for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { |
| msec_delay(10); |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| if (status & E1000_STATUS_LU) |
| break; |
| } |
| if (i == FIBER_LINK_UP_LIMIT) { |
| DEBUGOUT("Never got a valid link from auto-neg!!!"); |
| mac->autoneg_failed = TRUE; |
| /* AutoNeg failed to achieve a link, so we'll call |
| * mac->check_for_link. This routine will force the |
| * link up if we detect a signal. This will allow us to |
| * communicate with non-autonegotiating link partners. |
| */ |
| ret_val = mac->ops.check_for_link(hw); |
| if (ret_val) { |
| DEBUGOUT("Error while checking for link"); |
| return ret_val; |
| } |
| mac->autoneg_failed = FALSE; |
| } else { |
| mac->autoneg_failed = FALSE; |
| DEBUGOUT("Valid Link Found"); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes |
| * @hw: pointer to the HW structure |
| * |
| * Configures collision distance and flow control for fiber and serdes |
| * links. Upon successful setup, poll for link. |
| **/ |
| s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| |
| /* Take the link out of reset */ |
| ctrl &= ~E1000_CTRL_LRST; |
| |
| hw->mac.ops.config_collision_dist(hw); |
| |
| ret_val = e1000_commit_fc_settings_generic(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Since auto-negotiation is enabled, take the link out of reset (the |
| * link will be in reset, because we previously reset the chip). This |
| * will restart auto-negotiation. If auto-negotiation is successful |
| * then the link-up status bit will be set and the flow control enable |
| * bits (RFCE and TFCE) will be set according to their negotiated value. |
| */ |
| DEBUGOUT("Auto-negotiation enabled"); |
| |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| msec_delay(1); |
| |
| /* For these adapters, the SW definable pin 1 is set when the optics |
| * detect a signal. If we have a signal, then poll for a "Link-Up" |
| * indication. |
| */ |
| if (hw->phy.media_type == e1000_media_type_internal_serdes || |
| (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { |
| ret_val = e1000_poll_fiber_serdes_link_generic(hw); |
| } else { |
| DEBUGOUT("No signal detected"); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_config_collision_dist_generic - Configure collision distance |
| * @hw: pointer to the HW structure |
| * |
| * Configures the collision distance to the default value and is used |
| * during link setup. |
| **/ |
| static void e1000_config_collision_dist_generic(struct e1000_hw *hw) |
| { |
| u32 tctl; |
| |
| DEBUGFUNC("e1000_config_collision_dist_generic"); |
| |
| tctl = E1000_READ_REG(hw, E1000_TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| |
| E1000_WRITE_REG(hw, E1000_TCTL, tctl); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks |
| * @hw: pointer to the HW structure |
| * |
| * Sets the flow control high/low threshold (watermark) registers. If |
| * flow control XON frame transmission is enabled, then set XON frame |
| * transmission as well. |
| **/ |
| s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) |
| { |
| u32 fcrtl = 0, fcrth = 0; |
| |
| DEBUGFUNC("e1000_set_fc_watermarks_generic"); |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames is not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (hw->fc.current_mode & e1000_fc_tx_pause) { |
| /* We need to set up the Receive Threshold high and low water |
| * marks as well as (optionally) enabling the transmission of |
| * XON frames. |
| */ |
| fcrtl = hw->fc.low_water; |
| if (hw->fc.send_xon) |
| fcrtl |= E1000_FCRTL_XONE; |
| |
| fcrth = hw->fc.high_water; |
| } |
| E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); |
| E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_force_mac_fc_generic - Force the MAC's flow control settings |
| * @hw: pointer to the HW structure |
| * |
| * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the |
| * device control register to reflect the adapter settings. TFCE and RFCE |
| * need to be explicitly set by software when a copper PHY is used because |
| * autonegotiation is managed by the PHY rather than the MAC. Software must |
| * also configure these bits when link is forced on a fiber connection. |
| **/ |
| s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| DEBUGFUNC("e1000_force_mac_fc_generic"); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| |
| /* Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "hw->fc.current_mode" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and Tx flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| DEBUGOUT1("hw->fc.current_mode = %u", hw->fc.current_mode); |
| |
| switch (hw->fc.current_mode) { |
| case e1000_fc_none: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case e1000_fc_rx_pause: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case e1000_fc_tx_pause: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case e1000_fc_full: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_config_fc_after_link_up_generic - Configures flow control after link |
| * @hw: pointer to the HW structure |
| * |
| * Checks the status of auto-negotiation after link up to ensure that the |
| * speed and duplex were not forced. If the link needed to be forced, then |
| * flow control needs to be forced also. If auto-negotiation is enabled |
| * and did not fail, then we configure flow control based on our link |
| * partner. |
| **/ |
| s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val = E1000_SUCCESS; |
| u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; |
| u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; |
| u16 speed, duplex; |
| |
| DEBUGFUNC("e1000_config_fc_after_link_up_generic"); |
| |
| /* Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if (mac->autoneg_failed) { |
| if (hw->phy.media_type == e1000_media_type_fiber || |
| hw->phy.media_type == e1000_media_type_internal_serdes) |
| ret_val = e1000_force_mac_fc_generic(hw); |
| } else { |
| if (hw->phy.media_type == e1000_media_type_copper) |
| ret_val = e1000_force_mac_fc_generic(hw); |
| } |
| |
| if (ret_val) { |
| DEBUGOUT("Error forcing flow control settings"); |
| return ret_val; |
| } |
| |
| /* Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { |
| /* Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { |
| DEBUGOUT("Copper PHY and Auto Neg has not completed."); |
| return ret_val; |
| } |
| |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement |
| * Register (Address 4) and the Auto_Negotiation Base |
| * Page Ability Register (Address 5) to determine how |
| * flow control was negotiated. |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, |
| &mii_nway_adv_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, |
| &mii_nway_lp_ability_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | e1000_fc_none |
| * 0 | 1 | 0 | DC | e1000_fc_none |
| * 0 | 1 | 1 | 0 | e1000_fc_none |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * 1 | 0 | 0 | DC | e1000_fc_none |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * 1 | 1 | 0 | 0 | e1000_fc_none |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| * Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | E1000_fc_full |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* Now we need to check if the user selected Rx ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise Rx |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->fc.requested_mode == e1000_fc_full) { |
| hw->fc.current_mode = e1000_fc_full; |
| DEBUGOUT("Flow Control = FULL."); |
| } else { |
| hw->fc.current_mode = e1000_fc_rx_pause; |
| DEBUGOUT("Flow Control = Rx PAUSE frames only."); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| hw->fc.current_mode = e1000_fc_tx_pause; |
| DEBUGOUT("Flow Control = Tx PAUSE frames only."); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| hw->fc.current_mode = e1000_fc_rx_pause; |
| DEBUGOUT("Flow Control = Rx PAUSE frames only."); |
| } else { |
| /* Per the IEEE spec, at this point flow control |
| * should be disabled. |
| */ |
| hw->fc.current_mode = e1000_fc_none; |
| DEBUGOUT("Flow Control = NONE."); |
| } |
| |
| /* Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); |
| if (ret_val) { |
| DEBUGOUT("Error getting link speed and duplex"); |
| return ret_val; |
| } |
| |
| if (duplex == HALF_DUPLEX) |
| hw->fc.current_mode = e1000_fc_none; |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = e1000_force_mac_fc_generic(hw); |
| if (ret_val) { |
| DEBUGOUT("Error forcing flow control settings"); |
| return ret_val; |
| } |
| } |
| |
| /* Check for the case where we have SerDes media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if ((hw->phy.media_type == e1000_media_type_internal_serdes) && |
| mac->autoneg) { |
| /* Read the PCS_LSTS and check to see if AutoNeg |
| * has completed. |
| */ |
| pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); |
| |
| if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { |
| DEBUGOUT("PCS Auto Neg has not completed."); |
| return ret_val; |
| } |
| |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement |
| * Register (PCS_ANADV) and the Auto_Negotiation Base |
| * Page Ability Register (PCS_LPAB) to determine how |
| * flow control was negotiated. |
| */ |
| pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); |
| pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (PCS_ANADV) and two bits in the Auto Negotiation Base |
| * Page Ability Register (PCS_LPAB) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | e1000_fc_none |
| * 0 | 1 | 0 | DC | e1000_fc_none |
| * 0 | 1 | 1 | 0 | e1000_fc_none |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * 1 | 0 | 0 | DC | e1000_fc_none |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * 1 | 1 | 0 | 0 | e1000_fc_none |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| * Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * |
| */ |
| if ((pcs_adv_reg & E1000_TXCW_PAUSE) && |
| (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { |
| /* Now we need to check if the user selected Rx ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise Rx |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->fc.requested_mode == e1000_fc_full) { |
| hw->fc.current_mode = e1000_fc_full; |
| DEBUGOUT("Flow Control = FULL."); |
| } else { |
| hw->fc.current_mode = e1000_fc_rx_pause; |
| DEBUGOUT("Flow Control = Rx PAUSE frames only."); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| */ |
| else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && |
| (pcs_adv_reg & E1000_TXCW_ASM_DIR) && |
| (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && |
| (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { |
| hw->fc.current_mode = e1000_fc_tx_pause; |
| DEBUGOUT("Flow Control = Tx PAUSE frames only."); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| */ |
| else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && |
| (pcs_adv_reg & E1000_TXCW_ASM_DIR) && |
| !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && |
| (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { |
| hw->fc.current_mode = e1000_fc_rx_pause; |
| DEBUGOUT("Flow Control = Rx PAUSE frames only."); |
| } else { |
| /* Per the IEEE spec, at this point flow control |
| * should be disabled. |
| */ |
| hw->fc.current_mode = e1000_fc_none; |
| DEBUGOUT("Flow Control = NONE."); |
| } |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); |
| pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; |
| E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); |
| |
| ret_val = e1000_force_mac_fc_generic(hw); |
| if (ret_val) { |
| DEBUGOUT("Error forcing flow control settings"); |
| return ret_val; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Read the status register for the current speed/duplex and store the current |
| * speed and duplex for copper connections. |
| **/ |
| s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| u32 status; |
| |
| DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); |
| |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| DEBUGOUT("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| DEBUGOUT("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| DEBUGOUT("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| DEBUGOUT("Full Duplex"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| DEBUGOUT("Half Duplex"); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Sets the speed and duplex to gigabit full duplex (the only possible option) |
| * for fiber/serdes links. |
| **/ |
| s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, |
| u16 *speed, u16 *duplex) |
| { |
| DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); |
| |
| *speed = SPEED_1000; |
| *duplex = FULL_DUPLEX; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_auto_rd_done_generic - Check for auto read completion |
| * @hw: pointer to the HW structure |
| * |
| * Check EEPROM for Auto Read done bit. |
| **/ |
| s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) |
| { |
| s32 i = 0; |
| |
| DEBUGFUNC("e1000_get_auto_rd_done_generic"); |
| |
| while (i < AUTO_READ_DONE_TIMEOUT) { |
| if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) |
| break; |
| msec_delay(1); |
| i++; |
| } |
| |
| if (i == AUTO_READ_DONE_TIMEOUT) { |
| DEBUGOUT("Auto read by HW from NVM has not completed."); |
| return -E1000_ERR_RESET; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_valid_led_default_generic - Verify a valid default LED config |
| * @hw: pointer to the HW structure |
| * @data: pointer to the NVM (EEPROM) |
| * |
| * Read the EEPROM for the current default LED configuration. If the |
| * LED configuration is not valid, set to a valid LED configuration. |
| **/ |
| s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_valid_led_default_generic"); |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error"); |
| return ret_val; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) |
| *data = ID_LED_DEFAULT; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_id_led_init_generic - |
| * @hw: pointer to the HW structure |
| * |
| **/ |
| s32 e1000_id_led_init_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| const u32 ledctl_mask = 0x000000FF; |
| const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
| const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
| u16 data, i, temp; |
| const u16 led_mask = 0x0F; |
| |
| DEBUGFUNC("e1000_id_led_init_generic"); |
| |
| ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
| if (ret_val) |
| return ret_val; |
| |
| mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); |
| mac->ledctl_mode1 = mac->ledctl_default; |
| mac->ledctl_mode2 = mac->ledctl_default; |
| |
| for (i = 0; i < 4; i++) { |
| temp = (data >> (i << 2)) & led_mask; |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode1 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode1 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode2 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode2 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_led_generic - Configures SW controllable LED |
| * @hw: pointer to the HW structure |
| * |
| * This prepares the SW controllable LED for use and saves the current state |
| * of the LED so it can be later restored. |
| **/ |
| s32 e1000_setup_led_generic(struct e1000_hw *hw) |
| { |
| u32 ledctl; |
| |
| DEBUGFUNC("e1000_setup_led_generic"); |
| |
| if (hw->mac.ops.setup_led != e1000_setup_led_generic) |
| return -E1000_ERR_CONFIG; |
| |
| if (hw->phy.media_type == e1000_media_type_fiber) { |
| ledctl = E1000_READ_REG(hw, E1000_LEDCTL); |
| hw->mac.ledctl_default = ledctl; |
| /* Turn off LED0 */ |
| ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | |
| E1000_LEDCTL_LED0_MODE_MASK); |
| ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
| E1000_LEDCTL_LED0_MODE_SHIFT); |
| E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); |
| } else if (hw->phy.media_type == e1000_media_type_copper) { |
| E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_cleanup_led_generic - Set LED config to default operation |
| * @hw: pointer to the HW structure |
| * |
| * Remove the current LED configuration and set the LED configuration |
| * to the default value, saved from the EEPROM. |
| **/ |
| s32 e1000_cleanup_led_generic(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_cleanup_led_generic"); |
| |
| E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_blink_led_generic - Blink LED |
| * @hw: pointer to the HW structure |
| * |
| * Blink the LEDs which are set to be on. |
| **/ |
| s32 e1000_blink_led_generic(struct e1000_hw *hw) |
| { |
| u32 ledctl_blink = 0; |
| u32 i; |
| |
| DEBUGFUNC("e1000_blink_led_generic"); |
| |
| if (hw->phy.media_type == e1000_media_type_fiber) { |
| /* always blink LED0 for PCI-E fiber */ |
| ledctl_blink = E1000_LEDCTL_LED0_BLINK | |
| (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); |
| } else { |
| /* Set the blink bit for each LED that's "on" (0x0E) |
| * (or "off" if inverted) in ledctl_mode2. The blink |
| * logic in hardware only works when mode is set to "on" |
| * so it must be changed accordingly when the mode is |
| * "off" and inverted. |
| */ |
| ledctl_blink = hw->mac.ledctl_mode2; |
| for (i = 0; i < 32; i += 8) { |
| u32 mode = (hw->mac.ledctl_mode2 >> i) & |
| E1000_LEDCTL_LED0_MODE_MASK; |
| u32 led_default = hw->mac.ledctl_default >> i; |
| |
| if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && |
| (mode == E1000_LEDCTL_MODE_LED_ON)) || |
| ((led_default & E1000_LEDCTL_LED0_IVRT) && |
| (mode == E1000_LEDCTL_MODE_LED_OFF))) { |
| ledctl_blink &= |
| ~(E1000_LEDCTL_LED0_MODE_MASK << i); |
| ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | |
| E1000_LEDCTL_MODE_LED_ON) << i; |
| } |
| } |
| } |
| |
| E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_led_on_generic - Turn LED on |
| * @hw: pointer to the HW structure |
| * |
| * Turn LED on. |
| **/ |
| s32 e1000_led_on_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| DEBUGFUNC("e1000_led_on_generic"); |
| |
| switch (hw->phy.media_type) { |
| case e1000_media_type_fiber: |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| break; |
| case e1000_media_type_copper: |
| E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); |
| break; |
| default: |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_led_off_generic - Turn LED off |
| * @hw: pointer to the HW structure |
| * |
| * Turn LED off. |
| **/ |
| s32 e1000_led_off_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| DEBUGFUNC("e1000_led_off_generic"); |
| |
| switch (hw->phy.media_type) { |
| case e1000_media_type_fiber: |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| break; |
| case e1000_media_type_copper: |
| E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); |
| break; |
| default: |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities |
| * @hw: pointer to the HW structure |
| * @no_snoop: bitmap of snoop events |
| * |
| * Set the PCI-express register to snoop for events enabled in 'no_snoop'. |
| **/ |
| void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) |
| { |
| u32 gcr; |
| |
| DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); |
| |
| if (hw->bus.type != e1000_bus_type_pci_express) |
| return; |
| |
| if (no_snoop) { |
| gcr = E1000_READ_REG(hw, E1000_GCR); |
| gcr &= ~(PCIE_NO_SNOOP_ALL); |
| gcr |= no_snoop; |
| E1000_WRITE_REG(hw, E1000_GCR, gcr); |
| } |
| } |
| |
| /** |
| * e1000_disable_pcie_master_generic - Disables PCI-express master access |
| * @hw: pointer to the HW structure |
| * |
| * Returns E1000_SUCCESS if successful, else returns -10 |
| * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused |
| * the master requests to be disabled. |
| * |
| * Disables PCI-Express master access and verifies there are no pending |
| * requests. |
| **/ |
| s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 timeout = MASTER_DISABLE_TIMEOUT; |
| |
| DEBUGFUNC("e1000_disable_pcie_master_generic"); |
| |
| if (hw->bus.type != e1000_bus_type_pci_express) |
| return E1000_SUCCESS; |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| while (timeout) { |
| if (!(E1000_READ_REG(hw, E1000_STATUS) & |
| E1000_STATUS_GIO_MASTER_ENABLE) || |
| E1000_REMOVED(hw->hw_addr)) |
| break; |
| usec_delay(100); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Master requests are pending."); |
| return -E1000_ERR_MASTER_REQUESTS_PENDING; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing |
| * @hw: pointer to the HW structure |
| * |
| * Reset the Adaptive Interframe Spacing throttle to default values. |
| **/ |
| void e1000_reset_adaptive_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| DEBUGFUNC("e1000_reset_adaptive_generic"); |
| |
| if (!mac->adaptive_ifs) { |
| DEBUGOUT("Not in Adaptive IFS mode!"); |
| return; |
| } |
| |
| mac->current_ifs_val = 0; |
| mac->ifs_min_val = IFS_MIN; |
| mac->ifs_max_val = IFS_MAX; |
| mac->ifs_step_size = IFS_STEP; |
| mac->ifs_ratio = IFS_RATIO; |
| |
| mac->in_ifs_mode = FALSE; |
| E1000_WRITE_REG(hw, E1000_AIT, 0); |
| } |
| |
| /** |
| * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing |
| * @hw: pointer to the HW structure |
| * |
| * Update the Adaptive Interframe Spacing Throttle value based on the |
| * time between transmitted packets and time between collisions. |
| **/ |
| void e1000_update_adaptive_generic(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| DEBUGFUNC("e1000_update_adaptive_generic"); |
| |
| if (!mac->adaptive_ifs) { |
| DEBUGOUT("Not in Adaptive IFS mode!"); |
| return; |
| } |
| |
| if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { |
| if (mac->tx_packet_delta > MIN_NUM_XMITS) { |
| mac->in_ifs_mode = TRUE; |
| if (mac->current_ifs_val < mac->ifs_max_val) { |
| if (!mac->current_ifs_val) |
| mac->current_ifs_val = mac->ifs_min_val; |
| else |
| mac->current_ifs_val += |
| mac->ifs_step_size; |
| E1000_WRITE_REG(hw, E1000_AIT, |
| mac->current_ifs_val); |
| } |
| } |
| } else { |
| if (mac->in_ifs_mode && |
| (mac->tx_packet_delta <= MIN_NUM_XMITS)) { |
| mac->current_ifs_val = 0; |
| mac->in_ifs_mode = FALSE; |
| E1000_WRITE_REG(hw, E1000_AIT, 0); |
| } |
| } |
| } |
| |
| /** |
| * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings |
| * @hw: pointer to the HW structure |
| * |
| * Verify that when not using auto-negotiation that MDI/MDIx is correctly |
| * set, which is forced to MDI mode only. |
| **/ |
| static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_validate_mdi_setting_generic"); |
| |
| if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { |
| DEBUGOUT("Invalid MDI setting detected"); |
| hw->phy.mdix = 1; |
| return -E1000_ERR_CONFIG; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings |
| * @hw: pointer to the HW structure |
| * |
| * Validate the MDI/MDIx setting, allowing for auto-crossover during forced |
| * operation. |
| **/ |
| s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) |
| { |
| DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register |
| * @hw: pointer to the HW structure |
| * @reg: 32bit register offset such as E1000_SCTL |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Writes an address/data control type register. There are several of these |
| * and they all have the format address << 8 | data and bit 31 is polled for |
| * completion. |
| **/ |
| s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, |
| u32 offset, u8 data) |
| { |
| u32 i, regvalue = 0; |
| |
| DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); |
| |
| /* Set up the address and data */ |
| regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); |
| E1000_WRITE_REG(hw, reg, regvalue); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { |
| usec_delay(5); |
| regvalue = E1000_READ_REG(hw, reg); |
| if (regvalue & E1000_GEN_CTL_READY) |
| break; |
| } |
| if (!(regvalue & E1000_GEN_CTL_READY)) { |
| DEBUGOUT1("Reg %08x did not indicate ready", reg); |
| return -E1000_ERR_PHY; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_hw_semaphore - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| **/ |
| s32 e1000_get_hw_semaphore(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| s32 fw_timeout = hw->nvm.word_size + 1; |
| s32 sw_timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| |
| DEBUGFUNC("e1000_get_hw_semaphore"); |
| |
| /* _82571 */ |
| /* If we have timedout 3 times on trying to acquire |
| * the inter-port SMBI semaphore, there is old code |
| * operating on the other port, and it is not |
| * releasing SMBI. Modify the number of times that |
| * we try for the semaphore to interwork with this |
| * older code. |
| */ |
| if (hw->dev_spec._82571.smb_counter > 2) |
| sw_timeout = 1; |
| |
| |
| /* Get the SW semaphore */ |
| while (i < sw_timeout) { |
| swsm = E1000_READ_REG(hw, E1000_SWSM); |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| |
| usec_delay(50); |
| i++; |
| } |
| |
| if (i == sw_timeout) { |
| DEBUGOUT("Driver can't access device - SMBI bit is set."); |
| hw->dev_spec._82571.smb_counter++; |
| } |
| |
| /* In rare circumstances, the SW semaphore may already be held |
| * unintentionally. Clear the semaphore once before giving up. |
| */ |
| if (hw->dev_spec._82575.clear_semaphore_once) { |
| hw->dev_spec._82575.clear_semaphore_once = FALSE; |
| e1000_put_hw_semaphore(hw); |
| for (i = 0; i < fw_timeout; i++) { |
| swsm = E1000_READ_REG(hw, E1000_SWSM); |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| |
| usec_delay(50); |
| } |
| } |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < fw_timeout; i++) { |
| swsm = E1000_READ_REG(hw, E1000_SWSM); |
| E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) |
| break; |
| |
| usec_delay(50); |
| } |
| |
| if (i == fw_timeout) { |
| /* Release semaphores */ |
| e1000_put_hw_semaphore(hw); |
| DEBUGOUT("Driver can't access the NVM"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_put_hw_semaphore - Release hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Release hardware semaphore used to access the PHY or NVM |
| **/ |
| void e1000_put_hw_semaphore(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| |
| DEBUGFUNC("e1000_put_hw_semaphore"); |
| |
| swsm = E1000_READ_REG(hw, E1000_SWSM); |
| |
| swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
| |
| E1000_WRITE_REG(hw, E1000_SWSM, swsm); |
| } |
| |
| |
| /** |
| * e1000_acquire_swfw_sync - Acquire SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| * will also specify which port we're acquiring the lock for. |
| **/ |
| s32 |
| e1000_acquire_swfw_sync(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| u32 swmask = mask; |
| u32 fwmask = mask << 16; |
| s32 ret_val = E1000_SUCCESS; |
| s32 i = 0, timeout = 200; |
| |
| DEBUGFUNC("e1000_acquire_swfw_sync"); |
| ASSERT_NO_LOCKS(); |
| while (i < timeout) { |
| if (e1000_get_hw_semaphore(hw)) { |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* |
| * Firmware currently using resource (fwmask) |
| * or other software thread using resource (swmask) |
| */ |
| e1000_put_hw_semaphore(hw); |
| msec_delay_irq(5); |
| i++; |
| } |
| |
| if (i == timeout) { |
| DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout."); |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync |= swmask; |
| E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); |
| |
| e1000_put_hw_semaphore(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_swfw_sync - Release SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| * will also specify which port we're releasing the lock for. |
| **/ |
| void |
| e1000_release_swfw_sync(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| |
| DEBUGFUNC("e1000_release_swfw_sync"); |
| |
| while (e1000_get_hw_semaphore(hw) != E1000_SUCCESS) |
| ; /* Empty */ |
| |
| swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); |
| swfw_sync &= ~mask; |
| E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); |
| |
| e1000_put_hw_semaphore(hw); |
| } |
| |