| /****************************************************************************** |
| SPDX-License-Identifier: BSD-3-Clause |
| |
| Copyright (c) 2001-2015, Intel Corporation |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| 3. Neither the name of the Intel Corporation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| |
| ******************************************************************************/ |
| /*$FreeBSD$*/ |
| |
| /* |
| * 82575EB Gigabit Network Connection |
| * 82575EB Gigabit Backplane Connection |
| * 82575GB Gigabit Network Connection |
| * 82576 Gigabit Network Connection |
| * 82576 Quad Port Gigabit Mezzanine Adapter |
| * 82580 Gigabit Network Connection |
| * I350 Gigabit Network Connection |
| */ |
| |
| #include "e1000_api.h" |
| #include "e1000_i210.h" |
| |
| static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); |
| static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); |
| static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); |
| static void e1000_release_phy_82575(struct e1000_hw *hw); |
| static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); |
| static void e1000_release_nvm_82575(struct e1000_hw *hw); |
| static s32 e1000_check_for_link_82575(struct e1000_hw *hw); |
| static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); |
| static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); |
| static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex); |
| static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); |
| static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| u16 *data); |
| static s32 e1000_reset_hw_82575(struct e1000_hw *hw); |
| static s32 e1000_reset_hw_82580(struct e1000_hw *hw); |
| static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, |
| u32 offset, u16 *data); |
| static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, |
| u32 offset, u16 data); |
| static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, |
| bool active); |
| static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, |
| bool active); |
| static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, |
| bool active); |
| static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); |
| static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); |
| static s32 e1000_get_media_type_82575(struct e1000_hw *hw); |
| static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); |
| static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); |
| static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, |
| u32 offset, u16 data); |
| static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); |
| static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, |
| u16 *speed, u16 *duplex); |
| static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); |
| static bool e1000_sgmii_active_82575(struct e1000_hw *hw); |
| static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); |
| static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); |
| static void e1000_config_collision_dist_82575(struct e1000_hw *hw); |
| static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); |
| static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); |
| static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); |
| static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); |
| static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); |
| static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); |
| static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); |
| static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, |
| u16 offset); |
| static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, |
| u16 offset); |
| static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); |
| static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); |
| static void e1000_clear_vfta_i350(struct e1000_hw *hw); |
| |
| static void e1000_i2c_start(struct e1000_hw *hw); |
| static void e1000_i2c_stop(struct e1000_hw *hw); |
| static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); |
| static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); |
| static s32 e1000_get_i2c_ack(struct e1000_hw *hw); |
| static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); |
| static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); |
| static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); |
| static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); |
| static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); |
| static bool e1000_get_i2c_data(u32 *i2cctl); |
| |
| static const u16 e1000_82580_rxpbs_table[] = { |
| 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; |
| #define E1000_82580_RXPBS_TABLE_SIZE \ |
| (sizeof(e1000_82580_rxpbs_table) / \ |
| sizeof(e1000_82580_rxpbs_table[0])) |
| |
| |
| /** |
| * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO |
| * @hw: pointer to the HW structure |
| * |
| * Called to determine if the I2C pins are being used for I2C or as an |
| * external MDIO interface since the two options are mutually exclusive. |
| **/ |
| static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) |
| { |
| u32 reg = 0; |
| bool ext_mdio = FALSE; |
| |
| DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); |
| |
| switch (hw->mac.type) { |
| case e1000_82575: |
| case e1000_82576: |
| reg = E1000_READ_REG(hw, E1000_MDIC); |
| ext_mdio = !!(reg & E1000_MDIC_DEST); |
| break; |
| case e1000_82580: |
| case e1000_i350: |
| case e1000_i354: |
| case e1000_i210: |
| case e1000_i211: |
| reg = E1000_READ_REG(hw, E1000_MDICNFG); |
| ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); |
| break; |
| default: |
| break; |
| } |
| return ext_mdio; |
| } |
| |
| /** |
| * e1000_init_phy_params_82575 - Init PHY func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| u32 ctrl_ext; |
| |
| DEBUGFUNC("e1000_init_phy_params_82575"); |
| |
| phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; |
| phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; |
| |
| if (hw->phy.media_type != e1000_media_type_copper) { |
| phy->type = e1000_phy_none; |
| goto out; |
| } |
| |
| phy->ops.power_up = e1000_power_up_phy_copper; |
| phy->ops.power_down = e1000_power_down_phy_copper_82575; |
| |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->reset_delay_us = 100; |
| |
| phy->ops.acquire = e1000_acquire_phy_82575; |
| phy->ops.check_reset_block = e1000_check_reset_block_generic; |
| phy->ops.commit = e1000_phy_sw_reset_generic; |
| phy->ops.get_cfg_done = e1000_get_cfg_done_82575; |
| phy->ops.release = e1000_release_phy_82575; |
| |
| ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| |
| if (e1000_sgmii_active_82575(hw)) { |
| phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; |
| ctrl_ext |= E1000_CTRL_I2C_ENA; |
| } else { |
| phy->ops.reset = e1000_phy_hw_reset_generic; |
| ctrl_ext &= ~E1000_CTRL_I2C_ENA; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); |
| e1000_reset_mdicnfg_82580(hw); |
| |
| if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { |
| phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; |
| phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; |
| } else { |
| switch (hw->mac.type) { |
| case e1000_82580: |
| case e1000_i350: |
| case e1000_i354: |
| phy->ops.read_reg = e1000_read_phy_reg_82580; |
| phy->ops.write_reg = e1000_write_phy_reg_82580; |
| break; |
| case e1000_i210: |
| case e1000_i211: |
| phy->ops.read_reg = e1000_read_phy_reg_gs40g; |
| phy->ops.write_reg = e1000_write_phy_reg_gs40g; |
| break; |
| default: |
| phy->ops.read_reg = e1000_read_phy_reg_igp; |
| phy->ops.write_reg = e1000_write_phy_reg_igp; |
| } |
| } |
| |
| /* Set phy->phy_addr and phy->id. */ |
| ret_val = e1000_get_phy_id_82575(hw); |
| |
| /* Verify phy id and set remaining function pointers */ |
| switch (phy->id) { |
| case M88E1543_E_PHY_ID: |
| case M88E1512_E_PHY_ID: |
| case I347AT4_E_PHY_ID: |
| case M88E1112_E_PHY_ID: |
| case M88E1340M_E_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| phy->type = e1000_phy_m88; |
| phy->ops.check_polarity = e1000_check_polarity_m88; |
| phy->ops.get_info = e1000_get_phy_info_m88; |
| if (phy->id == I347AT4_E_PHY_ID || |
| phy->id == M88E1112_E_PHY_ID || |
| phy->id == M88E1340M_E_PHY_ID) |
| phy->ops.get_cable_length = |
| e1000_get_cable_length_m88_gen2; |
| else if (phy->id == M88E1543_E_PHY_ID || |
| phy->id == M88E1512_E_PHY_ID) |
| phy->ops.get_cable_length = |
| e1000_get_cable_length_m88_gen2; |
| else |
| phy->ops.get_cable_length = e1000_get_cable_length_m88; |
| phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; |
| /* Check if this PHY is confgured for media swap. */ |
| if (phy->id == M88E1112_E_PHY_ID) { |
| u16 data; |
| |
| ret_val = phy->ops.write_reg(hw, |
| E1000_M88E1112_PAGE_ADDR, |
| 2); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.read_reg(hw, |
| E1000_M88E1112_MAC_CTRL_1, |
| &data); |
| if (ret_val) |
| goto out; |
| |
| data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> |
| E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; |
| if (data == E1000_M88E1112_AUTO_COPPER_SGMII || |
| data == E1000_M88E1112_AUTO_COPPER_BASEX) |
| hw->mac.ops.check_for_link = |
| e1000_check_for_link_media_swap; |
| } |
| if (phy->id == M88E1512_E_PHY_ID) { |
| ret_val = e1000_initialize_M88E1512_phy(hw); |
| if (ret_val) |
| goto out; |
| } |
| if (phy->id == M88E1543_E_PHY_ID) { |
| ret_val = e1000_initialize_M88E1543_phy(hw); |
| if (ret_val) |
| goto out; |
| } |
| break; |
| case IGP03E1000_E_PHY_ID: |
| case IGP04E1000_E_PHY_ID: |
| phy->type = e1000_phy_igp_3; |
| phy->ops.check_polarity = e1000_check_polarity_igp; |
| phy->ops.get_info = e1000_get_phy_info_igp; |
| phy->ops.get_cable_length = e1000_get_cable_length_igp_2; |
| phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; |
| phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; |
| phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; |
| break; |
| case I82580_I_PHY_ID: |
| case I350_I_PHY_ID: |
| phy->type = e1000_phy_82580; |
| phy->ops.check_polarity = e1000_check_polarity_82577; |
| phy->ops.force_speed_duplex = |
| e1000_phy_force_speed_duplex_82577; |
| phy->ops.get_cable_length = e1000_get_cable_length_82577; |
| phy->ops.get_info = e1000_get_phy_info_82577; |
| phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; |
| phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; |
| break; |
| case I210_I_PHY_ID: |
| phy->type = e1000_phy_i210; |
| phy->ops.check_polarity = e1000_check_polarity_m88; |
| phy->ops.get_info = e1000_get_phy_info_m88; |
| phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; |
| phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; |
| phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; |
| phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; |
| break; |
| default: |
| ret_val = -E1000_ERR_PHY; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_nvm_params_82575 - Init NVM func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = E1000_READ_REG(hw, E1000_EECD); |
| u16 size; |
| |
| DEBUGFUNC("e1000_init_nvm_params_82575"); |
| |
| size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| /* |
| * Added to a constant, "size" becomes the left-shift value |
| * for setting word_size. |
| */ |
| size += NVM_WORD_SIZE_BASE_SHIFT; |
| |
| /* Just in case size is out of range, cap it to the largest |
| * EEPROM size supported |
| */ |
| if (size > 15) |
| size = 15; |
| |
| nvm->word_size = 1 << size; |
| if (hw->mac.type < e1000_i210) { |
| nvm->opcode_bits = 8; |
| nvm->delay_usec = 1; |
| |
| switch (nvm->override) { |
| case e1000_nvm_override_spi_large: |
| nvm->page_size = 32; |
| nvm->address_bits = 16; |
| break; |
| case e1000_nvm_override_spi_small: |
| nvm->page_size = 8; |
| nvm->address_bits = 8; |
| break; |
| default: |
| nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? |
| 16 : 8; |
| break; |
| } |
| if (nvm->word_size == (1 << 15)) |
| nvm->page_size = 128; |
| |
| nvm->type = e1000_nvm_eeprom_spi; |
| } else { |
| nvm->type = e1000_nvm_flash_hw; |
| } |
| |
| /* Function Pointers */ |
| nvm->ops.acquire = e1000_acquire_nvm_82575; |
| nvm->ops.release = e1000_release_nvm_82575; |
| if (nvm->word_size < (1 << 15)) |
| nvm->ops.read = e1000_read_nvm_eerd; |
| else |
| nvm->ops.read = e1000_read_nvm_spi; |
| |
| nvm->ops.write = e1000_write_nvm_spi; |
| nvm->ops.validate = e1000_validate_nvm_checksum_generic; |
| nvm->ops.update = e1000_update_nvm_checksum_generic; |
| nvm->ops.valid_led_default = e1000_valid_led_default_82575; |
| |
| /* override generic family function pointers for specific descendants */ |
| switch (hw->mac.type) { |
| case e1000_82580: |
| nvm->ops.validate = e1000_validate_nvm_checksum_82580; |
| nvm->ops.update = e1000_update_nvm_checksum_82580; |
| break; |
| case e1000_i350: |
| case e1000_i354: |
| nvm->ops.validate = e1000_validate_nvm_checksum_i350; |
| nvm->ops.update = e1000_update_nvm_checksum_i350; |
| break; |
| default: |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_mac_params_82575 - Init MAC func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; |
| |
| DEBUGFUNC("e1000_init_mac_params_82575"); |
| |
| /* Derives media type */ |
| e1000_get_media_type_82575(hw); |
| /* Set mta register count */ |
| mac->mta_reg_count = 128; |
| /* Set uta register count */ |
| mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_RAR_ENTRIES_82575; |
| if (mac->type == e1000_82576) |
| mac->rar_entry_count = E1000_RAR_ENTRIES_82576; |
| if (mac->type == e1000_82580) |
| mac->rar_entry_count = E1000_RAR_ENTRIES_82580; |
| if (mac->type == e1000_i350 || mac->type == e1000_i354) |
| mac->rar_entry_count = E1000_RAR_ENTRIES_I350; |
| |
| /* Enable EEE default settings for EEE supported devices */ |
| if (mac->type >= e1000_i350) |
| dev_spec->eee_disable = FALSE; |
| |
| /* Allow a single clear of the SW semaphore on I210 and newer */ |
| if (mac->type >= e1000_i210) |
| dev_spec->clear_semaphore_once = TRUE; |
| |
| /* Set if part includes ASF firmware */ |
| mac->asf_firmware_present = TRUE; |
| /* FWSM register */ |
| mac->has_fwsm = TRUE; |
| /* ARC supported; valid only if manageability features are enabled. */ |
| mac->arc_subsystem_valid = |
| !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); |
| |
| /* Function pointers */ |
| |
| /* bus type/speed/width */ |
| mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; |
| /* reset */ |
| if (mac->type >= e1000_82580) |
| mac->ops.reset_hw = e1000_reset_hw_82580; |
| else |
| mac->ops.reset_hw = e1000_reset_hw_82575; |
| /* hw initialization */ |
| if ((mac->type == e1000_i210) || (mac->type == e1000_i211)) |
| mac->ops.init_hw = e1000_init_hw_i210; |
| else |
| mac->ops.init_hw = e1000_init_hw_82575; |
| /* link setup */ |
| mac->ops.setup_link = e1000_setup_link_generic; |
| /* physical interface link setup */ |
| mac->ops.setup_physical_interface = |
| (hw->phy.media_type == e1000_media_type_copper) |
| ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; |
| /* physical interface shutdown */ |
| mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; |
| /* physical interface power up */ |
| mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; |
| /* check for link */ |
| mac->ops.check_for_link = e1000_check_for_link_82575; |
| /* read mac address */ |
| mac->ops.read_mac_addr = e1000_read_mac_addr_82575; |
| /* configure collision distance */ |
| mac->ops.config_collision_dist = e1000_config_collision_dist_82575; |
| /* multicast address update */ |
| mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; |
| if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { |
| /* writing VFTA */ |
| mac->ops.write_vfta = e1000_write_vfta_i350; |
| /* clearing VFTA */ |
| mac->ops.clear_vfta = e1000_clear_vfta_i350; |
| } else { |
| /* writing VFTA */ |
| mac->ops.write_vfta = e1000_write_vfta_generic; |
| /* clearing VFTA */ |
| mac->ops.clear_vfta = e1000_clear_vfta_generic; |
| } |
| if (hw->mac.type >= e1000_82580) |
| mac->ops.validate_mdi_setting = |
| e1000_validate_mdi_setting_crossover_generic; |
| /* ID LED init */ |
| mac->ops.id_led_init = e1000_id_led_init_generic; |
| /* blink LED */ |
| mac->ops.blink_led = e1000_blink_led_generic; |
| /* setup LED */ |
| mac->ops.setup_led = e1000_setup_led_generic; |
| /* cleanup LED */ |
| mac->ops.cleanup_led = e1000_cleanup_led_generic; |
| /* turn on/off LED */ |
| mac->ops.led_on = e1000_led_on_generic; |
| mac->ops.led_off = e1000_led_off_generic; |
| /* clear hardware counters */ |
| mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; |
| /* link info */ |
| mac->ops.get_link_up_info = e1000_get_link_up_info_82575; |
| /* acquire SW_FW sync */ |
| mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync; |
| mac->ops.release_swfw_sync = e1000_release_swfw_sync; |
| |
| /* set lan id for port to determine which phy lock to use */ |
| hw->mac.ops.set_lan_id(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_function_pointers_82575 - Init func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * Called to initialize all function pointers and parameters. |
| **/ |
| void e1000_init_function_pointers_82575(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_init_function_pointers_82575"); |
| |
| hw->mac.ops.init_params = e1000_init_mac_params_82575; |
| hw->nvm.ops.init_params = e1000_init_nvm_params_82575; |
| hw->phy.ops.init_params = e1000_init_phy_params_82575; |
| hw->mbx.ops.init_params = e1000_init_mbx_params_pf; |
| } |
| |
| /** |
| * e1000_acquire_phy_82575 - Acquire rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * Acquire access rights to the correct PHY. |
| **/ |
| static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) |
| { |
| u16 mask = E1000_SWFW_PHY0_SM; |
| |
| DEBUGFUNC("e1000_acquire_phy_82575"); |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| mask = E1000_SWFW_PHY1_SM; |
| else if (hw->bus.func == E1000_FUNC_2) |
| mask = E1000_SWFW_PHY2_SM; |
| else if (hw->bus.func == E1000_FUNC_3) |
| mask = E1000_SWFW_PHY3_SM; |
| |
| return hw->mac.ops.acquire_swfw_sync(hw, mask); |
| } |
| |
| /** |
| * e1000_release_phy_82575 - Release rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * A wrapper to release access rights to the correct PHY. |
| **/ |
| static void e1000_release_phy_82575(struct e1000_hw *hw) |
| { |
| u16 mask = E1000_SWFW_PHY0_SM; |
| |
| DEBUGFUNC("e1000_release_phy_82575"); |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| mask = E1000_SWFW_PHY1_SM; |
| else if (hw->bus.func == E1000_FUNC_2) |
| mask = E1000_SWFW_PHY2_SM; |
| else if (hw->bus.func == E1000_FUNC_3) |
| mask = E1000_SWFW_PHY3_SM; |
| |
| hw->mac.ops.release_swfw_sync(hw, mask); |
| } |
| |
| /** |
| * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the PHY register at offset using the serial gigabit media independent |
| * interface and stores the retrieved information in data. |
| **/ |
| static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| u16 *data) |
| { |
| s32 ret_val = -E1000_ERR_PARAM; |
| |
| DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); |
| |
| if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { |
| DEBUGOUT1("PHY Address %u is out of range\n", offset); |
| goto out; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = e1000_read_phy_reg_i2c(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Writes the data to PHY register at the offset using the serial gigabit |
| * media independent interface. |
| **/ |
| static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| u16 data) |
| { |
| s32 ret_val = -E1000_ERR_PARAM; |
| |
| DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); |
| |
| if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { |
| DEBUGOUT1("PHY Address %d is out of range\n", offset); |
| goto out; |
| } |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = e1000_write_phy_reg_i2c(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_phy_id_82575 - Retrieve PHY addr and id |
| * @hw: pointer to the HW structure |
| * |
| * Retrieves the PHY address and ID for both PHY's which do and do not use |
| * sgmi interface. |
| **/ |
| static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| u16 phy_id; |
| u32 ctrl_ext; |
| u32 mdic; |
| |
| DEBUGFUNC("e1000_get_phy_id_82575"); |
| |
| /* some i354 devices need an extra read for phy id */ |
| if (hw->mac.type == e1000_i354) |
| e1000_get_phy_id(hw); |
| |
| /* |
| * For SGMII PHYs, we try the list of possible addresses until |
| * we find one that works. For non-SGMII PHYs |
| * (e.g. integrated copper PHYs), an address of 1 should |
| * work. The result of this function should mean phy->phy_addr |
| * and phy->id are set correctly. |
| */ |
| if (!e1000_sgmii_active_82575(hw)) { |
| phy->addr = 1; |
| ret_val = e1000_get_phy_id(hw); |
| goto out; |
| } |
| |
| if (e1000_sgmii_uses_mdio_82575(hw)) { |
| switch (hw->mac.type) { |
| case e1000_82575: |
| case e1000_82576: |
| mdic = E1000_READ_REG(hw, E1000_MDIC); |
| mdic &= E1000_MDIC_PHY_MASK; |
| phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; |
| break; |
| case e1000_82580: |
| case e1000_i350: |
| case e1000_i354: |
| case e1000_i210: |
| case e1000_i211: |
| mdic = E1000_READ_REG(hw, E1000_MDICNFG); |
| mdic &= E1000_MDICNFG_PHY_MASK; |
| phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; |
| break; |
| default: |
| ret_val = -E1000_ERR_PHY; |
| goto out; |
| break; |
| } |
| ret_val = e1000_get_phy_id(hw); |
| goto out; |
| } |
| |
| /* Power on sgmii phy if it is disabled */ |
| ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, |
| ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); |
| E1000_WRITE_FLUSH(hw); |
| msec_delay(300); |
| |
| /* |
| * The address field in the I2CCMD register is 3 bits and 0 is invalid. |
| * Therefore, we need to test 1-7 |
| */ |
| for (phy->addr = 1; phy->addr < 8; phy->addr++) { |
| ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); |
| if (ret_val == E1000_SUCCESS) { |
| DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", |
| phy_id, phy->addr); |
| /* |
| * At the time of this writing, The M88 part is |
| * the only supported SGMII PHY product. |
| */ |
| if (phy_id == M88_VENDOR) |
| break; |
| } else { |
| DEBUGOUT1("PHY address %u was unreadable\n", |
| phy->addr); |
| } |
| } |
| |
| /* A valid PHY type couldn't be found. */ |
| if (phy->addr == 8) { |
| phy->addr = 0; |
| ret_val = -E1000_ERR_PHY; |
| } else { |
| ret_val = e1000_get_phy_id(hw); |
| } |
| |
| /* restore previous sfp cage power state */ |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset |
| * @hw: pointer to the HW structure |
| * |
| * Resets the PHY using the serial gigabit media independent interface. |
| **/ |
| static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| struct e1000_phy_info *phy = &hw->phy; |
| |
| DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); |
| |
| /* |
| * This isn't a TRUE "hard" reset, but is the only reset |
| * available to us at this time. |
| */ |
| |
| DEBUGOUT("Soft resetting SGMII attached PHY...\n"); |
| |
| if (!(hw->phy.ops.write_reg)) |
| goto out; |
| |
| /* |
| * SFP documentation requires the following to configure the SPF module |
| * to work on SGMII. No further documentation is given. |
| */ |
| ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); |
| if (ret_val) |
| goto out; |
| |
| ret_val = hw->phy.ops.commit(hw); |
| if (ret_val) |
| goto out; |
| |
| if (phy->id == M88E1512_E_PHY_ID) |
| ret_val = e1000_initialize_M88E1512_phy(hw); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state |
| * @hw: pointer to the HW structure |
| * @active: TRUE to enable LPLU, FALSE to disable |
| * |
| * Sets the LPLU D0 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| u16 data; |
| |
| DEBUGFUNC("e1000_set_d0_lplu_state_82575"); |
| |
| if (!(hw->phy.ops.read_reg)) |
| goto out; |
| |
| ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
| if (ret_val) |
| goto out; |
| |
| if (active) { |
| data |= IGP02E1000_PM_D0_LPLU; |
| ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| data); |
| if (ret_val) |
| goto out; |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| goto out; |
| } else { |
| data &= ~IGP02E1000_PM_D0_LPLU; |
| ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| data); |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| goto out; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| goto out; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = phy->ops.read_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| goto out; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = phy->ops.write_reg(hw, |
| IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| goto out; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state |
| * @hw: pointer to the HW structure |
| * @active: TRUE to enable LPLU, FALSE to disable |
| * |
| * Sets the LPLU D0 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 data; |
| |
| DEBUGFUNC("e1000_set_d0_lplu_state_82580"); |
| |
| data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); |
| |
| if (active) { |
| data |= E1000_82580_PM_D0_LPLU; |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| data &= ~E1000_82580_PM_SPD; |
| } else { |
| data &= ~E1000_82580_PM_D0_LPLU; |
| |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) |
| data |= E1000_82580_PM_SPD; |
| else if (phy->smart_speed == e1000_smart_speed_off) |
| data &= ~E1000_82580_PM_SPD; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 |
| * @hw: pointer to the HW structure |
| * @active: boolean used to enable/disable lplu |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * The low power link up (lplu) state is set to the power management level D3 |
| * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 |
| * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU |
| * is used during Dx states where the power conservation is most important. |
| * During driver activity, SmartSpeed should be enabled so performance is |
| * maintained. |
| **/ |
| s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 data; |
| |
| DEBUGFUNC("e1000_set_d3_lplu_state_82580"); |
| |
| data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); |
| |
| if (!active) { |
| data &= ~E1000_82580_PM_D3_LPLU; |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) |
| data |= E1000_82580_PM_SPD; |
| else if (phy->smart_speed == e1000_smart_speed_off) |
| data &= ~E1000_82580_PM_SPD; |
| } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| data |= E1000_82580_PM_D3_LPLU; |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| data &= ~E1000_82580_PM_SPD; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_acquire_nvm_82575 - Request for access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -E1000_ERR_NVM (-1). |
| **/ |
| static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_acquire_nvm_82575"); |
| |
| ret_val = e1000_acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); |
| if (ret_val) |
| goto out; |
| |
| /* |
| * Check if there is some access |
| * error this access may hook on |
| */ |
| if (hw->mac.type == e1000_i350) { |
| u32 eecd = E1000_READ_REG(hw, E1000_EECD); |
| if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | |
| E1000_EECD_TIMEOUT)) { |
| /* Clear all access error flags */ |
| E1000_WRITE_REG(hw, E1000_EECD, eecd | |
| E1000_EECD_ERROR_CLR); |
| DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); |
| } |
| } |
| |
| if (hw->mac.type == e1000_82580) { |
| u32 eecd = E1000_READ_REG(hw, E1000_EECD); |
| if (eecd & E1000_EECD_BLOCKED) { |
| /* Clear access error flag */ |
| E1000_WRITE_REG(hw, E1000_EECD, eecd | |
| E1000_EECD_BLOCKED); |
| DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); |
| } |
| } |
| |
| ret_val = e1000_acquire_nvm_generic(hw); |
| if (ret_val) |
| e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_nvm_82575 - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| * then release the semaphores acquired. |
| **/ |
| static void e1000_release_nvm_82575(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_release_nvm_82575"); |
| |
| e1000_release_nvm_generic(hw); |
| |
| e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /** |
| * e1000_get_cfg_done_82575 - Read config done bit |
| * @hw: pointer to the HW structure |
| * |
| * Read the management control register for the config done bit for |
| * completion status. NOTE: silicon which is EEPROM-less will fail trying |
| * to read the config done bit, so an error is *ONLY* logged and returns |
| * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon |
| * would not be able to be reset or change link. |
| **/ |
| static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) |
| { |
| s32 timeout = PHY_CFG_TIMEOUT; |
| u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
| |
| DEBUGFUNC("e1000_get_cfg_done_82575"); |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| mask = E1000_NVM_CFG_DONE_PORT_1; |
| else if (hw->bus.func == E1000_FUNC_2) |
| mask = E1000_NVM_CFG_DONE_PORT_2; |
| else if (hw->bus.func == E1000_FUNC_3) |
| mask = E1000_NVM_CFG_DONE_PORT_3; |
| while (timeout) { |
| if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) |
| break; |
| msec_delay(1); |
| timeout--; |
| } |
| if (!timeout) |
| DEBUGOUT("MNG configuration cycle has not completed.\n"); |
| |
| /* If EEPROM is not marked present, init the PHY manually */ |
| if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && |
| (hw->phy.type == e1000_phy_igp_3)) |
| e1000_phy_init_script_igp3(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_link_up_info_82575 - Get link speed/duplex info |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * This is a wrapper function, if using the serial gigabit media independent |
| * interface, use PCS to retrieve the link speed and duplex information. |
| * Otherwise, use the generic function to get the link speed and duplex info. |
| **/ |
| static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_get_link_up_info_82575"); |
| |
| if (hw->phy.media_type != e1000_media_type_copper) |
| ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, |
| duplex); |
| else |
| ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, |
| duplex); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_for_link_82575 - Check for link |
| * @hw: pointer to the HW structure |
| * |
| * If sgmii is enabled, then use the pcs register to determine link, otherwise |
| * use the generic interface for determining link. |
| **/ |
| static s32 e1000_check_for_link_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 speed, duplex; |
| |
| DEBUGFUNC("e1000_check_for_link_82575"); |
| |
| if (hw->phy.media_type != e1000_media_type_copper) { |
| ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, |
| &duplex); |
| /* |
| * Use this flag to determine if link needs to be checked or |
| * not. If we have link clear the flag so that we do not |
| * continue to check for link. |
| */ |
| hw->mac.get_link_status = !hw->mac.serdes_has_link; |
| |
| /* |
| * Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = e1000_config_fc_after_link_up_generic(hw); |
| if (ret_val) |
| DEBUGOUT("Error configuring flow control\n"); |
| } else { |
| ret_val = e1000_check_for_copper_link_generic(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_check_for_link_media_swap - Check which M88E1112 interface linked |
| * @hw: pointer to the HW structure |
| * |
| * Poll the M88E1112 interfaces to see which interface achieved link. |
| */ |
| static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| u8 port = 0; |
| |
| DEBUGFUNC("e1000_check_for_link_media_swap"); |
| |
| /* Check for copper. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (data & E1000_M88E1112_STATUS_LINK) |
| port = E1000_MEDIA_PORT_COPPER; |
| |
| /* Check for other. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if (data & E1000_M88E1112_STATUS_LINK) |
| port = E1000_MEDIA_PORT_OTHER; |
| |
| /* Determine if a swap needs to happen. */ |
| if (port && (hw->dev_spec._82575.media_port != port)) { |
| hw->dev_spec._82575.media_port = port; |
| hw->dev_spec._82575.media_changed = TRUE; |
| } |
| |
| if (port == E1000_MEDIA_PORT_COPPER) { |
| /* reset page to 0 */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); |
| if (ret_val) |
| return ret_val; |
| e1000_check_for_link_82575(hw); |
| } else { |
| e1000_check_for_link_82575(hw); |
| /* reset page to 0 */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown |
| * @hw: pointer to the HW structure |
| **/ |
| static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| DEBUGFUNC("e1000_power_up_serdes_link_82575"); |
| |
| if ((hw->phy.media_type != e1000_media_type_internal_serdes) && |
| !e1000_sgmii_active_82575(hw)) |
| return; |
| |
| /* Enable PCS to turn on link */ |
| reg = E1000_READ_REG(hw, E1000_PCS_CFG0); |
| reg |= E1000_PCS_CFG_PCS_EN; |
| E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); |
| |
| /* Power up the laser */ |
| reg = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| reg &= ~E1000_CTRL_EXT_SDP3_DATA; |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); |
| |
| /* flush the write to verify completion */ |
| E1000_WRITE_FLUSH(hw); |
| msec_delay(1); |
| } |
| |
| /** |
| * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Using the physical coding sub-layer (PCS), retrieve the current speed and |
| * duplex, then store the values in the pointers provided. |
| **/ |
| static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, |
| u16 *speed, u16 *duplex) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 pcs; |
| u32 status; |
| |
| DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); |
| |
| /* |
| * Read the PCS Status register for link state. For non-copper mode, |
| * the status register is not accurate. The PCS status register is |
| * used instead. |
| */ |
| pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); |
| |
| /* |
| * The link up bit determines when link is up on autoneg. |
| */ |
| if (pcs & E1000_PCS_LSTS_LINK_OK) { |
| mac->serdes_has_link = TRUE; |
| |
| /* Detect and store PCS speed */ |
| if (pcs & E1000_PCS_LSTS_SPEED_1000) |
| *speed = SPEED_1000; |
| else if (pcs & E1000_PCS_LSTS_SPEED_100) |
| *speed = SPEED_100; |
| else |
| *speed = SPEED_10; |
| |
| /* Detect and store PCS duplex */ |
| if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) |
| *duplex = FULL_DUPLEX; |
| else |
| *duplex = HALF_DUPLEX; |
| |
| /* Check if it is an I354 2.5Gb backplane connection. */ |
| if (mac->type == e1000_i354) { |
| status = E1000_READ_REG(hw, E1000_STATUS); |
| if ((status & E1000_STATUS_2P5_SKU) && |
| !(status & E1000_STATUS_2P5_SKU_OVER)) { |
| *speed = SPEED_2500; |
| *duplex = FULL_DUPLEX; |
| DEBUGOUT("2500 Mbs, "); |
| DEBUGOUT("Full Duplex\n"); |
| } |
| } |
| |
| } else { |
| mac->serdes_has_link = FALSE; |
| *speed = 0; |
| *duplex = 0; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_shutdown_serdes_link_82575 - Remove link during power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of serdes shut down sfp and PCS on driver unload |
| * when management pass thru is not enabled. |
| **/ |
| void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| DEBUGFUNC("e1000_shutdown_serdes_link_82575"); |
| |
| if ((hw->phy.media_type != e1000_media_type_internal_serdes) && |
| !e1000_sgmii_active_82575(hw)) |
| return; |
| |
| if (!e1000_enable_mng_pass_thru(hw)) { |
| /* Disable PCS to turn off link */ |
| reg = E1000_READ_REG(hw, E1000_PCS_CFG0); |
| reg &= ~E1000_PCS_CFG_PCS_EN; |
| E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); |
| |
| /* shutdown the laser */ |
| reg = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| reg |= E1000_CTRL_EXT_SDP3_DATA; |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); |
| |
| /* flush the write to verify completion */ |
| E1000_WRITE_FLUSH(hw); |
| msec_delay(1); |
| } |
| |
| return; |
| } |
| |
| /** |
| * e1000_reset_hw_82575 - Reset hardware |
| * @hw: pointer to the HW structure |
| * |
| * This resets the hardware into a known state. |
| **/ |
| static s32 e1000_reset_hw_82575(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_reset_hw_82575"); |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000_disable_pcie_master_generic(hw); |
| if (ret_val) |
| DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
| |
| /* set the completion timeout for interface */ |
| ret_val = e1000_set_pcie_completion_timeout(hw); |
| if (ret_val) |
| DEBUGOUT("PCI-E Set completion timeout has failed.\n"); |
| |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); |
| |
| E1000_WRITE_REG(hw, E1000_RCTL, 0); |
| E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(hw); |
| |
| msec_delay(10); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); |
| |
| ret_val = e1000_get_auto_rd_done_generic(hw); |
| if (ret_val) { |
| /* |
| * When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| DEBUGOUT("Auto Read Done did not complete\n"); |
| } |
| |
| /* If EEPROM is not present, run manual init scripts */ |
| if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) |
| e1000_reset_init_script_82575(hw); |
| |
| /* Clear any pending interrupt events. */ |
| E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); |
| E1000_READ_REG(hw, E1000_ICR); |
| |
| /* Install any alternate MAC address into RAR0 */ |
| ret_val = e1000_check_alt_mac_addr_generic(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_hw_82575 - Initialize hardware |
| * @hw: pointer to the HW structure |
| * |
| * This inits the hardware readying it for operation. |
| **/ |
| s32 e1000_init_hw_82575(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| u16 i, rar_count = mac->rar_entry_count; |
| |
| DEBUGFUNC("e1000_init_hw_82575"); |
| |
| /* Initialize identification LED */ |
| ret_val = mac->ops.id_led_init(hw); |
| if (ret_val) { |
| DEBUGOUT("Error initializing identification LED\n"); |
| /* This is not fatal and we should not stop init due to this */ |
| } |
| |
| /* Disabling VLAN filtering */ |
| DEBUGOUT("Initializing the IEEE VLAN\n"); |
| mac->ops.clear_vfta(hw); |
| |
| /* Setup the receive address */ |
| e1000_init_rx_addrs_generic(hw, rar_count); |
| |
| /* Zero out the Multicast HASH table */ |
| DEBUGOUT("Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| |
| /* Zero out the Unicast HASH table */ |
| DEBUGOUT("Zeroing the UTA\n"); |
| for (i = 0; i < mac->uta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); |
| |
| /* Setup link and flow control */ |
| ret_val = mac->ops.setup_link(hw); |
| |
| /* Set the default MTU size */ |
| hw->dev_spec._82575.mtu = 1500; |
| |
| /* |
| * Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs_82575(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_setup_copper_link_82575 - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Configures the link for auto-neg or forced speed and duplex. Then we check |
| * for link, once link is established calls to configure collision distance |
| * and flow control are called. |
| **/ |
| static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u32 phpm_reg; |
| |
| DEBUGFUNC("e1000_setup_copper_link_82575"); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| /* Clear Go Link Disconnect bit on supported devices */ |
| switch (hw->mac.type) { |
| case e1000_82580: |
| case e1000_i350: |
| case e1000_i210: |
| case e1000_i211: |
| phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); |
| phpm_reg &= ~E1000_82580_PM_GO_LINKD; |
| E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); |
| break; |
| default: |
| break; |
| } |
| |
| ret_val = e1000_setup_serdes_link_82575(hw); |
| if (ret_val) |
| goto out; |
| |
| if (e1000_sgmii_active_82575(hw)) { |
| /* allow time for SFP cage time to power up phy */ |
| msec_delay(300); |
| |
| ret_val = hw->phy.ops.reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error resetting the PHY.\n"); |
| goto out; |
| } |
| } |
| switch (hw->phy.type) { |
| case e1000_phy_i210: |
| case e1000_phy_m88: |
| switch (hw->phy.id) { |
| case I347AT4_E_PHY_ID: |
| case M88E1112_E_PHY_ID: |
| case M88E1340M_E_PHY_ID: |
| case M88E1543_E_PHY_ID: |
| case M88E1512_E_PHY_ID: |
| case I210_I_PHY_ID: |
| ret_val = e1000_copper_link_setup_m88_gen2(hw); |
| break; |
| default: |
| ret_val = e1000_copper_link_setup_m88(hw); |
| break; |
| } |
| break; |
| case e1000_phy_igp_3: |
| ret_val = e1000_copper_link_setup_igp(hw); |
| break; |
| case e1000_phy_82580: |
| ret_val = e1000_copper_link_setup_82577(hw); |
| break; |
| default: |
| ret_val = -E1000_ERR_PHY; |
| break; |
| } |
| |
| if (ret_val) |
| goto out; |
| |
| ret_val = e1000_setup_copper_link_generic(hw); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_setup_serdes_link_82575 - Setup link for serdes |
| * @hw: pointer to the HW structure |
| * |
| * Configure the physical coding sub-layer (PCS) link. The PCS link is |
| * used on copper connections where the serialized gigabit media independent |
| * interface (sgmii), or serdes fiber is being used. Configures the link |
| * for auto-negotiation or forces speed/duplex. |
| **/ |
| static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) |
| { |
| u32 ctrl_ext, ctrl_reg, reg, anadv_reg; |
| bool pcs_autoneg; |
| s32 ret_val = E1000_SUCCESS; |
| u16 data; |
| |
| DEBUGFUNC("e1000_setup_serdes_link_82575"); |
| |
| if ((hw->phy.media_type != e1000_media_type_internal_serdes) && |
| !e1000_sgmii_active_82575(hw)) |
| return ret_val; |
| |
| /* |
| * On the 82575, SerDes loopback mode persists until it is |
| * explicitly turned off or a power cycle is performed. A read to |
| * the register does not indicate its status. Therefore, we ensure |
| * loopback mode is disabled during initialization. |
| */ |
| E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
| |
| /* power on the sfp cage if present */ |
| ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); |
| |
| ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl_reg |= E1000_CTRL_SLU; |
| |
| /* set both sw defined pins on 82575/82576*/ |
| if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) |
| ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; |
| |
| reg = E1000_READ_REG(hw, E1000_PCS_LCTL); |
| |
| /* default pcs_autoneg to the same setting as mac autoneg */ |
| pcs_autoneg = hw->mac.autoneg; |
| |
| switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { |
| case E1000_CTRL_EXT_LINK_MODE_SGMII: |
| /* sgmii mode lets the phy handle forcing speed/duplex */ |
| pcs_autoneg = TRUE; |
| /* autoneg time out should be disabled for SGMII mode */ |
| reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); |
| break; |
| case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: |
| /* disable PCS autoneg and support parallel detect only */ |
| pcs_autoneg = FALSE; |
| __FALLTHROUGH; |
| default: |
| if (hw->mac.type == e1000_82575 || |
| hw->mac.type == e1000_82576) { |
| ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) |
| pcs_autoneg = FALSE; |
| } |
| |
| /* |
| * non-SGMII modes only supports a speed of 1000/Full for the |
| * link so it is best to just force the MAC and let the pcs |
| * link either autoneg or be forced to 1000/Full |
| */ |
| ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | |
| E1000_CTRL_FD | E1000_CTRL_FRCDPX; |
| |
| /* set speed of 1000/Full if speed/duplex is forced */ |
| reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); |
| |
| /* |
| * New SerDes mode allows for forcing speed or autonegotiating speed |
| * at 1gb. Autoneg should be default set by most drivers. This is the |
| * mode that will be compatible with older link partners and switches. |
| * However, both are supported by the hardware and some drivers/tools. |
| */ |
| reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | |
| E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); |
| |
| if (pcs_autoneg) { |
| /* Set PCS register for autoneg */ |
| reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ |
| E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ |
| |
| /* Disable force flow control for autoneg */ |
| reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; |
| |
| /* Configure flow control advertisement for autoneg */ |
| anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); |
| anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); |
| |
| switch (hw->fc.requested_mode) { |
| case e1000_fc_full: |
| case e1000_fc_rx_pause: |
| anadv_reg |= E1000_TXCW_ASM_DIR; |
| anadv_reg |= E1000_TXCW_PAUSE; |
| break; |
| case e1000_fc_tx_pause: |
| anadv_reg |= E1000_TXCW_ASM_DIR; |
| break; |
| default: |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); |
| |
| DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); |
| } else { |
| /* Set PCS register for forced link */ |
| reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ |
| |
| /* Force flow control for forced link */ |
| reg |= E1000_PCS_LCTL_FORCE_FCTRL; |
| |
| DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); |
| } |
| |
| E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); |
| |
| if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) |
| e1000_force_mac_fc_generic(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_media_type_82575 - derives current media type. |
| * @hw: pointer to the HW structure |
| * |
| * The media type is chosen reflecting few settings. |
| * The following are taken into account: |
| * - link mode set in the current port Init Control Word #3 |
| * - current link mode settings in CSR register |
| * - MDIO vs. I2C PHY control interface chosen |
| * - SFP module media type |
| **/ |
| static s32 e1000_get_media_type_82575(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; |
| s32 ret_val = E1000_SUCCESS; |
| u32 ctrl_ext = 0; |
| u32 link_mode = 0; |
| |
| /* Set internal phy as default */ |
| dev_spec->sgmii_active = FALSE; |
| dev_spec->module_plugged = FALSE; |
| |
| /* Get CSR setting */ |
| ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| |
| /* extract link mode setting */ |
| link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; |
| |
| switch (link_mode) { |
| case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| break; |
| case E1000_CTRL_EXT_LINK_MODE_GMII: |
| hw->phy.media_type = e1000_media_type_copper; |
| break; |
| case E1000_CTRL_EXT_LINK_MODE_SGMII: |
| /* Get phy control interface type set (MDIO vs. I2C)*/ |
| if (e1000_sgmii_uses_mdio_82575(hw)) { |
| hw->phy.media_type = e1000_media_type_copper; |
| dev_spec->sgmii_active = TRUE; |
| break; |
| } |
| /* fall through for I2C based SGMII */ |
| __FALLTHROUGH; |
| case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: |
| /* read media type from SFP EEPROM */ |
| ret_val = e1000_set_sfp_media_type_82575(hw); |
| if ((ret_val != E1000_SUCCESS) || |
| (hw->phy.media_type == e1000_media_type_unknown)) { |
| /* |
| * If media type was not identified then return media |
| * type defined by the CTRL_EXT settings. |
| */ |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| |
| if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { |
| hw->phy.media_type = e1000_media_type_copper; |
| dev_spec->sgmii_active = TRUE; |
| } |
| |
| break; |
| } |
| |
| /* do not change link mode for 100BaseFX */ |
| if (dev_spec->eth_flags.e100_base_fx) |
| break; |
| |
| /* change current link mode setting */ |
| ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; |
| |
| if (hw->phy.media_type == e1000_media_type_copper) |
| ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; |
| else |
| ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; |
| |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); |
| |
| break; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_sfp_media_type_82575 - derives SFP module media type. |
| * @hw: pointer to the HW structure |
| * |
| * The media type is chosen based on SFP module. |
| * compatibility flags retrieved from SFP ID EEPROM. |
| **/ |
| static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_ERR_CONFIG; |
| u32 ctrl_ext = 0; |
| struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; |
| struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; |
| u8 tranceiver_type = 0; |
| s32 timeout = 3; |
| |
| /* Turn I2C interface ON and power on sfp cage */ |
| ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); |
| |
| E1000_WRITE_FLUSH(hw); |
| |
| /* Read SFP module data */ |
| while (timeout) { |
| ret_val = e1000_read_sfp_data_byte(hw, |
| E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), |
| &tranceiver_type); |
| if (ret_val == E1000_SUCCESS) |
| break; |
| msec_delay(100); |
| timeout--; |
| } |
| if (ret_val != E1000_SUCCESS) |
| goto out; |
| |
| ret_val = e1000_read_sfp_data_byte(hw, |
| E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), |
| (u8 *)eth_flags); |
| if (ret_val != E1000_SUCCESS) |
| goto out; |
| |
| /* Check if there is some SFP module plugged and powered */ |
| if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || |
| (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { |
| dev_spec->module_plugged = TRUE; |
| if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| } else if (eth_flags->e100_base_fx) { |
| dev_spec->sgmii_active = TRUE; |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| } else if (eth_flags->e1000_base_t) { |
| dev_spec->sgmii_active = TRUE; |
| hw->phy.media_type = e1000_media_type_copper; |
| } else { |
| hw->phy.media_type = e1000_media_type_unknown; |
| DEBUGOUT("PHY module has not been recognized\n"); |
| goto out; |
| } |
| } else { |
| hw->phy.media_type = e1000_media_type_unknown; |
| } |
| ret_val = E1000_SUCCESS; |
| out: |
| /* Restore I2C interface setting */ |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_valid_led_default_82575 - Verify a valid default LED config |
| * @hw: pointer to the HW structure |
| * @data: pointer to the NVM (EEPROM) |
| * |
| * Read the EEPROM for the current default LED configuration. If the |
| * LED configuration is not valid, set to a valid LED configuration. |
| **/ |
| static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_valid_led_default_82575"); |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { |
| switch (hw->phy.media_type) { |
| case e1000_media_type_internal_serdes: |
| *data = ID_LED_DEFAULT_82575_SERDES; |
| break; |
| case e1000_media_type_copper: |
| default: |
| *data = ID_LED_DEFAULT; |
| break; |
| } |
| } |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_sgmii_active_82575 - Return sgmii state |
| * @hw: pointer to the HW structure |
| * |
| * 82575 silicon has a serialized gigabit media independent interface (sgmii) |
| * which can be enabled for use in the embedded applications. Simply |
| * return the current state of the sgmii interface. |
| **/ |
| static bool e1000_sgmii_active_82575(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; |
| return dev_spec->sgmii_active; |
| } |
| |
| /** |
| * e1000_reset_init_script_82575 - Inits HW defaults after reset |
| * @hw: pointer to the HW structure |
| * |
| * Inits recommended HW defaults after a reset when there is no EEPROM |
| * detected. This is only for the 82575. |
| **/ |
| static s32 e1000_reset_init_script_82575(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_reset_init_script_82575"); |
| |
| if (hw->mac.type == e1000_82575) { |
| DEBUGOUT("Running reset init script for 82575\n"); |
| /* SerDes configuration via SERDESCTRL */ |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); |
| |
| /* CCM configuration via CCMCTL register */ |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); |
| |
| /* PCIe lanes configuration */ |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); |
| |
| /* PCIe PLL Configuration */ |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); |
| e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_read_mac_addr_82575 - Read device MAC address |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_read_mac_addr_82575"); |
| |
| /* |
| * If there's an alternate MAC address place it in RAR0 |
| * so that it will override the Si installed default perm |
| * address. |
| */ |
| ret_val = e1000_check_alt_mac_addr_generic(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = e1000_read_mac_addr_generic(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_config_collision_dist_82575 - Configure collision distance |
| * @hw: pointer to the HW structure |
| * |
| * Configures the collision distance to the default value and is used |
| * during link setup. |
| **/ |
| static void e1000_config_collision_dist_82575(struct e1000_hw *hw) |
| { |
| u32 tctl_ext; |
| |
| DEBUGFUNC("e1000_config_collision_dist_82575"); |
| |
| tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); |
| |
| tctl_ext &= ~E1000_TCTL_EXT_COLD; |
| tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; |
| |
| E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /** |
| * e1000_power_down_phy_copper_82575 - Remove link during PHY power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of a PHY power down to save power, or to turn off link during a |
| * driver unload, or wake on lan is not enabled, remove the link. |
| **/ |
| static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| |
| if (!(phy->ops.check_reset_block)) |
| return; |
| |
| /* If the management interface is not enabled, then power down */ |
| if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) |
| e1000_power_down_phy_copper(hw); |
| |
| return; |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the hardware counters by reading the counter registers. |
| **/ |
| static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_clear_hw_cntrs_82575"); |
| |
| e1000_clear_hw_cntrs_base_generic(hw); |
| |
| E1000_READ_REG(hw, E1000_PRC64); |
| E1000_READ_REG(hw, E1000_PRC127); |
| E1000_READ_REG(hw, E1000_PRC255); |
| E1000_READ_REG(hw, E1000_PRC511); |
| E1000_READ_REG(hw, E1000_PRC1023); |
| E1000_READ_REG(hw, E1000_PRC1522); |
| E1000_READ_REG(hw, E1000_PTC64); |
| E1000_READ_REG(hw, E1000_PTC127); |
| E1000_READ_REG(hw, E1000_PTC255); |
| E1000_READ_REG(hw, E1000_PTC511); |
| E1000_READ_REG(hw, E1000_PTC1023); |
| E1000_READ_REG(hw, E1000_PTC1522); |
| |
| E1000_READ_REG(hw, E1000_ALGNERRC); |
| E1000_READ_REG(hw, E1000_RXERRC); |
| E1000_READ_REG(hw, E1000_TNCRS); |
| E1000_READ_REG(hw, E1000_CEXTERR); |
| E1000_READ_REG(hw, E1000_TSCTC); |
| E1000_READ_REG(hw, E1000_TSCTFC); |
| |
| E1000_READ_REG(hw, E1000_MGTPRC); |
| E1000_READ_REG(hw, E1000_MGTPDC); |
| E1000_READ_REG(hw, E1000_MGTPTC); |
| |
| E1000_READ_REG(hw, E1000_IAC); |
| E1000_READ_REG(hw, E1000_ICRXOC); |
| |
| E1000_READ_REG(hw, E1000_ICRXPTC); |
| E1000_READ_REG(hw, E1000_ICRXATC); |
| E1000_READ_REG(hw, E1000_ICTXPTC); |
| E1000_READ_REG(hw, E1000_ICTXATC); |
| E1000_READ_REG(hw, E1000_ICTXQEC); |
| E1000_READ_REG(hw, E1000_ICTXQMTC); |
| E1000_READ_REG(hw, E1000_ICRXDMTC); |
| |
| E1000_READ_REG(hw, E1000_CBTMPC); |
| E1000_READ_REG(hw, E1000_HTDPMC); |
| E1000_READ_REG(hw, E1000_CBRMPC); |
| E1000_READ_REG(hw, E1000_RPTHC); |
| E1000_READ_REG(hw, E1000_HGPTC); |
| E1000_READ_REG(hw, E1000_HTCBDPC); |
| E1000_READ_REG(hw, E1000_HGORCL); |
| E1000_READ_REG(hw, E1000_HGORCH); |
| E1000_READ_REG(hw, E1000_HGOTCL); |
| E1000_READ_REG(hw, E1000_HGOTCH); |
| E1000_READ_REG(hw, E1000_LENERRS); |
| |
| /* This register should not be read in copper configurations */ |
| if ((hw->phy.media_type == e1000_media_type_internal_serdes) || |
| e1000_sgmii_active_82575(hw)) |
| E1000_READ_REG(hw, E1000_SCVPC); |
| } |
| |
| /** |
| * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable |
| * @hw: pointer to the HW structure |
| * |
| * After Rx enable, if manageability is enabled then there is likely some |
| * bad data at the start of the fifo and possibly in the DMA fifo. This |
| * function clears the fifos and flushes any packets that came in as rx was |
| * being enabled. |
| **/ |
| void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) |
| { |
| u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; |
| int i, ms_wait; |
| |
| DEBUGFUNC("e1000_rx_fifo_flush_82575"); |
| |
| /* disable IPv6 options as per hardware errata */ |
| rfctl = E1000_READ_REG(hw, E1000_RFCTL); |
| rfctl |= E1000_RFCTL_IPV6_EX_DIS; |
| E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); |
| |
| if (hw->mac.type != e1000_82575 || |
| !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) |
| return; |
| |
| /* Disable all Rx queues */ |
| for (i = 0; i < 4; i++) { |
| rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); |
| E1000_WRITE_REG(hw, E1000_RXDCTL(i), |
| rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); |
| } |
| /* Poll all queues to verify they have shut down */ |
| for (ms_wait = 0; ms_wait < 10; ms_wait++) { |
| msec_delay(1); |
| rx_enabled = 0; |
| for (i = 0; i < 4; i++) |
| rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); |
| if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) |
| break; |
| } |
| |
| if (ms_wait == 10) |
| DEBUGOUT("Queue disable timed out after 10ms\n"); |
| |
| /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all |
| * incoming packets are rejected. Set enable and wait 2ms so that |
| * any packet that was coming in as RCTL.EN was set is flushed |
| */ |
| E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); |
| |
| rlpml = E1000_READ_REG(hw, E1000_RLPML); |
| E1000_WRITE_REG(hw, E1000_RLPML, 0); |
| |
| rctl = E1000_READ_REG(hw, E1000_RCTL); |
| temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); |
| temp_rctl |= E1000_RCTL_LPE; |
| |
| E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); |
| E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); |
| E1000_WRITE_FLUSH(hw); |
| msec_delay(2); |
| |
| /* Enable Rx queues that were previously enabled and restore our |
| * previous state |
| */ |
| for (i = 0; i < 4; i++) |
| E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); |
| E1000_WRITE_REG(hw, E1000_RCTL, rctl); |
| E1000_WRITE_FLUSH(hw); |
| |
| E1000_WRITE_REG(hw, E1000_RLPML, rlpml); |
| E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); |
| |
| /* Flush receive errors generated by workaround */ |
| E1000_READ_REG(hw, E1000_ROC); |
| E1000_READ_REG(hw, E1000_RNBC); |
| E1000_READ_REG(hw, E1000_MPC); |
| } |
| |
| /** |
| * e1000_set_pcie_completion_timeout - set pci-e completion timeout |
| * @hw: pointer to the HW structure |
| * |
| * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, |
| * however the hardware default for these parts is 500us to 1ms which is less |
| * than the 10ms recommended by the pci-e spec. To address this we need to |
| * increase the value to either 10ms to 200ms for capability version 1 config, |
| * or 16ms to 55ms for version 2. |
| **/ |
| static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) |
| { |
| u32 gcr = E1000_READ_REG(hw, E1000_GCR); |
| s32 ret_val = E1000_SUCCESS; |
| u16 pcie_devctl2; |
| |
| /* only take action if timeout value is defaulted to 0 */ |
| if (gcr & E1000_GCR_CMPL_TMOUT_MASK) |
| goto out; |
| |
| /* |
| * if capababilities version is type 1 we can write the |
| * timeout of 10ms to 200ms through the GCR register |
| */ |
| if (!(gcr & E1000_GCR_CAP_VER2)) { |
| gcr |= E1000_GCR_CMPL_TMOUT_10ms; |
| goto out; |
| } |
| |
| /* |
| * for version 2 capabilities we need to write the config space |
| * directly in order to set the completion timeout value for |
| * 16ms to 55ms |
| */ |
| ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, |
| &pcie_devctl2); |
| if (ret_val) |
| goto out; |
| |
| pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; |
| |
| ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, |
| &pcie_devctl2); |
| out: |
| /* disable completion timeout resend */ |
| gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; |
| |
| E1000_WRITE_REG(hw, E1000_GCR, gcr); |
| return ret_val; |
| } |
| |
| /** |
| * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing |
| * @hw: pointer to the hardware struct |
| * @enable: state to enter, either enabled or disabled |
| * @pf: Physical Function pool - do not set anti-spoofing for the PF |
| * |
| * enables/disables L2 switch anti-spoofing functionality. |
| **/ |
| void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) |
| { |
| u32 reg_val, reg_offset; |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| reg_offset = E1000_DTXSWC; |
| break; |
| case e1000_i350: |
| case e1000_i354: |
| reg_offset = E1000_TXSWC; |
| break; |
| default: |
| return; |
| } |
| |
| reg_val = E1000_READ_REG(hw, reg_offset); |
| if (enable) { |
| reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | |
| E1000_DTXSWC_VLAN_SPOOF_MASK); |
| /* The PF can spoof - it has to in order to |
| * support emulation mode NICs |
| */ |
| reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); |
| } else { |
| reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | |
| E1000_DTXSWC_VLAN_SPOOF_MASK); |
| } |
| E1000_WRITE_REG(hw, reg_offset, reg_val); |
| } |
| |
| /** |
| * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback |
| * @hw: pointer to the hardware struct |
| * @enable: state to enter, either enabled or disabled |
| * |
| * enables/disables L2 switch loopback functionality. |
| **/ |
| void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) |
| { |
| u32 dtxswc; |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); |
| if (enable) |
| dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; |
| else |
| dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; |
| E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); |
| break; |
| case e1000_i350: |
| case e1000_i354: |
| dtxswc = E1000_READ_REG(hw, E1000_TXSWC); |
| if (enable) |
| dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; |
| else |
| dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; |
| E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); |
| break; |
| default: |
| /* Currently no other hardware supports loopback */ |
| break; |
| } |
| |
| |
| } |
| |
| /** |
| * e1000_vmdq_set_replication_pf - enable or disable vmdq replication |
| * @hw: pointer to the hardware struct |
| * @enable: state to enter, either enabled or disabled |
| * |
| * enables/disables replication of packets across multiple pools. |
| **/ |
| void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) |
| { |
| u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); |
| |
| if (enable) |
| vt_ctl |= E1000_VT_CTL_VM_REPL_EN; |
| else |
| vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; |
| |
| E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); |
| } |
| |
| /** |
| * e1000_read_phy_reg_82580 - Read 82580 MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the MDI control register in the PHY at offset and stores the |
| * information read to data. |
| **/ |
| static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_read_phy_reg_82580"); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_82580 - Write 82580 MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write to register at offset |
| * |
| * Writes data to MDI control register in the PHY at offset. |
| **/ |
| static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_write_phy_reg_82580"); |
| |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, offset, data); |
| |
| hw->phy.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits |
| * @hw: pointer to the HW structure |
| * |
| * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on |
| * the values found in the EEPROM. This addresses an issue in which these |
| * bits are not restored from EEPROM after reset. |
| **/ |
| static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u32 mdicnfg; |
| u16 nvm_data = 0; |
| |
| DEBUGFUNC("e1000_reset_mdicnfg_82580"); |
| |
| if (hw->mac.type != e1000_82580) |
| goto out; |
| if (!e1000_sgmii_active_82575(hw)) |
| goto out; |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + |
| NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, |
| &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error\n"); |
| goto out; |
| } |
| |
| mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); |
| if (nvm_data & NVM_WORD24_EXT_MDIO) |
| mdicnfg |= E1000_MDICNFG_EXT_MDIO; |
| if (nvm_data & NVM_WORD24_COM_MDIO) |
| mdicnfg |= E1000_MDICNFG_COM_MDIO; |
| E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_reset_hw_82580 - Reset hardware |
| * @hw: pointer to the HW structure |
| * |
| * This resets function or entire device (all ports, etc.) |
| * to a known state. |
| **/ |
| static s32 e1000_reset_hw_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| /* BH SW mailbox bit in SW_FW_SYNC */ |
| u16 swmbsw_mask = E1000_SW_SYNCH_MB; |
| u32 ctrl; |
| bool global_device_reset = hw->dev_spec._82575.global_device_reset; |
| |
| DEBUGFUNC("e1000_reset_hw_82580"); |
| |
| hw->dev_spec._82575.global_device_reset = FALSE; |
| |
| /* 82580 does not reliably do global_device_reset due to hw errata */ |
| if (hw->mac.type == e1000_82580) |
| global_device_reset = FALSE; |
| |
| /* Get current control state. */ |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000_disable_pcie_master_generic(hw); |
| if (ret_val) |
| DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
| |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); |
| E1000_WRITE_REG(hw, E1000_RCTL, 0); |
| E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(hw); |
| |
| msec_delay(10); |
| |
| /* Determine whether or not a global dev reset is requested */ |
| if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, |
| swmbsw_mask)) |
| global_device_reset = FALSE; |
| |
| if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & |
| E1000_STAT_DEV_RST_SET)) |
| ctrl |= E1000_CTRL_DEV_RST; |
| else |
| ctrl |= E1000_CTRL_RST; |
| |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_DH89XXCC_SGMII: |
| break; |
| default: |
| E1000_WRITE_FLUSH(hw); |
| break; |
| } |
| |
| /* Add delay to insure DEV_RST or RST has time to complete */ |
| msec_delay(5); |
| |
| ret_val = e1000_get_auto_rd_done_generic(hw); |
| if (ret_val) { |
| /* |
| * When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| DEBUGOUT("Auto Read Done did not complete\n"); |
| } |
| |
| /* clear global device reset status bit */ |
| E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); |
| |
| /* Clear any pending interrupt events. */ |
| E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); |
| E1000_READ_REG(hw, E1000_ICR); |
| |
| ret_val = e1000_reset_mdicnfg_82580(hw); |
| if (ret_val) |
| DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); |
| |
| /* Install any alternate MAC address into RAR0 */ |
| ret_val = e1000_check_alt_mac_addr_generic(hw); |
| |
| /* Release semaphore */ |
| if (global_device_reset) |
| hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size |
| * @data: data received by reading RXPBS register |
| * |
| * The 82580 uses a table based approach for packet buffer allocation sizes. |
| * This function converts the retrieved value into the correct table value |
| * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 |
| * 0x0 36 72 144 1 2 4 8 16 |
| * 0x8 35 70 140 rsv rsv rsv rsv rsv |
| */ |
| u16 e1000_rxpbs_adjust_82580(u32 data) |
| { |
| u16 ret_val = 0; |
| |
| if (data < E1000_82580_RXPBS_TABLE_SIZE) |
| ret_val = e1000_82580_rxpbs_table[data]; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_validate_nvm_checksum_with_offset - Validate EEPROM |
| * checksum |
| * @hw: pointer to the HW structure |
| * @offset: offset in words of the checksum protected region |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| **/ |
| s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); |
| |
| for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { |
| ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| |
| if (checksum != (u16) NVM_SUM) { |
| DEBUGOUT("NVM Checksum Invalid\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_with_offset - Update EEPROM |
| * checksum |
| * @hw: pointer to the HW structure |
| * @offset: offset in words of the checksum protected region |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. |
| **/ |
| s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) |
| { |
| s32 ret_val; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); |
| |
| for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { |
| ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error while updating checksum.\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16) NVM_SUM - checksum; |
| ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, |
| &checksum); |
| if (ret_val) |
| DEBUGOUT("NVM Write Error while updating checksum.\n"); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM section checksum by reading/adding each word of |
| * the EEPROM and then verifies that the sum of the EEPROM is |
| * equal to 0xBABA. |
| **/ |
| static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 eeprom_regions_count = 1; |
| u16 j, nvm_data; |
| u16 nvm_offset; |
| |
| DEBUGFUNC("e1000_validate_nvm_checksum_82580"); |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { |
| /* if chekcsums compatibility bit is set validate checksums |
| * for all 4 ports. */ |
| eeprom_regions_count = 4; |
| } |
| |
| for (j = 0; j < eeprom_regions_count; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = e1000_validate_nvm_checksum_with_offset(hw, |
| nvm_offset); |
| if (ret_val != E1000_SUCCESS) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_82580 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM section checksums for all 4 ports by reading/adding |
| * each word of the EEPROM up to the checksum. Then calculates the EEPROM |
| * checksum and writes the value to the EEPROM. |
| **/ |
| static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 j, nvm_data; |
| u16 nvm_offset; |
| |
| DEBUGFUNC("e1000_update_nvm_checksum_82580"); |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); |
| goto out; |
| } |
| |
| if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { |
| /* set compatibility bit to validate checksums appropriately */ |
| nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; |
| ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, |
| &nvm_data); |
| if (ret_val) { |
| DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); |
| goto out; |
| } |
| } |
| |
| for (j = 0; j < 4; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); |
| if (ret_val) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM section checksum by reading/adding each word of |
| * the EEPROM and then verifies that the sum of the EEPROM is |
| * equal to 0xBABA. |
| **/ |
| static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u16 j; |
| u16 nvm_offset; |
| |
| DEBUGFUNC("e1000_validate_nvm_checksum_i350"); |
| |
| for (j = 0; j < 4; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = e1000_validate_nvm_checksum_with_offset(hw, |
| nvm_offset); |
| if (ret_val != E1000_SUCCESS) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_i350 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM section checksums for all 4 ports by reading/adding |
| * each word of the EEPROM up to the checksum. Then calculates the EEPROM |
| * checksum and writes the value to the EEPROM. |
| **/ |
| static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u16 j; |
| u16 nvm_offset; |
| |
| DEBUGFUNC("e1000_update_nvm_checksum_i350"); |
| |
| for (j = 0; j < 4; j++) { |
| nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); |
| ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); |
| if (ret_val != E1000_SUCCESS) |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * __e1000_access_emi_reg - Read/write EMI register |
| * @hw: pointer to the HW structure |
| * @addr: EMI address to program |
| * @data: pointer to value to read/write from/to the EMI address |
| * @read: boolean flag to indicate read or write |
| **/ |
| static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, |
| u16 *data, bool read) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("__e1000_access_emi_reg"); |
| |
| ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); |
| if (ret_val) |
| return ret_val; |
| |
| if (read) |
| ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); |
| else |
| ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_emi_reg - Read Extended Management Interface register |
| * @hw: pointer to the HW structure |
| * @addr: EMI address to program |
| * @data: value to be read from the EMI address |
| **/ |
| s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) |
| { |
| DEBUGFUNC("e1000_read_emi_reg"); |
| |
| return __e1000_access_emi_reg(hw, addr, data, TRUE); |
| } |
| |
| /** |
| * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Initialize Marvell 1512 to work correctly with Avoton. |
| **/ |
| s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_initialize_M88E1512_phy"); |
| |
| /* Check if this is correct PHY. */ |
| if (phy->id != M88E1512_E_PHY_ID) |
| goto out; |
| |
| /* Switch to PHY page 0xFF. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); |
| if (ret_val) |
| goto out; |
| |
| /* Switch to PHY page 0xFB. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); |
| if (ret_val) |
| goto out; |
| |
| /* Switch to PHY page 0x12. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); |
| if (ret_val) |
| goto out; |
| |
| /* Change mode to SGMII-to-Copper */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); |
| if (ret_val) |
| goto out; |
| |
| /* Return the PHY to page 0. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error committing the PHY changes\n"); |
| return ret_val; |
| } |
| |
| msec_delay(1000); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY |
| * @hw: pointer to the HW structure |
| * |
| * Initialize Marvell 1543 to work correctly with Avoton. |
| **/ |
| s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_initialize_M88E1543_phy"); |
| |
| /* Check if this is correct PHY. */ |
| if (phy->id != M88E1543_E_PHY_ID) |
| goto out; |
| |
| /* Switch to PHY page 0xFF. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); |
| if (ret_val) |
| goto out; |
| |
| /* Switch to PHY page 0xFB. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D); |
| if (ret_val) |
| goto out; |
| |
| /* Switch to PHY page 0x12. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); |
| if (ret_val) |
| goto out; |
| |
| /* Change mode to SGMII-to-Copper */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); |
| if (ret_val) |
| goto out; |
| |
| /* Switch to PHY page 1. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); |
| if (ret_val) |
| goto out; |
| |
| /* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); |
| if (ret_val) |
| goto out; |
| |
| /* Return the PHY to page 0. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error committing the PHY changes\n"); |
| return ret_val; |
| } |
| |
| msec_delay(1000); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_eee_i350 - Enable/disable EEE support |
| * @hw: pointer to the HW structure |
| * @adv1g: boolean flag enabling 1G EEE advertisement |
| * @adv100m: boolean flag enabling 100M EEE advertisement |
| * |
| * Enable/disable EEE based on setting in dev_spec structure. |
| * |
| **/ |
| s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) |
| { |
| u32 ipcnfg, eeer; |
| |
| DEBUGFUNC("e1000_set_eee_i350"); |
| |
| if ((hw->mac.type < e1000_i350) || |
| (hw->phy.media_type != e1000_media_type_copper)) |
| goto out; |
| ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); |
| eeer = E1000_READ_REG(hw, E1000_EEER); |
| |
| /* enable or disable per user setting */ |
| if (!(hw->dev_spec._82575.eee_disable)) { |
| u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); |
| |
| if (adv100M) |
| ipcnfg |= E1000_IPCNFG_EEE_100M_AN; |
| else |
| ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; |
| |
| if (adv1G) |
| ipcnfg |= E1000_IPCNFG_EEE_1G_AN; |
| else |
| ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; |
| |
| eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | |
| E1000_EEER_LPI_FC); |
| |
| /* This bit should not be set in normal operation. */ |
| if (eee_su & E1000_EEE_SU_LPI_CLK_STP) |
| DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); |
| } else { |
| ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); |
| eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | |
| E1000_EEER_LPI_FC); |
| } |
| E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); |
| E1000_WRITE_REG(hw, E1000_EEER, eeer); |
| E1000_READ_REG(hw, E1000_IPCNFG); |
| E1000_READ_REG(hw, E1000_EEER); |
| out: |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_set_eee_i354 - Enable/disable EEE support |
| * @hw: pointer to the HW structure |
| * @adv1g: boolean flag enabling 1G EEE advertisement |
| * @adv100m: boolean flag enabling 100M EEE advertisement |
| * |
| * Enable/disable EEE legacy mode based on setting in dev_spec structure. |
| * |
| **/ |
| s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| u16 phy_data; |
| |
| DEBUGFUNC("e1000_set_eee_i354"); |
| |
| if ((hw->phy.media_type != e1000_media_type_copper) || |
| ((phy->id != M88E1543_E_PHY_ID) && |
| (phy->id != M88E1512_E_PHY_ID))) |
| goto out; |
| |
| if (!hw->dev_spec._82575.eee_disable) { |
| /* Switch to PHY page 18. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); |
| if (ret_val) |
| goto out; |
| |
| ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, |
| &phy_data); |
| if (ret_val) |
| goto out; |
| |
| phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, |
| phy_data); |
| if (ret_val) |
| goto out; |
| |
| /* Return the PHY to page 0. */ |
| ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); |
| if (ret_val) |
| goto out; |
| |
| /* Turn on EEE advertisement. */ |
| ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, |
| E1000_EEE_ADV_DEV_I354, |
| &phy_data); |
| if (ret_val) |
| goto out; |
| |
| if (adv100M) |
| phy_data |= E1000_EEE_ADV_100_SUPPORTED; |
| else |
| phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; |
| |
| if (adv1G) |
| phy_data |= E1000_EEE_ADV_1000_SUPPORTED; |
| else |
| phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; |
| |
| ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, |
| E1000_EEE_ADV_DEV_I354, |
| phy_data); |
| } else { |
| /* Turn off EEE advertisement. */ |
| ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, |
| E1000_EEE_ADV_DEV_I354, |
| &phy_data); |
| if (ret_val) |
| goto out; |
| |
| phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | |
| E1000_EEE_ADV_1000_SUPPORTED); |
| ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, |
| E1000_EEE_ADV_DEV_I354, |
| phy_data); |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_eee_status_i354 - Get EEE status |
| * @hw: pointer to the HW structure |
| * @status: EEE status |
| * |
| * Get EEE status by guessing based on whether Tx or Rx LPI indications have |
| * been received. |
| **/ |
| s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = E1000_SUCCESS; |
| u16 phy_data; |
| |
| DEBUGFUNC("e1000_get_eee_status_i354"); |
| |
| /* Check if EEE is supported on this device. */ |
| if ((hw->phy.media_type != e1000_media_type_copper) || |
| ((phy->id != M88E1543_E_PHY_ID) && |
| (phy->id != M88E1512_E_PHY_ID))) |
| goto out; |
| |
| ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, |
| E1000_PCS_STATUS_DEV_I354, |
| &phy_data); |
| if (ret_val) |
| goto out; |
| |
| *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | |
| E1000_PCS_STATUS_RX_LPI_RCVD) ? TRUE : FALSE; |
| |
| out: |
| return ret_val; |
| } |
| |
| /* Due to a hw errata, if the host tries to configure the VFTA register |
| * while performing queries from the BMC or DMA, then the VFTA in some |
| * cases won't be written. |
| */ |
| |
| /** |
| * e1000_clear_vfta_i350 - Clear VLAN filter table |
| * @hw: pointer to the HW structure |
| * |
| * Clears the register array which contains the VLAN filter table by |
| * setting all the values to 0. |
| **/ |
| void e1000_clear_vfta_i350(struct e1000_hw *hw) |
| { |
| u32 offset; |
| int i; |
| |
| DEBUGFUNC("e1000_clear_vfta_350"); |
| |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| for (i = 0; i < 10; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); |
| |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| /** |
| * e1000_write_vfta_i350 - Write value to VLAN filter table |
| * @hw: pointer to the HW structure |
| * @offset: register offset in VLAN filter table |
| * @value: register value written to VLAN filter table |
| * |
| * Writes value at the given offset in the register array which stores |
| * the VLAN filter table. |
| **/ |
| void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) |
| { |
| int i; |
| |
| DEBUGFUNC("e1000_write_vfta_350"); |
| |
| for (i = 0; i < 10; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); |
| |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| |
| /** |
| * e1000_set_i2c_bb - Enable I2C bit-bang |
| * @hw: pointer to the HW structure |
| * |
| * Enable I2C bit-bang interface |
| * |
| **/ |
| s32 e1000_set_i2c_bb(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u32 ctrl_ext, i2cparams; |
| |
| DEBUGFUNC("e1000_set_i2c_bb"); |
| |
| ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_I2C_ENA; |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| |
| i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); |
| i2cparams |= E1000_I2CBB_EN; |
| i2cparams |= E1000_I2C_DATA_OE_N; |
| i2cparams |= E1000_I2C_CLK_OE_N; |
| E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); |
| E1000_WRITE_FLUSH(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C |
| * @hw: pointer to hardware structure |
| * @byte_offset: byte offset to read |
| * @dev_addr: device address |
| * @data: value read |
| * |
| * Performs byte read operation over I2C interface at |
| * a specified device address. |
| **/ |
| s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, |
| u8 dev_addr, u8 *data) |
| { |
| s32 status = E1000_SUCCESS; |
| u32 max_retry = 10; |
| u32 retry = 1; |
| u16 swfw_mask = 0; |
| |
| bool nack = TRUE; |
| |
| DEBUGFUNC("e1000_read_i2c_byte_generic"); |
| |
| swfw_mask = E1000_SWFW_PHY0_SM; |
| |
| do { |
| if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) |
| != E1000_SUCCESS) { |
| status = E1000_ERR_SWFW_SYNC; |
| goto read_byte_out; |
| } |
| |
| e1000_i2c_start(hw); |
| |
| /* Device Address and write indication */ |
| status = e1000_clock_out_i2c_byte(hw, dev_addr); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_get_i2c_ack(hw); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_clock_out_i2c_byte(hw, byte_offset); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_get_i2c_ack(hw); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| e1000_i2c_start(hw); |
| |
| /* Device Address and read indication */ |
| status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_get_i2c_ack(hw); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_clock_in_i2c_byte(hw, data); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_clock_out_i2c_bit(hw, nack); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| e1000_i2c_stop(hw); |
| break; |
| |
| fail: |
| hw->mac.ops.release_swfw_sync(hw, swfw_mask); |
| msec_delay(100); |
| e1000_i2c_bus_clear(hw); |
| retry++; |
| if (retry < max_retry) |
| DEBUGOUT("I2C byte read error - Retrying.\n"); |
| else |
| DEBUGOUT("I2C byte read error.\n"); |
| |
| } while (retry < max_retry); |
| |
| hw->mac.ops.release_swfw_sync(hw, swfw_mask); |
| |
| read_byte_out: |
| |
| return status; |
| } |
| |
| /** |
| * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C |
| * @hw: pointer to hardware structure |
| * @byte_offset: byte offset to write |
| * @dev_addr: device address |
| * @data: value to write |
| * |
| * Performs byte write operation over I2C interface at |
| * a specified device address. |
| **/ |
| s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, |
| u8 dev_addr, u8 data) |
| { |
| s32 status = E1000_SUCCESS; |
| u32 max_retry = 1; |
| u32 retry = 0; |
| u16 swfw_mask = 0; |
| |
| DEBUGFUNC("e1000_write_i2c_byte_generic"); |
| |
| swfw_mask = E1000_SWFW_PHY0_SM; |
| |
| if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { |
| status = E1000_ERR_SWFW_SYNC; |
| goto write_byte_out; |
| } |
| |
| do { |
| e1000_i2c_start(hw); |
| |
| status = e1000_clock_out_i2c_byte(hw, dev_addr); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_get_i2c_ack(hw); |
| if (status != E1000_SUCCESS) |
| goto fail; |
| |
| status = e1000_clock_out_i2c_byte(hw, byte_offset); |
| if (status != E1000_SUCCESS) |
| |