| /****************************************************************************** |
| SPDX-License-Identifier: BSD-3-Clause |
| |
| Copyright (c) 2001-2015, Intel Corporation |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| 1. Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| 3. Neither the name of the Intel Corporation nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| |
| ******************************************************************************/ |
| /*$FreeBSD$*/ |
| |
| /* 80003ES2LAN Gigabit Ethernet Controller (Copper) |
| * 80003ES2LAN Gigabit Ethernet Controller (Serdes) |
| */ |
| |
| #include "e1000_api.h" |
| |
| static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); |
| static void e1000_release_phy_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); |
| static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| u32 offset, |
| u16 *data); |
| static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| u32 offset, |
| u16 data); |
| static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data); |
| static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex); |
| static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); |
| static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); |
| static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
| u16 *data); |
| static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
| u16 data); |
| static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); |
| static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); |
| static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); |
| |
| /* A table for the GG82563 cable length where the range is defined |
| * with a lower bound at "index" and the upper bound at |
| * "index + 5". |
| */ |
| static const u16 e1000_gg82563_cable_length_table[] = { |
| 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; |
| #define GG82563_CABLE_LENGTH_TABLE_SIZE \ |
| (sizeof(e1000_gg82563_cable_length_table) / \ |
| sizeof(e1000_gg82563_cable_length_table[0])) |
| |
| /** |
| * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_init_phy_params_80003es2lan"); |
| |
| if (hw->phy.media_type != e1000_media_type_copper) { |
| phy->type = e1000_phy_none; |
| return E1000_SUCCESS; |
| } else { |
| phy->ops.power_up = e1000_power_up_phy_copper; |
| phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; |
| } |
| |
| phy->addr = 1; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->reset_delay_us = 100; |
| phy->type = e1000_phy_gg82563; |
| |
| phy->ops.acquire = e1000_acquire_phy_80003es2lan; |
| phy->ops.check_polarity = e1000_check_polarity_m88; |
| phy->ops.check_reset_block = e1000_check_reset_block_generic; |
| phy->ops.commit = e1000_phy_sw_reset_generic; |
| phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; |
| phy->ops.get_info = e1000_get_phy_info_m88; |
| phy->ops.release = e1000_release_phy_80003es2lan; |
| phy->ops.reset = e1000_phy_hw_reset_generic; |
| phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; |
| |
| phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan; |
| phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan; |
| phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; |
| phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; |
| |
| phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan; |
| |
| /* This can only be done after all function pointers are setup. */ |
| ret_val = e1000_get_phy_id(hw); |
| |
| /* Verify phy id */ |
| if (phy->id != GG82563_E_PHY_ID) |
| return -E1000_ERR_PHY; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = E1000_READ_REG(hw, E1000_EECD); |
| u16 size; |
| |
| DEBUGFUNC("e1000_init_nvm_params_80003es2lan"); |
| |
| nvm->opcode_bits = 8; |
| nvm->delay_usec = 1; |
| switch (nvm->override) { |
| case e1000_nvm_override_spi_large: |
| nvm->page_size = 32; |
| nvm->address_bits = 16; |
| break; |
| case e1000_nvm_override_spi_small: |
| nvm->page_size = 8; |
| nvm->address_bits = 8; |
| break; |
| default: |
| nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| break; |
| } |
| |
| nvm->type = e1000_nvm_eeprom_spi; |
| |
| size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| |
| /* Added to a constant, "size" becomes the left-shift value |
| * for setting word_size. |
| */ |
| size += NVM_WORD_SIZE_BASE_SHIFT; |
| |
| /* EEPROM access above 16k is unsupported */ |
| if (size > 14) |
| size = 14; |
| nvm->word_size = 1 << size; |
| |
| /* Function Pointers */ |
| nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; |
| nvm->ops.read = e1000_read_nvm_eerd; |
| nvm->ops.release = e1000_release_nvm_80003es2lan; |
| nvm->ops.update = e1000_update_nvm_checksum_generic; |
| nvm->ops.valid_led_default = e1000_valid_led_default_generic; |
| nvm->ops.validate = e1000_validate_nvm_checksum_generic; |
| nvm->ops.write = e1000_write_nvm_80003es2lan; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| DEBUGFUNC("e1000_init_mac_params_80003es2lan"); |
| |
| /* Set media type and media-dependent function pointers */ |
| switch (hw->device_id) { |
| case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| hw->phy.media_type = e1000_media_type_internal_serdes; |
| mac->ops.check_for_link = e1000_check_for_serdes_link_generic; |
| mac->ops.setup_physical_interface = |
| e1000_setup_fiber_serdes_link_generic; |
| break; |
| default: |
| hw->phy.media_type = e1000_media_type_copper; |
| mac->ops.check_for_link = e1000_check_for_copper_link_generic; |
| mac->ops.setup_physical_interface = |
| e1000_setup_copper_link_80003es2lan; |
| break; |
| } |
| |
| /* Set mta register count */ |
| mac->mta_reg_count = 128; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_RAR_ENTRIES; |
| /* Set if part includes ASF firmware */ |
| mac->asf_firmware_present = TRUE; |
| /* FWSM register */ |
| mac->has_fwsm = TRUE; |
| /* ARC supported; valid only if manageability features are enabled. */ |
| mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & |
| E1000_FWSM_MODE_MASK); |
| /* Adaptive IFS not supported */ |
| mac->adaptive_ifs = FALSE; |
| |
| /* Function pointers */ |
| |
| /* bus type/speed/width */ |
| mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; |
| /* reset */ |
| mac->ops.reset_hw = e1000_reset_hw_80003es2lan; |
| /* hw initialization */ |
| mac->ops.init_hw = e1000_init_hw_80003es2lan; |
| /* link setup */ |
| mac->ops.setup_link = e1000_setup_link_generic; |
| /* check management mode */ |
| mac->ops.check_mng_mode = e1000_check_mng_mode_generic; |
| /* multicast address update */ |
| mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; |
| /* writing VFTA */ |
| mac->ops.write_vfta = e1000_write_vfta_generic; |
| /* clearing VFTA */ |
| mac->ops.clear_vfta = e1000_clear_vfta_generic; |
| /* read mac address */ |
| mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan; |
| /* ID LED init */ |
| mac->ops.id_led_init = e1000_id_led_init_generic; |
| /* blink LED */ |
| mac->ops.blink_led = e1000_blink_led_generic; |
| /* setup LED */ |
| mac->ops.setup_led = e1000_setup_led_generic; |
| /* cleanup LED */ |
| mac->ops.cleanup_led = e1000_cleanup_led_generic; |
| /* turn on/off LED */ |
| mac->ops.led_on = e1000_led_on_generic; |
| mac->ops.led_off = e1000_led_off_generic; |
| /* clear hardware counters */ |
| mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan; |
| /* link info */ |
| mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan; |
| |
| /* set lan id for port to determine which phy lock to use */ |
| hw->mac.ops.set_lan_id(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. |
| * @hw: pointer to the HW structure |
| * |
| * Called to initialize all function pointers and parameters. |
| **/ |
| void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_init_function_pointers_80003es2lan"); |
| |
| hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan; |
| hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan; |
| hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan; |
| } |
| |
| /** |
| * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * A wrapper to acquire access rights to the correct PHY. |
| **/ |
| static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) |
| { |
| u16 mask; |
| |
| DEBUGFUNC("e1000_acquire_phy_80003es2lan"); |
| |
| mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| return e1000_acquire_swfw_sync(hw, mask); |
| } |
| |
| /** |
| * e1000_release_phy_80003es2lan - Release rights to access PHY |
| * @hw: pointer to the HW structure |
| * |
| * A wrapper to release access rights to the correct PHY. |
| **/ |
| static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) |
| { |
| u16 mask; |
| |
| DEBUGFUNC("e1000_release_phy_80003es2lan"); |
| |
| mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| e1000_release_swfw_sync(hw, mask); |
| } |
| |
| /** |
| * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the semaphore to access the Kumeran interface. |
| * |
| **/ |
| static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) |
| { |
| u16 mask; |
| |
| DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan"); |
| |
| mask = E1000_SWFW_CSR_SM; |
| |
| return e1000_acquire_swfw_sync(hw, mask); |
| } |
| |
| /** |
| * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register |
| * @hw: pointer to the HW structure |
| * |
| * Release the semaphore used to access the Kumeran interface |
| **/ |
| static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) |
| { |
| u16 mask; |
| |
| DEBUGFUNC("e1000_release_mac_csr_80003es2lan"); |
| |
| mask = E1000_SWFW_CSR_SM; |
| |
| e1000_release_swfw_sync(hw, mask); |
| } |
| |
| /** |
| * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the semaphore to access the EEPROM. |
| **/ |
| static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_acquire_nvm_80003es2lan"); |
| |
| ret_val = e1000_acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_acquire_nvm_generic(hw); |
| |
| if (ret_val) |
| e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM |
| * @hw: pointer to the HW structure |
| * |
| * Release the semaphore used to access the EEPROM. |
| **/ |
| static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_release_nvm_80003es2lan"); |
| |
| e1000_release_nvm_generic(hw); |
| e1000_release_swfw_sync(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /** |
| * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: offset of the register to read |
| * @data: pointer to the data returned from the operation |
| * |
| * Read the GG82563 PHY register. |
| **/ |
| static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| u32 offset, u16 *data) |
| { |
| s32 ret_val; |
| u32 page_select; |
| u16 temp; |
| |
| DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan"); |
| |
| ret_val = e1000_acquire_phy_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Select Configuration Page */ |
| if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
| page_select = GG82563_PHY_PAGE_SELECT; |
| } else { |
| /* Use Alternative Page Select register to access |
| * registers 30 and 31 |
| */ |
| page_select = GG82563_PHY_PAGE_SELECT_ALT; |
| } |
| |
| temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
| ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); |
| if (ret_val) { |
| e1000_release_phy_80003es2lan(hw); |
| return ret_val; |
| } |
| |
| if (hw->dev_spec._80003es2lan.mdic_wa_enable) { |
| /* The "ready" bit in the MDIC register may be incorrectly set |
| * before the device has completed the "Page Select" MDI |
| * transaction. So we wait 200us after each MDI command... |
| */ |
| usec_delay(200); |
| |
| /* ...and verify the command was successful. */ |
| ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); |
| |
| if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
| e1000_release_phy_80003es2lan(hw); |
| return -E1000_ERR_PHY; |
| } |
| |
| usec_delay(200); |
| |
| ret_val = e1000_read_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| usec_delay(200); |
| } else { |
| ret_val = e1000_read_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| } |
| |
| e1000_release_phy_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register |
| * @hw: pointer to the HW structure |
| * @offset: offset of the register to read |
| * @data: value to write to the register |
| * |
| * Write to the GG82563 PHY register. |
| **/ |
| static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| u32 offset, u16 data) |
| { |
| s32 ret_val; |
| u32 page_select; |
| u16 temp; |
| |
| DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan"); |
| |
| ret_val = e1000_acquire_phy_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Select Configuration Page */ |
| if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
| page_select = GG82563_PHY_PAGE_SELECT; |
| } else { |
| /* Use Alternative Page Select register to access |
| * registers 30 and 31 |
| */ |
| page_select = GG82563_PHY_PAGE_SELECT_ALT; |
| } |
| |
| temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
| ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); |
| if (ret_val) { |
| e1000_release_phy_80003es2lan(hw); |
| return ret_val; |
| } |
| |
| if (hw->dev_spec._80003es2lan.mdic_wa_enable) { |
| /* The "ready" bit in the MDIC register may be incorrectly set |
| * before the device has completed the "Page Select" MDI |
| * transaction. So we wait 200us after each MDI command... |
| */ |
| usec_delay(200); |
| |
| /* ...and verify the command was successful. */ |
| ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); |
| |
| if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
| e1000_release_phy_80003es2lan(hw); |
| return -E1000_ERR_PHY; |
| } |
| |
| usec_delay(200); |
| |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| |
| usec_delay(200); |
| } else { |
| ret_val = e1000_write_phy_reg_mdic(hw, |
| MAX_PHY_REG_ADDRESS & offset, |
| data); |
| } |
| |
| e1000_release_phy_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_nvm_80003es2lan - Write to ESB2 NVM |
| * @hw: pointer to the HW structure |
| * @offset: offset of the register to read |
| * @words: number of words to write |
| * @data: buffer of data to write to the NVM |
| * |
| * Write "words" of data to the ESB2 NVM. |
| **/ |
| static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
| u16 words, u16 *data) |
| { |
| DEBUGFUNC("e1000_write_nvm_80003es2lan"); |
| |
| return e1000_write_nvm_spi(hw, offset, words, data); |
| } |
| |
| /** |
| * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete |
| * @hw: pointer to the HW structure |
| * |
| * Wait a specific amount of time for manageability processes to complete. |
| * This is a function pointer entry point called by the phy module. |
| **/ |
| static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 timeout = PHY_CFG_TIMEOUT; |
| u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
| |
| DEBUGFUNC("e1000_get_cfg_done_80003es2lan"); |
| |
| if (hw->bus.func == 1) |
| mask = E1000_NVM_CFG_DONE_PORT_1; |
| |
| while (timeout) { |
| if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) |
| break; |
| msec_delay(1); |
| timeout--; |
| } |
| if (!timeout) { |
| DEBUGOUT("MNG configuration cycle has not completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex |
| * @hw: pointer to the HW structure |
| * |
| * Force the speed and duplex settings onto the PHY. This is a |
| * function pointer entry point called by the phy module. |
| **/ |
| static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 phy_data; |
| bool link; |
| |
| DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan"); |
| |
| if (!(hw->phy.ops.read_reg)) |
| return E1000_SUCCESS; |
| |
| /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| * forced whenever speed and duplex are forced. |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("GG82563 PSCR: %X\n", phy_data); |
| |
| ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000_phy_force_speed_duplex_setup(hw, &phy_data); |
| |
| /* Reset the phy to commit changes. */ |
| phy_data |= MII_CR_RESET; |
| |
| ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| usec_delay(1); |
| |
| if (hw->phy.autoneg_wait_to_complete) { |
| DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n"); |
| |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| /* We didn't get link. |
| * Reset the DSP and cross our fingers. |
| */ |
| ret_val = e1000_phy_reset_dsp_generic(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Try once more */ |
| ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 100000, &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Resetting the phy means we need to verify the TX_CLK corresponds |
| * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. |
| */ |
| phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
| if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) |
| phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; |
| else |
| phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; |
| |
| /* In addition, we must re-enable CRS on Tx for both half and full |
| * duplex. |
| */ |
| phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, |
| phy_data); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_cable_length_80003es2lan - Set approximate cable length |
| * @hw: pointer to the HW structure |
| * |
| * Find the approximate cable length as measured by the GG82563 PHY. |
| * This is a function pointer entry point called by the phy module. |
| **/ |
| static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, index; |
| |
| DEBUGFUNC("e1000_get_cable_length_80003es2lan"); |
| |
| if (!(hw->phy.ops.read_reg)) |
| return E1000_SUCCESS; |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| index = phy_data & GG82563_DSPD_CABLE_LENGTH; |
| |
| if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) |
| return -E1000_ERR_PHY; |
| |
| phy->min_cable_length = e1000_gg82563_cable_length_table[index]; |
| phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; |
| |
| phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_get_link_up_info_80003es2lan - Report speed and duplex |
| * @hw: pointer to the HW structure |
| * @speed: pointer to speed buffer |
| * @duplex: pointer to duplex buffer |
| * |
| * Retrieve the current speed and duplex configuration. |
| **/ |
| static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_get_link_up_info_80003es2lan"); |
| |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, |
| duplex); |
| hw->phy.ops.cfg_on_link_up(hw); |
| } else { |
| ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw, |
| speed, |
| duplex); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_reset_hw_80003es2lan - Reset the ESB2 controller |
| * @hw: pointer to the HW structure |
| * |
| * Perform a global reset to the ESB2 controller. |
| **/ |
| static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 kum_reg_data; |
| |
| DEBUGFUNC("e1000_reset_hw_80003es2lan"); |
| |
| /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000_disable_pcie_master_generic(hw); |
| if (ret_val) |
| DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
| |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); |
| |
| E1000_WRITE_REG(hw, E1000_RCTL, 0); |
| E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(hw); |
| |
| msec_delay(10); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| |
| ret_val = e1000_acquire_phy_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); |
| e1000_release_phy_80003es2lan(hw); |
| |
| /* Disable IBIST slave mode (far-end loopback) */ |
| ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); |
| if (!ret_val) { |
| kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; |
| ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_INBAND_PARAM, |
| kum_reg_data); |
| if (ret_val) |
| DEBUGOUT("Error disabling far-end loopback\n"); |
| } else |
| DEBUGOUT("Error disabling far-end loopback\n"); |
| |
| ret_val = e1000_get_auto_rd_done_generic(hw); |
| if (ret_val) |
| /* We don't want to continue accessing MAC registers. */ |
| return ret_val; |
| |
| /* Clear any pending interrupt events. */ |
| E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); |
| E1000_READ_REG(hw, E1000_ICR); |
| |
| return e1000_check_alt_mac_addr_generic(hw); |
| } |
| |
| /** |
| * e1000_init_hw_80003es2lan - Initialize the ESB2 controller |
| * @hw: pointer to the HW structure |
| * |
| * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. |
| **/ |
| static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 reg_data; |
| s32 ret_val; |
| u16 kum_reg_data; |
| u16 i; |
| |
| DEBUGFUNC("e1000_init_hw_80003es2lan"); |
| |
| e1000_initialize_hw_bits_80003es2lan(hw); |
| |
| /* Initialize identification LED */ |
| ret_val = mac->ops.id_led_init(hw); |
| /* An error is not fatal and we should not stop init due to this */ |
| if (ret_val) |
| DEBUGOUT("Error initializing identification LED\n"); |
| |
| /* Disabling VLAN filtering */ |
| DEBUGOUT("Initializing the IEEE VLAN\n"); |
| mac->ops.clear_vfta(hw); |
| |
| /* Setup the receive address. */ |
| e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); |
| |
| /* Zero out the Multicast HASH table */ |
| DEBUGOUT("Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| |
| /* Setup link and flow control */ |
| ret_val = mac->ops.setup_link(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable IBIST slave mode (far-end loopback) */ |
| ret_val = |
| e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
| &kum_reg_data); |
| if (!ret_val) { |
| kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; |
| ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_INBAND_PARAM, |
| kum_reg_data); |
| if (ret_val) |
| DEBUGOUT("Error disabling far-end loopback\n"); |
| } else |
| DEBUGOUT("Error disabling far-end loopback\n"); |
| |
| /* Set the transmit descriptor write-back policy */ |
| reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); |
| reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); |
| E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); |
| |
| /* ...for both queues. */ |
| reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); |
| reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); |
| E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); |
| |
| /* Enable retransmit on late collisions */ |
| reg_data = E1000_READ_REG(hw, E1000_TCTL); |
| reg_data |= E1000_TCTL_RTLC; |
| E1000_WRITE_REG(hw, E1000_TCTL, reg_data); |
| |
| /* Configure Gigabit Carry Extend Padding */ |
| reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT); |
| reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
| reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; |
| E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data); |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| reg_data = E1000_READ_REG(hw, E1000_TIPG); |
| reg_data &= ~E1000_TIPG_IPGT_MASK; |
| reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
| E1000_WRITE_REG(hw, E1000_TIPG, reg_data); |
| |
| reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); |
| reg_data &= ~0x00100000; |
| E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); |
| |
| /* default to TRUE to enable the MDIC W/A */ |
| hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE; |
| |
| ret_val = |
| e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >> |
| E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i); |
| if (!ret_val) { |
| if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == |
| E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) |
| hw->dev_spec._80003es2lan.mdic_wa_enable = FALSE; |
| } |
| |
| /* Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 |
| * @hw: pointer to the HW structure |
| * |
| * Initializes required hardware-dependent bits needed for normal operation. |
| **/ |
| static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan"); |
| |
| /* Transmit Descriptor Control 0 */ |
| reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); |
| reg |= (1 << 22); |
| E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); |
| |
| /* Transmit Descriptor Control 1 */ |
| reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); |
| reg |= (1 << 22); |
| E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); |
| |
| /* Transmit Arbitration Control 0 */ |
| reg = E1000_READ_REG(hw, E1000_TARC(0)); |
| reg &= ~(0xF << 27); /* 30:27 */ |
| if (hw->phy.media_type != e1000_media_type_copper) |
| reg &= ~(1 << 20); |
| E1000_WRITE_REG(hw, E1000_TARC(0), reg); |
| |
| /* Transmit Arbitration Control 1 */ |
| reg = E1000_READ_REG(hw, E1000_TARC(1)); |
| if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) |
| reg &= ~(1 << 28); |
| else |
| reg |= (1 << 28); |
| E1000_WRITE_REG(hw, E1000_TARC(1), reg); |
| |
| /* Disable IPv6 extension header parsing because some malformed |
| * IPv6 headers can hang the Rx. |
| */ |
| reg = E1000_READ_REG(hw, E1000_RFCTL); |
| reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); |
| E1000_WRITE_REG(hw, E1000_RFCTL, reg); |
| |
| return; |
| } |
| |
| /** |
| * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link |
| * @hw: pointer to the HW structure |
| * |
| * Setup some GG82563 PHY registers for obtaining link |
| **/ |
| static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u32 reg; |
| u16 data; |
| |
| DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan"); |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ |
| data |= GG82563_MSCR_TX_CLK_1000MBPS_25; |
| |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
| |
| switch (phy->mdix) { |
| case 1: |
| data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
| break; |
| case 2: |
| data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
| break; |
| case 0: |
| default: |
| data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| if (phy->disable_polarity_correction) |
| data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = hw->phy.ops.commit(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| /* Bypass Rx and Tx FIFO's */ |
| reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL; |
| data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | |
| E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); |
| ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); |
| if (ret_val) |
| return ret_val; |
| |
| reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE; |
| ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data); |
| if (ret_val) |
| return ret_val; |
| data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; |
| ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data); |
| if (ret_val) |
| return ret_val; |
| |
| reg = E1000_READ_REG(hw, E1000_CTRL_EXT); |
| reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK; |
| E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Do not init these registers when the HW is in IAMT mode, since the |
| * firmware will have already initialized them. We only initialize |
| * them if the HW is not in IAMT mode. |
| */ |
| if (!hw->mac.ops.check_mng_mode(hw)) { |
| /* Enable Electrical Idle on the PHY */ |
| data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, |
| data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Workaround: Disable padding in Kumeran interface in the MAC |
| * and in the PHY to avoid CRC errors. |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= GG82563_ICR_DIS_PADDING; |
| ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data); |
| if (ret_val) |
| return ret_val; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /** |
| * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 |
| * @hw: pointer to the HW structure |
| * |
| * Essentially a wrapper for setting up all things "copper" related. |
| * This is a function pointer entry point called by the mac module. |
| **/ |
| static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 reg_data; |
| |
| DEBUGFUNC("e1000_setup_copper_link_80003es2lan"); |
| |
| ctrl = E1000_READ_REG(hw, E1000_CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| E1000_WRITE_REG(hw, E1000_CTRL, ctrl); |
| |
| /* Set the mac to wait the maximum time between each |
| * iteration and increase the max iterations when |
| * polling the phy; this fixes erroneous timeouts at 10Mbps. |
| */ |
| ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), |
| 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= 0x3F; |
| ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = |
| e1000_read_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; |
| ret_val = |
| e1000_write_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| return e1000_setup_copper_link_generic(hw); |
| } |
| |
| /** |
| * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up |
| * @hw: pointer to the HW structure |
| * @duplex: current duplex setting |
| * |
| * Configure the KMRN interface by applying last minute quirks for |
| * 10/100 operation. |
| **/ |
| static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = E1000_SUCCESS; |
| u16 speed; |
| u16 duplex; |
| |
| DEBUGFUNC("e1000_configure_on_link_up"); |
| |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed, |
| &duplex); |
| if (ret_val) |
| return ret_val; |
| |
| if (speed == SPEED_1000) |
| ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); |
| else |
| ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation |
| * @hw: pointer to the HW structure |
| * @duplex: current duplex setting |
| * |
| * Configure the KMRN interface by applying last minute quirks for |
| * 10/100 operation. |
| **/ |
| static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) |
| { |
| s32 ret_val; |
| u32 tipg; |
| u32 i = 0; |
| u16 reg_data, reg_data2; |
| |
| DEBUGFUNC("e1000_configure_kmrn_for_10_100"); |
| |
| reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; |
| ret_val = |
| e1000_write_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = E1000_READ_REG(hw, E1000_TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; |
| E1000_WRITE_REG(hw, E1000_TIPG, tipg); |
| |
| do { |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| ®_data2); |
| if (ret_val) |
| return ret_val; |
| i++; |
| } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
| |
| if (duplex == HALF_DUPLEX) |
| reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
| else |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| |
| return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| } |
| |
| /** |
| * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation |
| * @hw: pointer to the HW structure |
| * |
| * Configure the KMRN interface by applying last minute quirks for |
| * gigabit operation. |
| **/ |
| static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 reg_data, reg_data2; |
| u32 tipg; |
| u32 i = 0; |
| |
| DEBUGFUNC("e1000_configure_kmrn_for_1000"); |
| |
| reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; |
| ret_val = |
| e1000_write_kmrn_reg_80003es2lan(hw, |
| E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = E1000_READ_REG(hw, E1000_TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
| E1000_WRITE_REG(hw, E1000_TIPG, tipg); |
| |
| do { |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| ®_data2); |
| if (ret_val) |
| return ret_val; |
| i++; |
| } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
| |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| |
| return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| } |
| |
| /** |
| * e1000_read_kmrn_reg_80003es2lan - Read kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Acquire semaphore, then read the PHY register at offset |
| * using the kumeran interface. The information retrieved is stored in data. |
| * Release the semaphore before exiting. |
| **/ |
| static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
| u16 *data) |
| { |
| u32 kmrnctrlsta; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan"); |
| |
| ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
| E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); |
| E1000_WRITE_FLUSH(hw); |
| |
| usec_delay(2); |
| |
| kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); |
| *data = (u16)kmrnctrlsta; |
| |
| e1000_release_mac_csr_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_kmrn_reg_80003es2lan - Write kumeran register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquire semaphore, then write the data to PHY register |
| * at the offset using the kumeran interface. Release semaphore |
| * before exiting. |
| **/ |
| static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
| u16 data) |
| { |
| u32 kmrnctrlsta; |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan"); |
| |
| ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
| E1000_KMRNCTRLSTA_OFFSET) | data; |
| E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); |
| E1000_WRITE_FLUSH(hw); |
| |
| usec_delay(2); |
| |
| e1000_release_mac_csr_80003es2lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_mac_addr_80003es2lan - Read device MAC address |
| * @hw: pointer to the HW structure |
| **/ |
| static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| DEBUGFUNC("e1000_read_mac_addr_80003es2lan"); |
| |
| /* If there's an alternate MAC address place it in RAR0 |
| * so that it will override the Si installed default perm |
| * address. |
| */ |
| ret_val = e1000_check_alt_mac_addr_generic(hw); |
| if (ret_val) |
| return ret_val; |
| |
| return e1000_read_mac_addr_generic(hw); |
| } |
| |
| /** |
| * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of a PHY power down to save power, or to turn off link during a |
| * driver unload, or wake on lan is not enabled, remove the link. |
| **/ |
| static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) |
| { |
| /* If the management interface is not enabled, then power down */ |
| if (!(hw->mac.ops.check_mng_mode(hw) || |
| hw->phy.ops.check_reset_block(hw))) |
| e1000_power_down_phy_copper(hw); |
| |
| return; |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the hardware counters by reading the counter registers. |
| **/ |
| static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan"); |
| |
| e1000_clear_hw_cntrs_base_generic(hw); |
| |
| E1000_READ_REG(hw, E1000_PRC64); |
| E1000_READ_REG(hw, E1000_PRC127); |
| E1000_READ_REG(hw, E1000_PRC255); |
| E1000_READ_REG(hw, E1000_PRC511); |
| E1000_READ_REG(hw, E1000_PRC1023); |
| E1000_READ_REG(hw, E1000_PRC1522); |
| E1000_READ_REG(hw, E1000_PTC64); |
| E1000_READ_REG(hw, E1000_PTC127); |
| E1000_READ_REG(hw, E1000_PTC255); |
| E1000_READ_REG(hw, E1000_PTC511); |
| E1000_READ_REG(hw, E1000_PTC1023); |
| E1000_READ_REG(hw, E1000_PTC1522); |
| |
| E1000_READ_REG(hw, E1000_ALGNERRC); |
| E1000_READ_REG(hw, E1000_RXERRC); |
| E1000_READ_REG(hw, E1000_TNCRS); |
| E1000_READ_REG(hw, E1000_CEXTERR); |
| E1000_READ_REG(hw, E1000_TSCTC); |
| E1000_READ_REG(hw, E1000_TSCTFC); |
| |
| E1000_READ_REG(hw, E1000_MGTPRC); |
| E1000_READ_REG(hw, E1000_MGTPDC); |
| E1000_READ_REG(hw, E1000_MGTPTC); |
| |
| E1000_READ_REG(hw, E1000_IAC); |
| E1000_READ_REG(hw, E1000_ICRXOC); |
| |
| E1000_READ_REG(hw, E1000_ICRXPTC); |
| E1000_READ_REG(hw, E1000_ICRXATC); |
| E1000_READ_REG(hw, E1000_ICTXPTC); |
| E1000_READ_REG(hw, E1000_ICTXATC); |
| E1000_READ_REG(hw, E1000_ICTXQEC); |
| E1000_READ_REG(hw, E1000_ICTXQMTC); |
| E1000_READ_REG(hw, E1000_ICRXDMTC); |
| } |