blob: 66abeb1bec2eb1d188acde3db75df1cf2caa5def [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <lib/fidl/coding.h>
#include <lib/fidl/internal.h>
#include <lib/fidl/visitor.h>
#include <lib/fidl/walker.h>
#include <lib/stdcompat/variant.h>
#include <stdalign.h>
#include <zircon/assert.h>
#include <zircon/compiler.h>
#include <zircon/types.h>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#ifdef __Fuchsia__
#include <zircon/syscalls.h>
#endif
namespace {
struct EncodingPosition {
// |dest| is an address in the destination buffer.
uint8_t* dest;
__ALWAYS_INLINE static EncodingPosition Create(void* source_object, uint8_t* dest) {
return {
.dest = dest,
};
}
__ALWAYS_INLINE EncodingPosition operator+(uint32_t size) const {
return {
.dest = dest + size,
};
}
__ALWAYS_INLINE EncodingPosition& operator+=(uint32_t size) {
*this = *this + size;
return *this;
}
// By default, return the pointer to the destination buffer
template <typename T>
__ALWAYS_INLINE constexpr T* Get() const {
return reinterpret_cast<T*>(dest);
}
template <typename T>
__ALWAYS_INLINE constexpr T* GetFromSource() const {
ZX_PANIC("GetFromSource should not be used when encoding without linearizing");
}
};
struct EnvelopeCheckpoint {};
struct BufferEncodeArgs {
uint8_t* bytes;
uint32_t num_bytes;
cpp17::variant<cpp17::monostate, zx_handle_t*, zx_handle_disposition_t*> handles;
uint32_t num_handles;
uint32_t next_out_of_line;
const char** out_error_msg;
};
class FidlEncoder final
: public ::fidl::Visitor<FIDL_WIRE_FORMAT_VERSION_V2, fidl::MutatingVisitorTrait,
EncodingPosition, EnvelopeCheckpoint> {
public:
using Base = ::fidl::Visitor<FIDL_WIRE_FORMAT_VERSION_V2, fidl::MutatingVisitorTrait,
EncodingPosition, EnvelopeCheckpoint>;
using Status = typename Base::Status;
using PointeeType = typename Base::PointeeType;
using ObjectPointerPointer = typename Base::ObjectPointerPointer;
using HandlePointer = typename Base::HandlePointer;
using CountPointer = typename Base::CountPointer;
using EnvelopeType = typename Base::EnvelopeType;
using EnvelopePointer = typename Base::EnvelopePointer;
using Position = EncodingPosition;
explicit FidlEncoder(BufferEncodeArgs args)
: bytes_(args.bytes),
num_bytes_(args.num_bytes),
handles_(args.handles),
num_handles_(args.num_handles),
next_out_of_line_(args.next_out_of_line),
out_error_msg_(args.out_error_msg) {}
static constexpr bool kOnlyWalkResources = false;
static constexpr bool kContinueAfterConstraintViolation = true;
static constexpr bool kValidateEnvelopeInlineBit = false;
Status VisitAbsentPointerInNonNullableCollection(ObjectPointerPointer object_ptr_ptr) {
SetError("absent pointer disallowed in non-nullable collection");
return Status::kConstraintViolationError;
}
Status VisitPointerBuffer(Position ptr_position, PointeeType pointee_type, void* object_ptr,
uint32_t new_offset, uint32_t inline_size, Position* out_position) {
if (unlikely(new_offset > num_bytes_)) {
SetError("pointed offset exceeds buffer size");
return Status::kConstraintViolationError;
}
if (unlikely(object_ptr != &bytes_[next_out_of_line_])) {
SetError("noncontiguous out of line storage during encode");
return Status::kMemoryError;
}
// Zero padding between out of line storage.
memset(&bytes_[next_out_of_line_] + inline_size, 0,
(new_offset - next_out_of_line_) - inline_size);
// Instruct the walker to traverse the pointee afterwards.
*out_position = Position::Create(object_ptr, bytes_ + next_out_of_line_);
return Status::kSuccess;
}
Status VisitPointer(Position ptr_position, PointeeType pointee_type,
ObjectPointerPointer object_ptr_ptr, uint32_t inline_size,
FidlMemcpyCompatibility pointee_memcpy_compatibility,
Position* out_position) {
// For pointers in types other than vectors and strings, the LSB is reserved to mark ownership
// and may be set to 1 if the object is heap allocated. However, the original pointer has this
// bit cleared. For vectors and strings, any value is accepted.
void* object_ptr = *object_ptr_ptr;
uint32_t new_offset;
if (unlikely(!FidlAddOutOfLine(next_out_of_line_, inline_size, &new_offset))) {
SetError("overflow updating out-of-line offset");
return Status::kMemoryError;
}
// Validate that we have a UTF8 string.
// TODO(fxbug.dev/52215): For strings, it would most likely be more efficient
// to validate and copy at the same time.
if (unlikely(pointee_type == PointeeType::kString)) {
bool valid = fidl_validate_string(reinterpret_cast<char*>(object_ptr), inline_size);
if (!valid) {
SetError("encoder encountered invalid UTF8 string");
return Status::kConstraintViolationError;
}
}
Status status = VisitPointerBuffer(ptr_position, pointee_type, object_ptr, new_offset,
inline_size, out_position);
if (status != Status::kSuccess) {
return status;
}
next_out_of_line_ = new_offset;
// Rewrite pointer as "present" placeholder
return SetPointerPresent(object_ptr_ptr, object_ptr);
}
Status VisitHandle(Position handle_position, HandlePointer dest_handle, zx_rights_t handle_rights,
zx_obj_type_t handle_subtype) {
if (handle_idx_ == num_handles_) {
SetError("message tried to encode too many handles");
ThrowAwayHandle(dest_handle);
return Status::kConstraintViolationError;
}
if (has_handles()) {
handles()[handle_idx_] = *dest_handle;
} else if (likely(has_handle_dispositions())) {
handle_dispositions()[handle_idx_] = zx_handle_disposition_t{
.operation = ZX_HANDLE_OP_MOVE,
.handle = *dest_handle,
.type = handle_subtype,
.rights = handle_rights,
.result = ZX_OK,
};
} else {
SetError("did not provide place to store handles");
ThrowAwayHandle(dest_handle);
return Status::kConstraintViolationError;
}
*dest_handle = FIDL_HANDLE_PRESENT;
handle_idx_++;
return Status::kSuccess;
}
Status VisitVectorOrStringCount(CountPointer ptr) { return Status::kSuccess; }
template <typename MaskType>
Status VisitInternalPadding(Position padding_position, MaskType mask) {
MaskType* ptr = padding_position.template Get<MaskType>();
*ptr &= static_cast<MaskType>(~mask);
return Status::kSuccess;
}
EnvelopeCheckpoint EnterEnvelope() { return {}; }
Status LeaveEnvelope(EnvelopeType in_envelope, EnvelopePointer out_envelope,
EnvelopeCheckpoint prev_checkpoint) {
SetError("union and table types are not supported by FIDL C bindings");
return Status::kConstraintViolationError;
}
Status LeaveInlinedEnvelope(EnvelopeType in_envelope, EnvelopePointer out_envelope,
EnvelopeCheckpoint prev_checkpoint) {
SetError("union and table types are not supported by FIDL C bindings");
return Status::kConstraintViolationError;
}
Status VisitUnknownEnvelope(EnvelopeType envelope_copy, EnvelopePointer envelope_ptr,
FidlIsResource is_resource) {
SetError("union and table types are not supported by FIDL C bindings");
return Status::kConstraintViolationError;
}
void OnError(const char* error) { SetError(error); }
zx_status_t status() const { return status_; }
uint32_t num_out_handles() const { return handle_idx_; }
uint32_t num_out_bytes() const { return next_out_of_line_; }
private:
void SetError(const char* error) {
if (status_ == ZX_OK) {
status_ = ZX_ERR_INVALID_ARGS;
if (out_error_msg_ != nullptr) {
*out_error_msg_ = error;
}
}
}
void ThrowAwayHandle(HandlePointer handle) {
#ifdef __Fuchsia__
zx_handle_close(*handle);
#endif
*handle = ZX_HANDLE_INVALID;
}
bool has_handles() const { return cpp17::holds_alternative<zx_handle_t*>(handles_); }
bool has_handle_dispositions() const {
return cpp17::holds_alternative<zx_handle_disposition_t*>(handles_);
}
zx_handle_t* handles() const {
ZX_DEBUG_ASSERT(cpp17::get<zx_handle_t*>(handles_) != nullptr);
return cpp17::get<zx_handle_t*>(handles_);
}
zx_handle_disposition_t* handle_dispositions() const {
ZX_DEBUG_ASSERT(cpp17::get<zx_handle_disposition_t*>(handles_) != nullptr);
return cpp17::get<zx_handle_disposition_t*>(handles_);
}
Status SetPointerPresent(ObjectPointerPointer object_ptr_ptr, void* object_ptr) {
*object_ptr_ptr = reinterpret_cast<void*>(FIDL_ALLOC_PRESENT);
return Status::kSuccess;
}
// Message state initialized in the constructor.
uint8_t* const bytes_ = nullptr;
const uint32_t num_bytes_ = 0;
cpp17::variant<cpp17::monostate, zx_handle_t*, zx_handle_disposition_t*> handles_;
const uint32_t num_handles_;
uint32_t next_out_of_line_;
const char** const out_error_msg_;
// Encoder state
zx_status_t status_ = ZX_OK;
uint32_t handle_idx_ = 0;
};
template <typename HandleType>
zx_status_t fidl_encode_impl(const fidl_type_t* type, void* bytes, uint32_t num_bytes,
HandleType* handles, uint32_t max_handles,
uint32_t* out_actual_handles, const char** out_error_msg,
void (*close_handles)(const HandleType*, uint32_t)) {
auto set_error = [&out_error_msg](const char* msg) {
if (out_error_msg)
*out_error_msg = msg;
};
if (unlikely(type == nullptr)) {
set_error("fidl type cannot be null");
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(bytes == nullptr)) {
set_error("Cannot encode null bytes");
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(!FidlIsAligned(reinterpret_cast<uint8_t*>(bytes)))) {
set_error("Bytes must be aligned to FIDL_ALIGNMENT");
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(num_bytes % FIDL_ALIGNMENT != 0)) {
set_error("num_bytes must be aligned to FIDL_ALIGNMENT");
return ZX_ERR_INVALID_ARGS;
}
// Zero region between primary object and next out of line object.
zx_status_t status;
uint32_t primary_size;
uint32_t next_out_of_line;
if (unlikely((status = fidl::PrimaryObjectSize<FIDL_WIRE_FORMAT_VERSION_V2>(
type, num_bytes, &primary_size, &next_out_of_line, out_error_msg)) != ZX_OK)) {
return status;
}
memset(reinterpret_cast<uint8_t*>(bytes) + primary_size, 0, next_out_of_line - primary_size);
BufferEncodeArgs args = {.bytes = static_cast<uint8_t*>(bytes),
.num_bytes = num_bytes,
.num_handles = max_handles,
.next_out_of_line = next_out_of_line,
.out_error_msg = out_error_msg};
if (handles != nullptr) {
args.handles = handles;
}
FidlEncoder encoder(args);
fidl::Walk<FIDL_WIRE_FORMAT_VERSION_V2>(encoder, type,
{.dest = reinterpret_cast<uint8_t*>(bytes)});
auto drop_all_handles = [&]() {
if (out_actual_handles) {
*out_actual_handles = 0;
}
close_handles(handles, encoder.num_out_handles());
};
if (likely(encoder.status() == ZX_OK)) {
if (unlikely(encoder.num_out_bytes() != num_bytes)) {
set_error("message did not encode all provided bytes");
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(out_actual_handles == nullptr)) {
set_error("Cannot encode with null out_actual_handles");
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
*out_actual_handles = encoder.num_out_handles();
} else {
drop_all_handles();
return ZX_ERR_INVALID_ARGS;
}
if (unlikely(handles == nullptr && max_handles != 0)) {
set_error("Cannot provide non-zero handle count and null handle pointer");
// When |handles| is nullptr, handles are closed as part of traversal.
return ZX_ERR_INVALID_ARGS;
}
return encoder.status();
}
void close_handles_op(const zx_handle_t* handles, uint32_t max_idx) {
// Return value intentionally ignored. This is best-effort cleanup.
FidlHandleCloseMany(handles, max_idx);
}
void close_handle_dispositions_op(const zx_handle_disposition_t* handle_dispositions,
uint32_t max_idx) {
// Return value intentionally ignored. This is best-effort cleanup.
FidlHandleDispositionCloseMany(handle_dispositions, max_idx);
}
} // namespace
zx_status_t fidl_encode(const fidl_type_t* type, void* bytes, uint32_t num_bytes,
zx_handle_t* handles, uint32_t max_handles, uint32_t* out_actual_handles,
const char** out_error_msg) {
return fidl_encode_impl(type, bytes, num_bytes, handles, max_handles, out_actual_handles,
out_error_msg, close_handles_op);
}
zx_status_t fidl_encode_etc(const fidl_type_t* type, void* bytes, uint32_t num_bytes,
zx_handle_disposition_t* handle_dispositions,
uint32_t max_handle_dispositions,
uint32_t* out_actual_handle_dispositions, const char** out_error_msg) {
return fidl_encode_impl(type, bytes, num_bytes, handle_dispositions, max_handle_dispositions,
out_actual_handle_dispositions, out_error_msg,
close_handle_dispositions_op);
}
zx_status_t fidl_encode_msg(const fidl_type_t* type, fidl_outgoing_msg_byte_t* msg,
uint32_t* out_actual_handles, const char** out_error_msg) {
zx_handle_disposition_t handle_dispositions[ZX_CHANNEL_MAX_MSG_HANDLES];
uint8_t* trimmed_bytes;
uint32_t trimmed_num_bytes;
zx_status_t trim_status = ::fidl::internal::fidl_exclude_header_bytes(
msg->bytes, msg->num_bytes, &trimmed_bytes, &trimmed_num_bytes, out_error_msg);
if (unlikely(trim_status != ZX_OK)) {
return ZX_ERR_INVALID_ARGS;
}
zx_status_t status = fidl_encode_etc(type, trimmed_bytes, trimmed_num_bytes, handle_dispositions,
msg->num_handles, out_actual_handles, out_error_msg);
if (status != ZX_OK) {
return status;
}
fidl_channel_handle_metadata_t* handle_metadata =
reinterpret_cast<fidl_channel_handle_metadata_t*>(msg->handle_metadata);
for (uint32_t i = 0; i < *out_actual_handles; i++) {
msg->handles[i] = handle_dispositions[i].handle;
handle_metadata[i] = {
.obj_type = handle_dispositions[i].type,
.rights = handle_dispositions[i].rights,
};
}
return ZX_OK;
}