blob: d3a0f569861bad7572103386f5629b92f0ea6f55 [file] [log] [blame]
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "xhci-event-ring.h"
#include <lib/fake_ddk/fake_ddk.h>
#include <lib/fpromise/bridge.h>
#include <lib/fpromise/promise.h>
#include <zircon/errors.h>
#include <zircon/hw/usb.h>
#include <atomic>
#include <list>
#include <memory>
#include <thread>
#include <fake-dma-buffer/fake-dma-buffer.h>
#include <fake-mmio-reg/fake-mmio-reg.h>
#include <fbl/algorithm.h>
#include <zxtest/zxtest.h>
#include "usb-xhci.h"
#include "xhci-event-ring.h"
namespace usb_xhci {
const zx::bti kFakeBti(42);
constexpr size_t kErstMax = 42;
constexpr size_t kShortTransferLength0 = 97;
constexpr size_t kShortTransferLength1 = 102;
constexpr size_t kFinalTransferLength = 87;
constexpr size_t kTransferLengthInclusive = 8162;
constexpr size_t kShortTransferLength = 800;
constexpr size_t kFakeTrb = 0x3924ff0913;
constexpr size_t kFakeTrbVirt = 0x8411487132;
constexpr auto kPortNo = 5;
enum class CommandType {
EnumerateDevice,
ResetEndpoint,
};
struct Command : public fbl::DoublyLinkedListable<std::unique_ptr<Command>> {
uint8_t port;
std::optional<HubInfo> hub;
fpromise::completer<TRB*, zx_status_t> completer;
CommandType type;
uint8_t endpoint;
uint32_t device_id;
};
class EventRingHarness : public zxtest::Test {
public:
EventRingHarness()
: trb_context_allocator_(-1, true),
hci_(reinterpret_cast<zx_device_t*>(this), ddk_fake::CreateBufferFactory()) {}
void SetUp() override {
// Globals
constexpr auto kRuntimeRegisterOffset = 6;
constexpr auto kErdp = 2062;
region_.emplace(regs_, sizeof(uint32_t), std::size(regs_));
buffer_.emplace(region_->GetMmioBuffer());
// Core registers
regs_[kRuntimeRegisterOffset].SetReadCallback([=]() { return 0x2000; });
regs_[kErdp].SetReadCallback([=]() { return erdp_; });
regs_[kErdp].SetWriteCallback([=](uint64_t value) {
ERDP reg;
reg.set_reg_value(value);
erdp_ = reg.Pointer();
});
// Port/per-slot registers
regs_[PORTSC::Get(0, kPortNo).addr() / sizeof(uint32_t)].SetReadCallback(
[=]() { return port_sc_.reg_value(); });
regs_[PORTSC::Get(0, kPortNo).addr() / sizeof(uint32_t)].SetWriteCallback([=](uint64_t value) {
PORTSC sc;
sc.set_reg_value(static_cast<uint32_t>(value));
if (sc.PR()) {
port_sc_.set_PR(true);
}
});
hci_.SetTestHarness(this);
// Initialization
ASSERT_OK(hci_.InitThread());
}
void TearDown() override {}
void Interrupt() { ring_->HandleIRQ(); }
void AddTRB(const TRB& trb) {
auto ptr = ddk_fake::PhysToVirt<TRB*>(erdp_);
*ptr = trb;
Control::FromTRB(ptr).set_Cycle(1).ToTrb(ptr);
erdp_ += sizeof(TRB);
}
void ConnectDevice() {
port_sc_.set_CCS(true);
port_sc_.set_PED(true);
port_sc_.set_PR(false);
port_sc_.set_PLS(PORTSC::Polling);
port_sc_.set_CSC(true);
}
void DisconnectDevice() {
port_sc_.set_CCS(false);
port_sc_.set_CSC(true);
}
void MakeQuantumPort() {
// Port is enabled and disabled simultaneously
port_sc_.set_PLS(PORTSC::Disabled);
port_sc_.set_PED(1);
}
void LinkUp() {
port_sc_.set_PR(false);
port_sc_.set_PLS(PORTSC::U0);
}
bool PortResetPending() { return port_sc_.PR(); }
void InsertPortStatusChangeEvent() {
TRB trb;
trb.ptr = 0;
Control::FromTRB(&trb).set_Type(Control::PortStatusChangeEvent).ToTrb(&trb);
auto evt = static_cast<PortStatusChangeEvent*>(&trb);
evt->set_PortID(kPortNo);
AddTRB(trb);
}
TRB* trb() { return ddk_fake::PhysToVirt<TRB*>(erdp_); }
using TestRequest = usb::CallbackRequest<sizeof(max_align_t)>;
template <typename Callback>
zx_status_t AllocateRequest(std::optional<TestRequest>* request, uint32_t device_id,
uint64_t data_size, uint8_t endpoint, Callback callback) {
zx_status_t status = TestRequest::Alloc(request, data_size, endpoint,
hci_.UsbHciGetRequestSize(), std::move(callback));
if (status != ZX_OK) {
return status;
}
request->value().request()->header.device_id = device_id;
return ZX_OK;
}
std::unique_ptr<TRBContext> AllocateContext() { return trb_context_allocator_.New(); }
void RequestQueue(usb_request_t* usb_request,
const usb_request_complete_callback_t* complete_cb) {
pending_req_ = Request(usb_request, *complete_cb, sizeof(usb_request_t));
}
Request Borrow(TestRequest request) {
request.Queue(*this);
return std::move(*pending_req_);
}
zx_status_t InitRing(EventRing* ring) {
ring_ = ring;
auto regoffset = RuntimeRegisterOffset::Get().ReadFrom(&buffer_.value());
zx_status_t status = ring->Init(zx_system_get_page_size(), kFakeBti, &buffer_.value(), false,
kErstMax, ERSTSZ::Get(regoffset, 0).ReadFrom(&buffer_.value()),
ERDP::Get(regoffset, 0).ReadFrom(&buffer_.value()),
IMAN::Get(regoffset, 0).ReadFrom(&buffer_.value()),
CapLength::Get().ReadFrom(&buffer_.value()).Length(),
HCSPARAMS1::Get().ReadFrom(&buffer_.value()), &command_ring_,
DoorbellOffset::Get().ReadFrom(&buffer_.value()), &hci_,
HCCPARAMS1::Get().ReadFrom(&buffer_.value()), dcbaa_, 0);
if (status != ZX_OK) {
return status;
}
status = ring_->AddSegmentIfNoneLock();
if (status != ZX_OK) {
return status;
}
ERDP reg;
reg.set_Pointer(ddk_fake::PhysToVirt<zx_paddr_t*>(ring_->erst())[0]);
regs_[2062].Write(reg.reg_value());
return ZX_OK;
}
void SetShortPacketHandler(
fit::function<void(usb_xhci::TRB*, size_t*, usb_xhci::TRB**, size_t)> handler) {
short_packet_handler_ = std::move(handler);
}
void HandleShortPacket(TRB* short_trb, size_t* transferred, TRB** first_trb,
size_t short_length) {
(*short_packet_handler_)(short_trb, transferred, first_trb, short_length);
}
zx_status_t CompleteTRB(TRB* trb, std::unique_ptr<TRBContext>* context) {
if (trb != expected_completion_) {
return ZX_ERR_IO;
}
*context = pending_contexts_.pop_front();
return ZX_OK;
}
void SetCompletion(TRB* expected) { expected_completion_ = expected; }
void AddContext(std::unique_ptr<TRBContext> context) {
pending_contexts_.push_back(std::move(context));
}
void AddCommand(std::unique_ptr<Command> command) { commands_.push_back(std::move(command)); }
std::unique_ptr<Command> GetCommand() { return commands_.pop_front(); }
bool HasCommand() { return !commands_.is_empty(); }
void InitSlot(uint8_t i) {
// Enable SlotID i for testing with arbitrary port 1.
auto& state = hci_.GetDeviceState()[i - 1];
fbl::AutoLock _(&state.transaction_lock());
state.SetDeviceInformation(i, 1, std::nullopt);
}
private:
std::optional<Request> pending_req_;
std::optional<fit::function<void(usb_xhci::TRB*, size_t*, usb_xhci::TRB**, size_t)>>
short_packet_handler_;
using AllocatorTraits = fbl::InstancedSlabAllocatorTraits<std::unique_ptr<TRBContext>, 4096U>;
using AllocatorType = fbl::SlabAllocator<AllocatorTraits>;
AllocatorType trb_context_allocator_;
TRB* expected_completion_ = nullptr;
fbl::DoublyLinkedList<std::unique_ptr<Command>> commands_;
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> pending_contexts_;
std::optional<fdf::MmioBuffer> buffer_;
EventRing* ring_;
UsbXhci hci_;
PORTSC port_sc_;
CommandRing command_ring_;
uint64_t dcbaa_[128];
uint64_t erdp_;
ddk_fake::FakeMmioReg regs_[4096];
std::optional<ddk_fake::FakeMmioRegRegion> region_;
};
void UsbXhci::UsbHciSetBusInterface(const usb_bus_interface_protocol_t* bus_intf) {}
size_t UsbXhci::UsbHciGetMaxDeviceCount() { return 0; }
zx_status_t UsbXhci::UsbHciEnableEndpoint(uint32_t device_id,
const usb_endpoint_descriptor_t* ep_desc,
const usb_ss_ep_comp_descriptor_t* ss_com_desc,
bool enable) {
return ZX_ERR_NOT_SUPPORTED;
}
zx_status_t UsbXhci::InitThread() {
fbl::AllocChecker ac;
interrupters_ = fbl::MakeArray<Interrupter>(&ac, 1);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
max_slots_ = 32;
device_state_ = fbl::MakeArray<DeviceState>(&ac, max_slots_);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
for (size_t i = 0; i < max_slots_; i++) {
fbl::AutoLock l(&device_state_[i].transaction_lock());
for (size_t c = 0; c < max_slots_; c++) {
device_state_[i].GetTransferRing(c).Init(zx_system_get_page_size(), kFakeBti, nullptr, false,
nullptr, *this);
}
}
port_state_ = fbl::MakeArray<PortState>(&ac, 32);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
return static_cast<EventRingHarness*>(GetTestHarness())->InitRing(&interrupters_[0].ring());
}
uint64_t UsbXhci::UsbHciGetCurrentFrame() { return 0; }
zx_status_t UsbXhci::UsbHciConfigureHub(uint32_t device_id, usb_speed_t speed,
const usb_hub_descriptor_t* desc, bool multi_tt) {
return ZX_ERR_NOT_SUPPORTED;
}
zx_status_t UsbXhci::UsbHciHubDeviceAdded(uint32_t device_id, uint32_t port, usb_speed_t speed) {
return ZX_ERR_NOT_SUPPORTED;
}
zx_status_t UsbXhci::UsbHciHubDeviceRemoved(uint32_t device_id, uint32_t port) {
return ZX_ERR_NOT_SUPPORTED;
}
zx_status_t UsbXhci::UsbHciHubDeviceReset(uint32_t device_id, uint32_t port) {
return ZX_ERR_NOT_SUPPORTED;
}
zx_status_t UsbXhci::UsbHciResetEndpoint(uint32_t device_id, uint8_t ep_address) {
return ZX_ERR_NOT_SUPPORTED;
}
TRBPromise UsbXhci::UsbHciResetEndpointAsync(uint32_t device_id, uint8_t ep_address) {
auto harness = static_cast<EventRingHarness*>(GetTestHarness());
std::unique_ptr<Command> command = std::make_unique<Command>();
fpromise::bridge<TRB*, zx_status_t> bridge;
command->type = CommandType::ResetEndpoint;
command->device_id = device_id;
command->endpoint = ep_address;
command->completer = std::move(bridge.completer);
harness->AddCommand(std::move(command));
return bridge.consumer.promise();
}
zx_status_t UsbXhci::UsbHciResetDevice(uint32_t hub_address, uint32_t device_id) {
return ZX_ERR_NOT_SUPPORTED;
}
size_t UsbXhci::UsbHciGetMaxTransferSize(uint32_t device_id, uint8_t ep_address) { return 0; }
zx_status_t UsbXhci::UsbHciCancelAll(uint32_t device_id, uint8_t ep_address) {
return ZX_ERR_NOT_SUPPORTED;
}
size_t UsbXhci::UsbHciGetRequestSize() { return Request::RequestSize(sizeof(usb_request_t)); }
void UsbXhci::UsbHciRequestQueue(usb_request_t* usb_request,
const usb_request_complete_callback_t* complete_cb) {}
uint16_t UsbXhci::InterrupterMapping() { return 0; }
TRBPromise UsbXhci::Timeout(uint16_t target_interrupter, zx::time deadline) {
return fpromise::make_ok_promise(static_cast<TRB*>(nullptr));
}
zx_status_t TransferRing::Init(size_t page_size, const zx::bti& bti, EventRing* ring, bool is_32bit,
fdf::MmioBuffer* mmio, const UsbXhci& hci) {
fbl::AutoLock _(&mutex_);
hci_ = &hci;
return ZX_OK;
}
void UsbXhci::Shutdown(zx_status_t status) {}
zx_status_t TransferRing::HandleShortPacket(TRB* short_trb, size_t* transferred, TRB** first_trb,
size_t short_length) {
static_cast<EventRingHarness*>(hci_->GetTestHarness())
->HandleShortPacket(short_trb, transferred, first_trb, short_length);
return ZX_OK;
}
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> TransferRing::TakePendingTRBsUntil(TRB* end) {
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> empty;
return empty;
}
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> TransferRing::TakePendingTRBs() {
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> empty;
return empty;
}
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> TransferRing::Resynchronize(uint64_t frame_id) {
fbl::DoublyLinkedList<std::unique_ptr<TRBContext>> empty;
return empty;
}
TRBPromise UsbXhci::DeviceOffline(uint32_t slot, TRB* continuation) {
return fpromise::make_error_promise(ZX_ERR_NOT_SUPPORTED);
}
TRBPromise EnumerateDevice(UsbXhci* hci, uint8_t port, std::optional<HubInfo> hub_info) {
auto harness = static_cast<EventRingHarness*>(hci->GetTestHarness());
std::unique_ptr<Command> command = std::make_unique<Command>();
fpromise::bridge<TRB*, zx_status_t> bridge;
command->type = CommandType::EnumerateDevice;
command->port = port;
command->hub = hub_info;
command->completer = std::move(bridge.completer);
harness->AddCommand(std::move(command));
return bridge.consumer.promise();
}
TRB* TransferRing::PhysToVirt(zx_paddr_t paddr) {
return (paddr == kFakeTrb) ? reinterpret_cast<TRB*>(kFakeTrbVirt) : nullptr;
}
zx_status_t TransferRing::CompleteTRB(TRB* trb, std::unique_ptr<TRBContext>* context) {
return static_cast<EventRingHarness*>(hci_->GetTestHarness())->CompleteTRB(trb, context);
}
TEST_F(EventRingHarness, ShortTransferTest) {
InitSlot(1);
TRB* start = trb();
TRB trb;
trb.ptr = kFakeTrb;
Control::FromTRB(&trb).set_Type(Control::TransferEvent).ToTrb(&trb);
TransferEvent* evt = static_cast<TransferEvent*>(&trb);
evt->set_SlotID(1);
evt->set_EndpointID(2);
evt->set_CompletionCode(CommandCompletionEvent::ShortPacket);
evt->set_TransferLength(kShortTransferLength0);
AddTRB(trb);
evt->set_TransferLength(kShortTransferLength1);
AddTRB(trb);
evt->set_CompletionCode(CommandCompletionEvent::Success);
evt->set_TransferLength(kFinalTransferLength);
AddTRB(trb);
size_t index = 0;
TRB* trb_list[2];
size_t shorts[2];
SetShortPacketHandler(
[&](TRB* short_trb, size_t* transferred, usb_xhci::TRB** first_trb, size_t short_length) {
*first_trb = nullptr;
trb_list[index] = short_trb;
shorts[index] = short_length;
index++;
});
auto ctx = AllocateContext();
size_t transfer_len;
zx_status_t transfer_status;
ctx->trb = start;
std::optional<TestRequest> request;
AllocateRequest(&request, 1, zx_system_get_page_size() * 3, 5, [&](TestRequest request) {
transfer_status = request.request()->response.status;
transfer_len = request.request()->response.actual;
});
ctx->transfer_len_including_short_trb = kTransferLengthInclusive;
ctx->short_length = kShortTransferLength;
ctx->request = Borrow(std::move(*request));
AddContext(std::move(ctx));
SetCompletion(reinterpret_cast<TRB*>(kFakeTrbVirt));
Interrupt();
ASSERT_OK(transfer_status);
ASSERT_EQ(transfer_len, kTransferLengthInclusive - kShortTransferLength);
ASSERT_EQ(shorts[0], kShortTransferLength0);
ASSERT_EQ(shorts[1], kShortTransferLength1);
ASSERT_EQ(trb_list[0], reinterpret_cast<TRB*>(kFakeTrbVirt));
ASSERT_EQ(trb_list[1], reinterpret_cast<TRB*>(kFakeTrbVirt));
}
TEST_F(EventRingHarness, NormalStall) {
InitSlot(1);
TRB* start = trb();
TRB trb;
trb.ptr = kFakeTrb;
Control::FromTRB(&trb).set_Type(Control::TransferEvent).ToTrb(&trb);
TransferEvent* evt = static_cast<TransferEvent*>(&trb);
evt->set_SlotID(1);
evt->set_EndpointID(2);
evt->set_CompletionCode(CommandCompletionEvent::StallError);
evt->set_TransferLength(0);
AddTRB(trb);
auto ctx = AllocateContext();
size_t transfer_len;
zx_status_t transfer_status;
ctx->trb = start;
std::optional<TestRequest> request;
AllocateRequest(&request, 1, zx_system_get_page_size() * 3, 5, [&](TestRequest request) {
transfer_status = request.request()->response.status;
transfer_len = request.request()->response.actual;
});
ctx->request = Borrow(std::move(*request));
AddContext(std::move(ctx));
SetCompletion(reinterpret_cast<TRB*>(kFakeTrbVirt));
Interrupt();
ASSERT_EQ(transfer_status, ZX_ERR_IO_REFUSED);
ASSERT_EQ(transfer_len, 0);
}
TEST_F(EventRingHarness, BadHubStallOnDtDeviceQualifier) {
InitSlot(1);
TRB* start = trb();
TRB trb;
trb.ptr = kFakeTrb;
Control::FromTRB(&trb).set_Type(Control::TransferEvent).ToTrb(&trb);
TransferEvent* evt = static_cast<TransferEvent*>(&trb);
evt->set_SlotID(1);
evt->set_EndpointID(2);
evt->set_CompletionCode(CommandCompletionEvent::StallError);
evt->set_TransferLength(0);
AddTRB(trb);
auto ctx = AllocateContext();
size_t transfer_len;
zx_status_t transfer_status;
ctx->trb = start;
std::optional<TestRequest> request;
usb_device_qualifier_descriptor_t descriptor;
AllocateRequest(&request, 1, sizeof(usb_device_qualifier_descriptor_t), 0,
[&](TestRequest request) {
transfer_status = request.request()->response.status;
transfer_len = request.request()->response.actual;
usb_device_qualifier_descriptor_t* result;
request.Mmap(reinterpret_cast<void**>(&result));
memcpy(&descriptor, result, sizeof(usb_device_qualifier_descriptor_t));
});
request->request()->setup.b_request = USB_REQ_GET_DESCRIPTOR;
request->request()->setup.w_index = 0;
request->request()->setup.w_value = USB_DT_DEVICE_QUALIFIER << 8;
request->request()->header.length = sizeof(usb_device_qualifier_descriptor_t);
ctx->request = Borrow(std::move(*request));
AddContext(std::move(ctx));
SetCompletion(reinterpret_cast<TRB*>(kFakeTrbVirt));
Interrupt();
auto cmd = GetCommand();
ASSERT_EQ(cmd->type, CommandType::ResetEndpoint);
ASSERT_EQ(cmd->endpoint, 0);
ASSERT_EQ(cmd->device_id, 1);
cmd->completer.complete_ok(nullptr);
Interrupt();
ASSERT_EQ(transfer_status, ZX_OK);
ASSERT_EQ(transfer_len, sizeof(usb_device_qualifier_descriptor_t));
ASSERT_EQ(descriptor.b_device_protocol, 0);
}
TEST_F(EventRingHarness, USB2DeviceAttach) {
ConnectDevice();
InsertPortStatusChangeEvent();
Interrupt();
ASSERT_TRUE(PortResetPending());
ASSERT_FALSE(HasCommand());
LinkUp();
InsertPortStatusChangeEvent();
Interrupt();
ASSERT_TRUE(HasCommand());
auto cmd = GetCommand();
ASSERT_EQ(cmd->port, kPortNo);
ASSERT_EQ(cmd->type, CommandType::EnumerateDevice);
ASSERT_FALSE(cmd->hub);
}
TEST_F(EventRingHarness, USB2DeviceAttachBadStateTransition) {
ConnectDevice();
InsertPortStatusChangeEvent();
Interrupt();
ASSERT_TRUE(PortResetPending());
ASSERT_FALSE(HasCommand());
LinkUp();
MakeQuantumPort();
InsertPortStatusChangeEvent();
Interrupt();
ASSERT_FALSE(HasCommand());
LinkUp();
InsertPortStatusChangeEvent();
Interrupt();
ASSERT_TRUE(HasCommand());
auto cmd = GetCommand();
ASSERT_EQ(cmd->port, kPortNo);
ASSERT_EQ(cmd->type, CommandType::EnumerateDevice);
ASSERT_FALSE(cmd->hub);
}
TEST_F(EventRingHarness, Usb3DeviceAttach) {
ConnectDevice();
LinkUp();
InsertPortStatusChangeEvent();
Interrupt();
ASSERT_TRUE(HasCommand());
auto cmd = GetCommand();
ASSERT_EQ(cmd->port, kPortNo);
ASSERT_EQ(cmd->type, CommandType::EnumerateDevice);
ASSERT_FALSE(cmd->hub);
}
} // namespace usb_xhci