blob: e838f450251d5f5243f456d032bedaf4e0b760df [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */
#include "cfg80211.h"
#include <stdlib.h>
#include <threads.h>
#include <zircon/status.h>
#include <algorithm>
#include <ddk/hw/wlan/wlaninfo.h>
#include <ddk/metadata.h>
#include <ddk/protocol/wlanif.h>
#include <ddk/protocol/wlanphyimpl.h>
#include <wifi/wifi-config.h>
#include <wlan/common/phy.h>
#include <wlan/protocol/ieee80211.h>
#include <wlan/protocol/mac.h>
#include "bits.h"
#include "brcmu_d11.h"
#include "brcmu_utils.h"
#include "brcmu_wifi.h"
#include "btcoex.h"
#include "common.h"
#include "core.h"
#include "debug.h"
#include "defs.h"
#include "feature.h"
#include "fwil.h"
#include "fwil_types.h"
#include "linuxisms.h"
#include "macros.h"
#include "netbuf.h"
#include "pno.h"
#include "proto.h"
#include "workqueue.h"
#define BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS 320
#define BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS 400
#define BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS 20
#define BRCMF_SCAN_CHANNEL_TIME 40
#define BRCMF_SCAN_UNASSOC_TIME 40
#define BRCMF_SCAN_PASSIVE_TIME 120
#define BRCMF_ND_INFO_TIMEOUT_MSEC 2000
static bool check_vif_up(struct brcmf_cfg80211_vif* vif) {
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_READY, &vif->sme_state)) {
BRCMF_DBG(INFO, "device is not ready : status (%lu)\n", vif->sme_state.load());
return false;
}
return true;
}
static uint16_t __wl_rates[] = {
BRCM_RATE_1M, BRCM_RATE_2M, BRCM_RATE_5M5, BRCM_RATE_11M, BRCM_RATE_6M, BRCM_RATE_9M,
BRCM_RATE_12M, BRCM_RATE_18M, BRCM_RATE_24M, BRCM_RATE_36M, BRCM_RATE_48M, BRCM_RATE_54M,
};
#define wl_g_rates (__wl_rates + 0)
#define wl_g_rates_size countof(__wl_rates)
#define wl_a_rates (__wl_rates + 4)
#define wl_a_rates_size ((size_t)(wl_g_rates_size - 4))
/* Vendor specific ie. id = 221, oui and type defines exact ie */
struct brcmf_vs_tlv {
uint8_t id;
uint8_t len;
uint8_t oui[3];
uint8_t oui_type;
};
struct parsed_vndr_ie_info {
uint8_t* ie_ptr;
uint32_t ie_len; /* total length including id & length field */
struct brcmf_vs_tlv vndrie;
};
struct parsed_vndr_ies {
uint32_t count;
struct parsed_vndr_ie_info ie_info[VNDR_IE_PARSE_LIMIT];
};
static inline void fill_with_broadcast_addr(uint8_t* address) { memset(address, 0xff, ETH_ALEN); }
/* Traverse a string of 1-byte tag/1-byte length/variable-length value
* triples, returning a pointer to the substring whose first element
* matches tag
*/
static const struct brcmf_tlv* brcmf_parse_tlvs(const void* buf, int buflen, uint key) {
const struct brcmf_tlv* elt = static_cast<decltype(elt)>(buf);
int totlen = buflen;
/* find tagged parameter */
while (totlen >= TLV_HDR_LEN) {
int len = elt->len;
/* validate remaining totlen */
if ((elt->id == key) && (totlen >= (len + TLV_HDR_LEN))) {
return elt;
}
elt = (struct brcmf_tlv*)((uint8_t*)elt + (len + TLV_HDR_LEN));
totlen -= (len + TLV_HDR_LEN);
}
return NULL;
}
static zx_status_t brcmf_vif_change_validate(struct brcmf_cfg80211_info* cfg,
struct brcmf_cfg80211_vif* vif, uint16_t new_type) {
struct brcmf_cfg80211_vif* pos;
bool check_combos = false;
zx_status_t ret = ZX_OK;
struct iface_combination_params params = {
.num_different_channels = 1,
};
list_for_every_entry (&cfg->vif_list, pos, struct brcmf_cfg80211_vif, list) {
if (pos == vif) {
params.iftype_num[new_type]++;
} else {
/* concurrent interfaces so need check combinations */
check_combos = true;
params.iftype_num[pos->wdev.iftype]++;
}
}
if (check_combos) {
ret = cfg80211_check_combinations(cfg, &params);
}
return ret;
}
static zx_status_t brcmf_vif_add_validate(struct brcmf_cfg80211_info* cfg, uint16_t new_type) {
struct brcmf_cfg80211_vif* pos;
struct iface_combination_params params = {
.num_different_channels = 1,
};
list_for_every_entry (&cfg->vif_list, pos, struct brcmf_cfg80211_vif, list) {
params.iftype_num[pos->wdev.iftype]++;
}
params.iftype_num[new_type]++;
return cfg80211_check_combinations(cfg, &params);
}
static void convert_key_from_CPU(struct brcmf_wsec_key* key, struct brcmf_wsec_key_le* key_le) {
key_le->index = key->index;
key_le->len = key->len;
key_le->algo = key->algo;
key_le->flags = key->flags;
key_le->rxiv.hi = key->rxiv.hi;
key_le->rxiv.lo = key->rxiv.lo;
key_le->iv_initialized = key->iv_initialized;
memcpy(key_le->data, key->data, sizeof(key->data));
memcpy(key_le->ea, key->ea, sizeof(key->ea));
}
static zx_status_t send_key_to_dongle(struct brcmf_if* ifp, struct brcmf_wsec_key* key) {
zx_status_t err;
struct brcmf_wsec_key_le key_le;
convert_key_from_CPU(key, &key_le);
brcmf_netdev_wait_pend8021x(ifp);
err = brcmf_fil_bsscfg_data_set(ifp, "wsec_key", &key_le, sizeof(key_le));
if (err != ZX_OK) {
BRCMF_ERR("wsec_key error (%d)\n", err);
}
return err;
}
static void brcmf_cfg80211_update_proto_addr_mode(struct wireless_dev* wdev) {
struct brcmf_cfg80211_vif* vif;
struct brcmf_if* ifp;
vif = containerof(wdev, struct brcmf_cfg80211_vif, wdev);
ifp = vif->ifp;
if (wdev->iftype == WLAN_INFO_MAC_ROLE_AP) {
brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_DIRECT);
} else {
brcmf_proto_configure_addr_mode(ifp->drvr, ifp->ifidx, ADDR_INDIRECT);
}
}
static int32_t brcmf_get_first_free_bsscfgidx(struct brcmf_pub* drvr) {
int bsscfgidx;
for (bsscfgidx = 0; bsscfgidx < BRCMF_MAX_IFS; bsscfgidx++) {
/* bsscfgidx 1 is reserved for legacy P2P */
if (bsscfgidx == 1) {
continue;
}
if (!drvr->iflist[bsscfgidx]) {
return bsscfgidx;
}
}
return -1;
}
static int32_t brcmf_get_prealloced_bsscfgidx(struct brcmf_pub* drvr) {
int bsscfgidx;
net_device* ndev;
for (bsscfgidx = 0; bsscfgidx < BRCMF_MAX_IFS; bsscfgidx++) {
/* bsscfgidx 1 is reserved for legacy P2P */
if (bsscfgidx == 1) {
continue;
}
if (drvr->iflist[bsscfgidx]) {
ndev = drvr->iflist[bsscfgidx]->ndev;
if (ndev && ndev->needs_free_net_device) {
return bsscfgidx;
}
}
}
return -1;
}
static zx_status_t brcmf_cfg80211_request_ap_if(struct brcmf_if* ifp) {
struct brcmf_mbss_ssid_le mbss_ssid_le;
int bsscfgidx;
zx_status_t err;
memset(&mbss_ssid_le, 0, sizeof(mbss_ssid_le));
bsscfgidx = brcmf_get_first_free_bsscfgidx(ifp->drvr);
if (bsscfgidx < 0) {
return ZX_ERR_NO_MEMORY;
}
mbss_ssid_le.bsscfgidx = bsscfgidx;
mbss_ssid_le.SSID_len = 5;
sprintf((char*)mbss_ssid_le.SSID, "ssid%d", bsscfgidx);
err = brcmf_fil_bsscfg_data_set(ifp, "bsscfg:ssid", &mbss_ssid_le, sizeof(mbss_ssid_le));
if (err != ZX_OK) {
BRCMF_ERR("setting ssid failed %d\n", err);
}
return err;
}
// Derive the mac address for the SoftAP interface from the system mac address
// (which is used for the client interface).
static zx_status_t brcmf_set_ap_macaddr(struct brcmf_if* ifp) {
uint8_t mac_addr[ETH_ALEN];
int32_t fw_err = 0;
// First retrieve the current mac address (by default it is the system mac
// address set during init)
zx_status_t err = brcmf_fil_iovar_data_get(ifp, "cur_etheraddr", mac_addr, ETH_ALEN, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Retrieving mac address from firmware failed: %s, fw err %s\n",
zx_status_get_string(err), brcmf_fil_get_errstr(fw_err));
return err;
}
// Modify the mac address as follows:
// Mark the address as unicast and locally administered. In addition, modify
// byte 5 (increment) to ensure that it is different from the original address
mac_addr[0] &= 0xfe; // bit 0: 0 = unicast
mac_addr[0] |= 0x02; // bit 1: 1 = locally-administered
mac_addr[5]++;
BRCMF_INFO("mac address for AP IF: %02x:%02x:%02x:%02x:%02x:%02x\n", mac_addr[0], mac_addr[1],
mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
// Update the mac address of the interface in firmware
err = brcmf_fil_iovar_data_set(ifp, "cur_etheraddr", mac_addr, ETH_ALEN, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Setting mac address failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
// Update the driver interface with the new mac address
memcpy(ifp->mac_addr, mac_addr, sizeof(ifp->mac_addr));
memcpy(ifp->drvr->mac, ifp->mac_addr, sizeof(ifp->drvr->mac));
return ZX_OK;
}
/**
* brcmf_ap_add_vif() - create a new AP virtual interface for multiple BSS
*
* @cfg: config of new interface.
* @name: name of the new interface.
* @dev_out: address of wireless dev pointer
*/
static zx_status_t brcmf_ap_add_vif(struct brcmf_cfg80211_info* cfg, const char* name,
struct wireless_dev** dev_out) {
struct brcmf_if* ifp = cfg_to_if(cfg);
struct brcmf_cfg80211_vif* vif;
zx_status_t err;
if (brcmf_cfg80211_vif_event_armed(cfg)) {
return ZX_ERR_UNAVAILABLE;
}
BRCMF_DBG(INFO, "Adding vif \"%s\"\n", name);
err = brcmf_alloc_vif(cfg, WLAN_INFO_MAC_ROLE_AP, &vif);
if (err != ZX_OK) {
if (dev_out) {
*dev_out = NULL;
}
return err;
}
brcmf_cfg80211_arm_vif_event(cfg, vif, BRCMF_E_IF_ADD);
err = brcmf_cfg80211_request_ap_if(ifp);
if (err != ZX_OK) {
brcmf_cfg80211_disarm_vif_event(cfg);
goto fail;
}
/* wait for firmware event */
err = brcmf_cfg80211_wait_vif_event(cfg, ZX_MSEC(BRCMF_VIF_EVENT_TIMEOUT_MSEC));
brcmf_cfg80211_disarm_vif_event(cfg);
if (err != ZX_OK) {
BRCMF_ERR("timeout occurred\n");
err = ZX_ERR_IO;
goto fail;
}
/* interface created in firmware */
ifp = vif->ifp;
if (!ifp) {
BRCMF_ERR("no if pointer provided\n");
err = ZX_ERR_INVALID_ARGS;
goto fail;
}
strncpy(ifp->ndev->name, name, sizeof(ifp->ndev->name) - 1);
err = brcmf_net_attach(ifp, true);
if (err != ZX_OK) {
BRCMF_ERR("Registering netdevice failed\n");
brcmf_free_net_device(ifp->ndev);
goto fail;
}
err = brcmf_set_ap_macaddr(ifp);
if (err != ZX_OK) {
BRCMF_ERR("unable to set mac address of ap if\n");
goto fail;
}
if (dev_out) {
*dev_out = &ifp->vif->wdev;
}
return ZX_OK;
fail:
brcmf_free_vif(vif);
if (dev_out) {
*dev_out = NULL;
}
return err;
}
static bool brcmf_is_apmode(struct brcmf_cfg80211_vif* vif) {
uint16_t iftype;
iftype = vif->wdev.iftype;
return iftype == WLAN_INFO_MAC_ROLE_AP;
}
zx_status_t brcmf_cfg80211_add_iface(brcmf_pub* drvr, const char* name, struct vif_params* params,
const wlanphy_impl_create_iface_req_t* req,
struct wireless_dev** wdev_out) {
zx_status_t err;
net_device* ndev;
wireless_dev* wdev;
int32_t bsscfgidx;
BRCMF_DBG(TRACE, "enter: %s type %d\n", name, req->role);
if (wdev_out) {
*wdev_out = NULL;
}
err = brcmf_vif_add_validate(drvr->config, req->role);
if (err != ZX_OK) {
BRCMF_ERR("iface validation failed: err=%d\n", err);
return err;
}
switch (req->role) {
case WLAN_INFO_MAC_ROLE_AP:
err = brcmf_ap_add_vif(drvr->config, name, wdev_out);
if (err == ZX_OK) {
brcmf_cfg80211_update_proto_addr_mode(*wdev_out);
if (wdev_out) {
ndev = (*wdev_out)->netdev;
(*wdev_out)->iftype = req->role;
if (ndev)
ndev->sme_channel = zx::channel(req->sme_channel);
}
return ZX_OK;
} else {
BRCMF_ERR("add iface %s type %d failed: err=%d\n", name, req->role, err);
return err;
}
break;
case WLAN_INFO_MAC_ROLE_CLIENT:
bsscfgidx = brcmf_get_prealloced_bsscfgidx(drvr);
if (bsscfgidx >= 0) {
wdev = &drvr->iflist[bsscfgidx]->vif->wdev;
wdev->iftype = req->role;
ndev = drvr->iflist[bsscfgidx]->ndev;
ndev->sme_channel = zx::channel(req->sme_channel);
ndev->needs_free_net_device = false;
return ZX_OK;
} else {
return ZX_ERR_NO_MEMORY;
}
break;
default:
return ZX_ERR_INVALID_ARGS;
}
}
static void brcmf_scan_config_mpc(struct brcmf_if* ifp, int mpc) {
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_NEED_MPC)) {
brcmf_enable_mpc(ifp, mpc);
}
}
// This function set "mpc" to the requested value only if SoftAP
// has not been started. Else it sets "mpc" to 0.
void brcmf_enable_mpc(struct brcmf_if* ifp, int mpc) {
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
// If AP has been started, mpc is always 0
if (cfg->ap_started) {
mpc = 0;
}
err = brcmf_fil_iovar_int_set(ifp, "mpc", mpc, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("fail to set mpc: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return;
}
BRCMF_DBG(INFO, "MPC : %d\n", mpc);
}
static void brcmf_signal_scan_end(struct net_device* ndev, uint64_t txn_id,
uint8_t scan_result_code) {
wlanif_scan_end_t args;
args.txn_id = txn_id;
args.code = scan_result_code;
if (ndev->if_proto.ops != NULL) {
BRCMF_DBG(SCAN, "Signaling on_scan_end with txn_id %ld and code %d", args.txn_id, args.code);
BRCMF_DBG(WLANIF,
"Sending scan end event to SME. txn_id: %" PRIu64
", result: %s"
", APs seen: %" PRIu32 "\n",
args.txn_id,
args.code == WLAN_SCAN_RESULT_SUCCESS
? "success"
: args.code == WLAN_SCAN_RESULT_NOT_SUPPORTED
? "not supported"
: args.code == WLAN_SCAN_RESULT_INVALID_ARGS
? "invalid args"
: args.code == WLAN_SCAN_RESULT_INTERNAL_ERROR ? "internal error"
: "unknown",
ndev->scan_num_results);
wlanif_impl_ifc_on_scan_end(&ndev->if_proto, &args);
}
ndev->scan_busy = false;
}
zx_status_t brcmf_notify_escan_complete(struct brcmf_cfg80211_info* cfg, struct brcmf_if* ifp,
bool aborted, bool fw_abort) {
struct brcmf_scan_params_le params_le;
const wlanif_scan_req_t* scan_request;
uint64_t reqid;
uint32_t bucket;
zx_status_t err = ZX_OK;
BRCMF_DBG(SCAN, "Enter\n");
/* clear scan request, because the FW abort can cause a second call */
/* to this function and might cause a double signal_scan_end */
scan_request = cfg->scan_request;
cfg->scan_request = NULL;
// Canceling if it's inactive is OK. Checking if it's active just invites race conditions.
cfg->escan_timer->Stop();
if (fw_abort) {
/* Do a scan abort to stop the driver's scan engine */
BRCMF_DBG(SCAN, "ABORT scan in firmware\n");
memset(&params_le, 0, sizeof(params_le));
fill_with_broadcast_addr(params_le.bssid);
params_le.bss_type = DOT11_BSSTYPE_ANY;
params_le.scan_type = 0;
params_le.channel_num = 1;
params_le.nprobes = 1;
params_le.active_time = -1;
params_le.passive_time = -1;
params_le.home_time = -1;
/* Scan is aborted by setting channel_list[0] to -1 */
params_le.channel_list[0] = -1;
/* E-Scan (or anyother type) can be aborted by SCAN */
int32_t fwerr = 0;
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCAN, &params_le, sizeof(params_le), &fwerr);
if (err != ZX_OK) {
BRCMF_ERR("Scan abort failed: %s (fw err %s)\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fwerr));
}
}
brcmf_scan_config_mpc(ifp, 1);
/*
* e-scan can be initiated internally
* which takes precedence.
*/
struct net_device* ndev = cfg_to_ndev(cfg);
if (cfg->int_escan_map) {
BRCMF_DBG(SCAN, "scheduled scan completed (%x)\n", cfg->int_escan_map);
while (cfg->int_escan_map) {
bucket = ffs(cfg->int_escan_map) - 1; // ffs() index is 1-based
cfg->int_escan_map &= ~BIT(bucket);
reqid = brcmf_pno_find_reqid_by_bucket(cfg->pno, bucket);
if (!aborted) {
// TODO(cphoenix): Figure out how to use internal reqid infrastructure, rather
// than storing it separately in wiphy->scan_txn_id.
BRCMF_DBG(SCAN, " * * report scan results: internal reqid=%lu\n", reqid);
brcmf_signal_scan_end(ndev, ndev->scan_txn_id, WLAN_SCAN_RESULT_SUCCESS);
}
}
} else if (scan_request) {
BRCMF_DBG(WLANIF, "ESCAN Completed scan: %s\n", aborted ? "Aborted" : "Done");
brcmf_signal_scan_end(ndev, ndev->scan_txn_id,
aborted ? WLAN_SCAN_RESULT_INTERNAL_ERROR : WLAN_SCAN_RESULT_SUCCESS);
}
if (!brcmf_test_and_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_DBG(SCAN, "Scan complete, probably P2P scan\n");
}
return err;
}
static zx_status_t brcmf_cfg80211_del_ap_iface(struct brcmf_cfg80211_info* cfg,
struct wireless_dev* wdev) {
struct net_device* ndev = wdev->netdev;
struct brcmf_if* ifp = nullptr;
zx_status_t err;
if (ndev)
ifp = ndev_to_if(ndev);
else {
BRCMF_ERR("Net device is NULL\n");
return ZX_ERR_IO;
}
brcmf_cfg80211_arm_vif_event(cfg, ifp->vif, BRCMF_E_IF_DEL);
err = brcmf_fil_bsscfg_data_set(ifp, "interface_remove", NULL, 0);
if (err != ZX_OK) {
BRCMF_ERR("interface_remove interface %d failed %d\n", ifp->ifidx, err);
goto err_unarm;
}
/* wait for firmware event */
err = brcmf_cfg80211_wait_vif_event(cfg, ZX_MSEC(BRCMF_VIF_EVENT_TIMEOUT_MSEC));
if (err != ZX_OK) {
BRCMF_ERR("BRCMF_VIF_EVENT timeout occurred\n");
err = ZX_ERR_IO;
goto err_unarm;
}
brcmf_remove_interface(ifp, true);
err_unarm:
brcmf_cfg80211_disarm_vif_event(cfg);
return err;
}
zx_status_t brcmf_cfg80211_del_iface(struct brcmf_cfg80211_info* cfg, struct wireless_dev* wdev) {
struct net_device* ndev = wdev->netdev;
struct brcmf_if* ifp = cfg_to_if(cfg);
/* vif event pending in firmware */
if (brcmf_cfg80211_vif_event_armed(cfg)) {
return ZX_ERR_UNAVAILABLE;
}
if (ndev) {
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status) &&
cfg->escan_info.ifp == ndev_to_if(ndev)) {
brcmf_notify_escan_complete(cfg, ndev_to_if(ndev), true, true);
}
brcmf_enable_mpc(ifp, 1);
}
switch (wdev->iftype) {
case WLAN_INFO_MAC_ROLE_AP:
ndev->sme_channel.reset();
return brcmf_cfg80211_del_ap_iface(cfg, wdev);
case WLAN_INFO_MAC_ROLE_CLIENT:
// The default client iface 0 is always assumed to exist by the driver, and is never
// explicitly deleted.
ndev->sme_channel.reset();
ndev->needs_free_net_device = true;
return ZX_OK;
default:
return ZX_ERR_NOT_SUPPORTED;
}
}
static zx_status_t brcmf_cfg80211_change_iface(struct brcmf_cfg80211_info* cfg,
struct net_device* ndev, uint16_t type,
struct vif_params* params) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_vif* vif = ifp->vif;
int32_t infra = 0;
int32_t ap = 0;
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
BRCMF_DBG(TRACE, "Enter");
err = brcmf_vif_change_validate(cfg, vif, type);
if (err != ZX_OK) {
BRCMF_ERR("iface validation failed: err=%d\n", err);
return err;
}
switch (type) {
case WLAN_INFO_MAC_ROLE_CLIENT:
infra = 1;
break;
case WLAN_INFO_MAC_ROLE_AP:
ap = 1;
break;
default:
err = ZX_ERR_OUT_OF_RANGE;
goto done;
}
if (ap) {
BRCMF_DBG(INFO, "IF Type = AP\n");
} else {
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, infra, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("WLC_SET_INFRA error: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
err = ZX_ERR_UNAVAILABLE;
goto done;
}
BRCMF_DBG(INFO, "IF Type = Infra");
}
vif->wdev.iftype = type;
brcmf_cfg80211_update_proto_addr_mode(&vif->wdev);
done:
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
static zx_status_t brcmf_dev_escan_set_randmac(struct brcmf_if* ifp) {
struct brcmf_pno_macaddr_le pfn_mac = {};
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
pfn_mac.version = BRCMF_PFN_MACADDR_CFG_VER;
pfn_mac.flags = BRCMF_PFN_USE_FULL_MACADDR;
brcmf_gen_random_mac_addr(pfn_mac.mac);
err = brcmf_fil_iovar_data_set(ifp, "pfn_macaddr", &pfn_mac, sizeof(pfn_mac), &fw_err);
if (err)
BRCMF_ERR("set escan randmac failed, err=%d, fw_err=%d\n", err, fw_err);
return err;
}
static zx_status_t brcmf_escan_prep(struct brcmf_cfg80211_info* cfg,
struct brcmf_scan_params_le* params_le,
const wlanif_scan_req_t* request) {
uint32_t n_ssids;
uint32_t n_channels;
int32_t i;
int32_t offset;
uint16_t chanspec;
char* ptr;
struct brcmf_ssid_le ssid_le;
fill_with_broadcast_addr(params_le->bssid);
params_le->bss_type = DOT11_BSSTYPE_ANY;
if (request->scan_type == WLAN_SCAN_TYPE_ACTIVE) {
params_le->scan_type = BRCMF_SCANTYPE_ACTIVE;
params_le->active_time = request->min_channel_time;
params_le->passive_time = -1;
} else {
params_le->scan_type = BRCMF_SCANTYPE_PASSIVE;
params_le->passive_time = request->min_channel_time;
params_le->active_time = -1;
}
params_le->channel_num = 0;
params_le->nprobes = -1;
params_le->home_time = -1;
if (request->ssid.len > IEEE80211_MAX_SSID_LEN) {
BRCMF_ERR("Scan request SSID too long(no longer than %d bytes)\n", IEEE80211_MAX_SSID_LEN);
return ZX_ERR_INVALID_ARGS;
}
params_le->ssid_le.SSID_len = request->ssid.len;
memcpy(params_le->ssid_le.SSID, request->ssid.data, request->ssid.len);
n_ssids = request->num_ssids;
n_channels = request->num_channels;
/* Copy channel array if applicable */
BRCMF_DBG(SCAN, "### List of channelspecs to scan ### %d\n", n_channels);
if (n_channels > 0) {
for (i = 0; i < (int32_t)n_channels; i++) {
wlan_channel_t wlan_chan;
wlan_chan.primary = request->channel_list[i];
wlan_chan.cbw = WLAN_CHANNEL_BANDWIDTH__20;
wlan_chan.secondary80 = 0;
chanspec = channel_to_chanspec(&cfg->d11inf, &wlan_chan);
BRCMF_DBG(SCAN, "Chan : %d, Channel spec: %x\n", request->channel_list[i], chanspec);
params_le->channel_list[i] = chanspec;
}
} else {
BRCMF_DBG(SCAN, "Scanning all channels\n");
}
/* Copy ssid array if applicable */
BRCMF_DBG(SCAN, "### List of SSIDs to scan ### %d\n", n_ssids);
if (n_ssids > 0) {
if (params_le->scan_type == BRCMF_SCANTYPE_ACTIVE) {
offset = offsetof(struct brcmf_scan_params_le, channel_list) + n_channels * sizeof(uint16_t);
offset = roundup(offset, sizeof(uint32_t));
ptr = (char*)params_le + offset;
for (i = 0; i < (int32_t)n_ssids; i++) {
if (request->ssid_list[i].len > IEEE80211_MAX_SSID_LEN) {
BRCMF_ERR("SSID in scan request SSID list too long(no longer than %d bytes)\n",
IEEE80211_MAX_SSID_LEN);
return ZX_ERR_INVALID_ARGS;
}
memset(&ssid_le, 0, sizeof(ssid_le));
ssid_le.SSID_len = request->ssid_list[i].len;
memcpy(ssid_le.SSID, request->ssid_list[i].data, request->ssid_list[i].len);
if (!ssid_le.SSID_len) {
BRCMF_DBG(SCAN, "%d: Broadcast scan\n", i);
} else {
BRCMF_DBG(SCAN, "%d: scan for %.32s size=%d\n", i, ssid_le.SSID, ssid_le.SSID_len);
}
memcpy(ptr, &ssid_le, sizeof(ssid_le));
ptr += sizeof(ssid_le);
}
}
}
/* Adding mask to channel numbers */
params_le->channel_num =
(n_ssids << BRCMF_SCAN_PARAMS_NSSID_SHIFT) | (n_channels & BRCMF_SCAN_PARAMS_COUNT_MASK);
return ZX_OK;
}
static zx_status_t brcmf_run_escan(struct brcmf_cfg80211_info* cfg, struct brcmf_if* ifp,
const wlanif_scan_req_t* request) {
if (request->min_channel_time == 0 || request->max_channel_time < request->min_channel_time) {
return ZX_ERR_INVALID_ARGS;
}
int32_t params_size =
BRCMF_SCAN_PARAMS_FIXED_SIZE + offsetof(struct brcmf_escan_params_le, params_le);
struct brcmf_escan_params_le* params;
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
BRCMF_DBG(SCAN, "E-SCAN START\n");
if (request != NULL) {
/* Allocate space for populating ssids in struct */
params_size += sizeof(uint32_t) * ((request->num_channels + 1) / 2);
/* Allocate space for populating ssids in struct */
params_size += sizeof(struct brcmf_ssid_le) * request->num_ssids;
}
params = static_cast<decltype(params)>(calloc(1, params_size));
if (!params) {
err = ZX_ERR_NO_MEMORY;
goto exit;
}
ZX_ASSERT(params_size + sizeof("escan") < BRCMF_DCMD_MEDLEN);
err = brcmf_escan_prep(cfg, &params->params_le, request);
if (err != ZX_OK) {
BRCMF_ERR("escan preparation failed\n");
goto exit;
}
params->version = BRCMF_ESCAN_REQ_VERSION;
params->action = WL_ESCAN_ACTION_START;
params->sync_id = 0x1234;
if (params->params_le.scan_type == BRCMF_SCANTYPE_ACTIVE &&
!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
brcmf_dev_escan_set_randmac(ifp);
}
err = brcmf_fil_iovar_data_set(ifp, "escan", params, params_size, &fw_err);
if (err != ZX_OK) {
if (err == ZX_ERR_UNAVAILABLE) {
BRCMF_ERR("system busy : escan canceled sme state: 0x%lx\n", atomic_load(&ifp->vif->sme_state));
} else {
BRCMF_ERR("escan failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
}
}
free(params);
exit:
return err;
}
static zx_status_t brcmf_do_escan(struct brcmf_if* ifp, const wlanif_scan_req_t* req) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err;
struct escan_info* escan = &cfg->escan_info;
BRCMF_DBG(SCAN, "Enter\n");
escan->ifp = ifp;
escan->escan_state = WL_ESCAN_STATE_SCANNING;
brcmf_scan_config_mpc(ifp, 0);
err = escan->run(cfg, ifp, req);
if (err != ZX_OK) {
brcmf_scan_config_mpc(ifp, 1);
}
return err;
}
zx_status_t brcmf_cfg80211_scan(struct net_device* ndev, const wlanif_scan_req_t* req) {
zx_status_t err;
BRCMF_DBG(TRACE, "Enter\n");
struct wireless_dev* wdev = ndev_to_wdev(ndev);
struct brcmf_cfg80211_vif* vif = containerof(wdev, struct brcmf_cfg80211_vif, wdev);
if (!check_vif_up(vif)) {
BRCMF_DBG(TEMP, "Vif not up");
return ZX_ERR_IO;
}
struct brcmf_cfg80211_info* cfg = ndev_to_if(ndev)->drvr->config;
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_ERR("Scanning already: status (%lu)\n", cfg->scan_status.load());
return ZX_ERR_UNAVAILABLE;
}
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status)) {
BRCMF_ERR("Scanning being aborted: status (%lu)\n", cfg->scan_status.load());
return ZX_ERR_UNAVAILABLE;
}
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status)) {
BRCMF_ERR("Scanning suppressed: status (%lu)\n", cfg->scan_status.load());
return ZX_ERR_UNAVAILABLE;
}
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state)) {
BRCMF_ERR("Scan request suppressed: connect in progress (status: %lu)\n",
vif->sme_state.load());
return ZX_ERR_UNAVAILABLE;
}
BRCMF_DBG(SCAN, "START ESCAN\n");
cfg->scan_request = req;
brcmf_set_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->escan_info.run = brcmf_run_escan;
err = brcmf_do_escan(vif->ifp, req);
if (err != ZX_OK) {
goto scan_out;
}
/* Arm scan timeout timer */
cfg->escan_timer->Start(ZX_MSEC(BRCMF_ESCAN_TIMER_INTERVAL_MS));
return ZX_OK;
scan_out:
BRCMF_ERR("scan error (%d)\n", err);
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->scan_request = NULL;
return err;
}
static void brcmf_init_prof(struct brcmf_cfg80211_profile* prof) { memset(prof, 0, sizeof(*prof)); }
static uint16_t brcmf_map_fw_linkdown_reason(const struct brcmf_event_msg* e) {
uint16_t reason;
switch (e->event_code) {
case BRCMF_E_DEAUTH:
case BRCMF_E_DEAUTH_IND:
reason = WLAN_DEAUTH_REASON_LEAVING_NETWORK_DEAUTH;
break;
case BRCMF_E_DISASSOC_IND:
reason = WLAN_DEAUTH_REASON_LEAVING_NETWORK_DISASSOC;
break;
case BRCMF_E_LINK:
default:
reason = WLAN_DEAUTH_REASON_UNSPECIFIED;
break;
}
return reason;
}
static zx_status_t brcmf_set_pmk(struct brcmf_if* ifp, const uint8_t* pmk_data, uint16_t pmk_len) {
struct brcmf_wsec_pmk_le pmk;
int i;
zx_status_t err;
/* convert to firmware key format */
pmk.key_len = pmk_len << 1;
pmk.flags = BRCMF_WSEC_PASSPHRASE;
for (i = 0; i < pmk_len; i++) {
// TODO(cphoenix): Make sure handling of pmk keys is consistent with their being
// binary values, not ASCII chars.
snprintf((char*)&pmk.key[2 * i], 3, "%02x", pmk_data[i]);
}
/* store psk in firmware */
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_WSEC_PMK, &pmk, sizeof(pmk), nullptr);
if (err != ZX_OK) {
BRCMF_ERR("failed to change PSK in firmware (len=%u)\n", pmk_len);
}
return err;
}
static void cfg80211_disconnected(struct brcmf_cfg80211_vif* vif, uint16_t reason) {
struct net_device* ndev = vif->wdev.netdev;
wlanif_deauth_indication_t ind;
memcpy(ind.peer_sta_address, vif->profile.bssid, ETH_ALEN);
ind.reason_code = reason;
BRCMF_DBG(WLANIF,
"Link Down: Sending deauth indication to SME. address: " MAC_FMT_STR
", "
"reason: %" PRIu16 "\n",
MAC_FMT_ARGS(ind.peer_sta_address), ind.reason_code);
wlanif_impl_ifc_deauth_ind(&ndev->if_proto, &ind);
}
static void brcmf_link_down(struct brcmf_cfg80211_vif* vif, uint16_t reason) {
struct brcmf_cfg80211_info* cfg = vif->ifp->drvr->config;
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter\n");
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &vif->sme_state)) {
BRCMF_DBG(INFO, "Call WLC_DISASSOC to stop excess roaming\n ");
int32_t fwerr = 0;
err = brcmf_fil_cmd_data_set(vif->ifp, BRCMF_C_DISASSOC, NULL, 0, &fwerr);
if (err != ZX_OK) {
BRCMF_ERR("WLC_DISASSOC failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fwerr));
}
if (vif->wdev.iftype == WLAN_INFO_MAC_ROLE_CLIENT) {
cfg80211_disconnected(vif, reason);
}
}
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_SUPPRESS, &cfg->scan_status);
brcmf_btcoex_set_mode(vif, BRCMF_BTCOEX_ENABLED, 0);
if (vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_NONE) {
brcmf_set_pmk(vif->ifp, NULL, 0);
vif->profile.use_fwsup = BRCMF_PROFILE_FWSUP_NONE;
}
BRCMF_DBG(TRACE, "Exit\n");
}
static zx_status_t brcmf_set_auth_type(struct net_device* ndev, uint8_t auth_type) {
int32_t val = 0;
zx_status_t status = ZX_OK;
switch (auth_type) {
case WLAN_AUTH_TYPE_OPEN_SYSTEM:
val = BRCMF_AUTH_MODE_OPEN;
break;
case WLAN_AUTH_TYPE_SHARED_KEY:
// When asked to use a shared key (which should only happen for WEP), we will direct the
// firmware to use auto-detect, which will fall back on open WEP if shared WEP fails to
// succeed. This was chosen to allow us to avoid implementing WEP auto-detection at higher
// levels of the wlan stack.
val = BRCMF_AUTH_MODE_AUTO;
break;
default:
return ZX_ERR_NOT_SUPPORTED;
}
BRCMF_DBG(CONN, "setting auth to %d\n", val);
status = brcmf_fil_bsscfg_int_set(ndev_to_if(ndev), "auth", val);
if (status != ZX_OK) {
BRCMF_ERR("set auth failed (%s)\n", zx_status_get_string(status));
}
return status;
}
static bool brcmf_valid_wpa_oui(uint8_t* oui, bool is_rsn_ie) {
if (is_rsn_ie) {
return (memcmp(oui, RSN_OUI, TLV_OUI_LEN) == 0);
}
return (memcmp(oui, WPA_OUI, TLV_OUI_LEN) == 0);
}
static zx_status_t brcmf_configure_wpaie(struct brcmf_if* ifp, const struct brcmf_vs_tlv* wpa_ie,
bool is_rsn_ie, bool is_ap) {
uint16_t count;
zx_status_t err = ZX_OK;
int32_t len;
uint32_t i;
uint32_t wsec;
uint32_t pval = 0;
uint32_t gval = 0;
uint32_t wpa_auth = 0;
uint32_t offset;
uint8_t* data;
uint16_t rsn_cap;
uint32_t wme_bss_disable;
uint32_t mfp;
BRCMF_DBG(TRACE, "Enter\n");
if (wpa_ie == NULL) {
goto exit;
}
len = wpa_ie->len + TLV_HDR_LEN;
data = (uint8_t*)wpa_ie;
offset = TLV_HDR_LEN;
if (!is_rsn_ie) {
offset += VS_IE_FIXED_HDR_LEN;
} else {
offset += WPA_IE_VERSION_LEN;
}
/* check for multicast cipher suite */
if ((int32_t)offset + WPA_IE_MIN_OUI_LEN > len) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("no multicast cipher suite\n");
goto exit;
}
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("invalid OUI\n");
goto exit;
}
offset += TLV_OUI_LEN;
/* pick up multicast cipher */
switch (data[offset]) {
case WPA_CIPHER_NONE:
BRCMF_DBG(CONN, "MCAST WPA CIPHER NONE\n");
gval = WSEC_NONE;
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
BRCMF_DBG(CONN, "MCAST WPA CIPHER WEP40/104\n");
gval = WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
BRCMF_DBG(CONN, "MCAST WPA CIPHER TKIP\n");
gval = TKIP_ENABLED;
break;
case WPA_CIPHER_CCMP_128:
BRCMF_DBG(CONN, "MCAST WPA CIPHER CCMP 128\n");
gval = AES_ENABLED;
break;
default:
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("Invalid multi cast cipher info\n");
goto exit;
}
offset++;
/* walk thru unicast cipher list and pick up what we recognize */
count = data[offset] + (data[offset + 1] << 8);
offset += WPA_IE_SUITE_COUNT_LEN;
/* Check for unicast suite(s) */
if ((int32_t)(offset + (WPA_IE_MIN_OUI_LEN * count)) > len) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("no unicast cipher suite\n");
goto exit;
}
for (i = 0; i < count; i++) {
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("ivalid OUI\n");
goto exit;
}
offset += TLV_OUI_LEN;
switch (data[offset]) {
case WPA_CIPHER_NONE:
BRCMF_DBG(CONN, "UCAST WPA CIPHER NONE\n");
break;
case WPA_CIPHER_WEP_40:
case WPA_CIPHER_WEP_104:
BRCMF_DBG(CONN, "UCAST WPA CIPHER WEP 40/104\n");
pval |= WEP_ENABLED;
break;
case WPA_CIPHER_TKIP:
BRCMF_DBG(CONN, "UCAST WPA CIPHER TKIP\n");
pval |= TKIP_ENABLED;
break;
case WPA_CIPHER_CCMP_128:
BRCMF_DBG(CONN, "UCAST WPA CIPHER CCMP 128\n");
pval |= AES_ENABLED;
break;
default:
BRCMF_DBG(CONN, "Invalid unicast security info\n");
}
offset++;
}
/* walk thru auth management suite list and pick up what we recognize */
count = data[offset] + (data[offset + 1] << 8);
offset += WPA_IE_SUITE_COUNT_LEN;
/* Check for auth key management suite(s) */
if ((int32_t)(offset + (WPA_IE_MIN_OUI_LEN * count)) > len) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("no auth key mgmt suite\n");
goto exit;
}
for (i = 0; i < count; i++) {
if (!brcmf_valid_wpa_oui(&data[offset], is_rsn_ie)) {
err = ZX_ERR_INVALID_ARGS;
BRCMF_ERR("ivalid OUI\n");
goto exit;
}
offset += TLV_OUI_LEN;
switch (data[offset]) {
case RSN_AKM_NONE:
BRCMF_DBG(CONN, "RSN_AKM_NONE\n");
wpa_auth |= WPA_AUTH_NONE;
break;
case RSN_AKM_UNSPECIFIED:
BRCMF_DBG(CONN, "RSN_AKM_UNSPECIFIED\n");
is_rsn_ie ? (wpa_auth |= WPA2_AUTH_UNSPECIFIED) : (wpa_auth |= WPA_AUTH_UNSPECIFIED);
break;
case RSN_AKM_PSK:
BRCMF_DBG(CONN, "RSN_AKM_PSK\n");
is_rsn_ie ? (wpa_auth |= WPA2_AUTH_PSK) : (wpa_auth |= WPA_AUTH_PSK);
break;
case RSN_AKM_SHA256_PSK:
BRCMF_DBG(CONN, "RSN_AKM_MFP_PSK\n");
wpa_auth |= WPA2_AUTH_PSK_SHA256;
break;
case RSN_AKM_SHA256_1X:
BRCMF_DBG(CONN, "RSN_AKM_MFP_1X\n");
wpa_auth |= WPA2_AUTH_1X_SHA256;
break;
default:
BRCMF_DBG(CONN, "Invalid key mgmt info\n");
}
offset++;
}
mfp = BRCMF_MFP_NONE;
if (is_rsn_ie && is_ap) {
wme_bss_disable = 1;
if (((int32_t)offset + RSN_CAP_LEN) <= len) {
rsn_cap = data[offset] + (data[offset + 1] << 8);
if (rsn_cap & RSN_CAP_PTK_REPLAY_CNTR_MASK) {
wme_bss_disable = 0;
}
if (rsn_cap & RSN_CAP_MFPR_MASK) {
BRCMF_DBG(TRACE, "MFP Required\n");
mfp = BRCMF_MFP_REQUIRED;
/* Firmware only supports mfp required in
* combination with WPA2_AUTH_PSK_SHA256 or
* WPA2_AUTH_1X_SHA256.
*/
if (!(wpa_auth & (WPA2_AUTH_PSK_SHA256 | WPA2_AUTH_1X_SHA256))) {
err = ZX_ERR_INVALID_ARGS;
goto exit;
}
/* Firmware has requirement that WPA2_AUTH_PSK/
* WPA2_AUTH_UNSPECIFIED be set, if SHA256 OUI
* is to be included in the rsn ie.
*/
if (wpa_auth & WPA2_AUTH_PSK_SHA256) {
wpa_auth |= WPA2_AUTH_PSK;
} else if (wpa_auth & WPA2_AUTH_1X_SHA256) {
wpa_auth |= WPA2_AUTH_UNSPECIFIED;
}
} else if (rsn_cap & RSN_CAP_MFPC_MASK) {
BRCMF_DBG(TRACE, "MFP Capable\n");
mfp = BRCMF_MFP_CAPABLE;
}
}
offset += RSN_CAP_LEN;
/* set wme_bss_disable to sync RSN Capabilities */
err = brcmf_fil_bsscfg_int_set(ifp, "wme_bss_disable", wme_bss_disable);
if (err != ZX_OK) {
BRCMF_ERR("wme_bss_disable error %d\n", err);
goto exit;
}
/* Skip PMKID cnt as it is know to be 0 for AP. */
offset += RSN_PMKID_COUNT_LEN;
/* See if there is BIP wpa suite left for MFP */
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP) &&
((int32_t)(offset + WPA_IE_MIN_OUI_LEN) <= len)) {
err = brcmf_fil_bsscfg_data_set(ifp, "bip", &data[offset], WPA_IE_MIN_OUI_LEN);
if (err != ZX_OK) {
BRCMF_ERR("bip error %d\n", err);
goto exit;
}
}
}
/* Don't set SES_OW_ENABLED for now (since we don't support WPS yet) */
wsec = (pval | gval);
BRCMF_ERR("WSEC: 0x%x WPA AUTH: 0x%x\n", wsec, wpa_auth);
/* set wsec */
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
if (err != ZX_OK) {
BRCMF_ERR("wsec error %d\n", err);
goto exit;
}
/* Configure MFP, this needs to go after wsec otherwise the wsec command
* will overwrite the values set by MFP
*/
if (is_ap && brcmf_feat_is_enabled(ifp, BRCMF_FEAT_MFP)) {
err = brcmf_fil_bsscfg_int_set(ifp, "mfp", mfp);
if (err != ZX_OK) {
BRCMF_ERR("mfp error %s\n", zx_status_get_string(err));
goto exit;
}
}
/* set upper-layer auth */
err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_auth);
if (err != ZX_OK) {
BRCMF_ERR("wpa_auth error %d\n", err);
goto exit;
}
exit:
return err;
}
static zx_status_t brcmf_configure_opensecurity(struct brcmf_if* ifp) {
zx_status_t err;
int32_t wpa_val;
/* set wsec */
BRCMF_DBG(CONN, "Setting wsec to 0\n");
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", 0);
if (err != ZX_OK) {
BRCMF_ERR("wsec error %d\n", err);
return err;
}
/* set upper-layer auth */
wpa_val = WPA_AUTH_DISABLED;
BRCMF_DBG(CONN, "Setting wpa_auth to %d\n", wpa_val);
err = brcmf_fil_bsscfg_int_set(ifp, "wpa_auth", wpa_val);
if (err != ZX_OK) {
BRCMF_ERR("wpa_auth error %d\n", err);
return err;
}
return ZX_OK;
}
// Retrieve information about the station with the specified MAC address. Note that
// association ID is only available when operating in AP mode (for our clients).
static zx_status_t brcmf_cfg80211_get_station(struct net_device* ndev, const uint8_t* mac,
struct brcmf_sta_info_le* sta_info_le) {
struct brcmf_if* ifp = ndev_to_if(ndev);
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter, MAC %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0], mac[1], mac[2], mac[3],
mac[4], mac[5]);
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
memset(sta_info_le, 0, sizeof(*sta_info_le));
memcpy(sta_info_le, mac, ETH_ALEN);
// First, see if we have a TDLS peer
err = brcmf_fil_iovar_data_get(ifp, "tdls_sta_info", sta_info_le, sizeof(*sta_info_le), nullptr);
if (err != ZX_OK) {
int32_t fw_err = 0;
err = brcmf_fil_iovar_data_get(ifp, "sta_info", sta_info_le, sizeof(*sta_info_le), &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("GET STA INFO failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
}
}
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
static inline bool brcmf_tlv_has_wpa_ie(const uint8_t* ie) {
return (ie[TLV_LEN_OFF] >= TLV_OUI_LEN + TLV_LEN_OFF &&
!memcmp(&ie[TLV_BODY_OFF], WPA_OUI, TLV_OUI_LEN) &&
ie[TLV_BODY_OFF + TLV_OUI_LEN] == WPA_OUI_TYPE);
}
static struct brcmf_vs_tlv* brcmf_find_wpaie(const uint8_t* ie_buf, uint32_t ie_len) {
size_t offset = 0;
while (offset < ie_len) {
uint8_t type = ie_buf[offset];
uint8_t length = ie_buf[offset + TLV_LEN_OFF];
if (type == WLAN_IE_TYPE_VENDOR_SPECIFIC) {
if (brcmf_tlv_has_wpa_ie(ie_buf + offset)) {
BRCMF_DBG(CONN, "Found WPA IE\n");
return (struct brcmf_vs_tlv*)(ie_buf + offset);
}
}
offset += length + TLV_HDR_LEN;
}
return nullptr;
}
void brcmf_return_assoc_result(struct net_device* ndev, uint8_t result_code) {
wlanif_assoc_confirm_t conf;
conf.result_code = result_code;
BRCMF_DBG(TEMP, " * Hard-coding association_id to 42; this will likely break something!");
conf.association_id = 42; // TODO: Use brcmf_cfg80211_get_station() to get aid
BRCMF_DBG(WLANIF, "Sending assoc result to SME. result: %" PRIu8 ", aid: %" PRIu16 "\n",
conf.result_code, conf.association_id);
wlanif_impl_ifc_assoc_conf(&ndev->if_proto, &conf);
}
zx_status_t brcmf_cfg80211_connect(struct net_device* ndev, const wlanif_assoc_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_ext_join_params_le join_params;
uint16_t chanspec;
size_t join_params_size = 0;
const void* ie;
uint32_t ie_len;
zx_status_t err = ZX_OK;
uint32_t ssid_len = 0;
const struct brcmf_vs_tlv* wpa_ie;
int32_t fw_err = 0;
bool is_rsn_ie = true;
BRCMF_DBG(TRACE, "Enter\n");
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
// Firmware is already processing a join request. Don't clear the CONNECTING bit because the
// operation is still expected to complete.
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
err = ZX_ERR_BAD_STATE;
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
goto done;
}
if (req->rsne_len) {
BRCMF_DBG(CONN, "using RSNE rsn len: %zu\n", req->rsne_len);
// Pass RSNE to firmware
ie_len = req->rsne_len;
ie = req->rsne;
} else if (req->vendor_ie_len) {
BRCMF_DBG(CONN, "using WPA1 vendor_ie len: %zu\n", req->vendor_ie_len);
wpa_ie = brcmf_find_wpaie(req->vendor_ie, req->vendor_ie_len);
if (!wpa_ie) {
BRCMF_ERR("No WPA IE found\n");
return ZX_ERR_INVALID_ARGS;
} else {
BRCMF_DBG(CONN, "Found WPA IE, len: %d\n", wpa_ie->len);
}
is_rsn_ie = false;
ie_len = wpa_ie->len + TLV_HDR_LEN;
ie = wpa_ie;
} else {
// Neither RSNE or WPA1 is set
ie = nullptr;
ie_len = 0;
}
if (ie) {
// Set wpaie only if ie is set
err = brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("wpaie failed: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
}
// TODO(WLAN-733): We should be getting the IEs from SME. Passing a null entry seems
// to work for now, presumably because the firmware uses its defaults.
err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG, NULL, 0);
if (err != ZX_OK) {
BRCMF_ERR("Set Assoc REQ IE Failed\n");
} else {
BRCMF_DBG(TRACE, "Applied Vndr IEs for Assoc request\n");
}
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
chanspec = channel_to_chanspec(&cfg->d11inf, &ifp->bss.chan);
cfg->channel = chanspec;
if (ie_len > 0) {
struct brcmf_vs_tlv* tmp_ie = (struct brcmf_vs_tlv*)ie;
err = brcmf_configure_wpaie(ifp, tmp_ie, is_rsn_ie, false);
if (err != ZX_OK) {
BRCMF_ERR("Failed to install RSNE: %s\n", zx_status_get_string(err));
goto fail;
}
}
ssid_len = std::min<uint32_t>(ifp->bss.ssid.len, WLAN_MAX_SSID_LEN);
join_params_size = sizeof(join_params);
memset(&join_params, 0, join_params_size);
memcpy(&join_params.ssid_le.SSID, ifp->bss.ssid.data, ssid_len);
join_params.ssid_le.SSID_len = ssid_len;
memcpy(join_params.assoc_le.bssid, ifp->bss.bssid, ETH_ALEN);
join_params.assoc_le.chanspec_num = 1;
join_params.assoc_le.chanspec_list[0] = chanspec;
join_params.scan_le.scan_type = 0; // use default
join_params.scan_le.home_time = -1; // use default
/* Increase dwell time to receive probe response or detect beacon from target AP at a noisy
air only during connect command. */
join_params.scan_le.active_time = BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS;
join_params.scan_le.passive_time = BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS;
/* To sync with presence period of VSDB GO send probe request more frequently. Probe request
will be stopped when it gets probe response from target AP/GO. */
join_params.scan_le.nprobes =
BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS / BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS;
BRCMF_DBG(CONN, "Sending join request\n");
err = brcmf_fil_bsscfg_data_set(ifp, "join", &join_params, join_params_size);
if (err != ZX_OK) {
BRCMF_ERR("join failed (%d)\n", err);
}
fail:
if (err != ZX_OK) {
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
BRCMF_DBG(CONN, "Failed during join: %s", zx_status_get_string(err));
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
}
done:
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
static void brcmf_notify_deauth(struct net_device* ndev, const uint8_t peer_sta_address[ETH_ALEN]) {
wlanif_deauth_confirm_t resp;
memcpy(resp.peer_sta_address, peer_sta_address, ETH_ALEN);
BRCMF_DBG(WLANIF, "Sending deauth confirm to SME. address: " MAC_FMT_STR "\n",
MAC_FMT_ARGS(peer_sta_address));
wlanif_impl_ifc_deauth_conf(&ndev->if_proto, &resp);
}
static void brcmf_notify_disassoc(struct net_device* ndev, zx_status_t status) {
wlanif_disassoc_confirm_t resp;
resp.status = status;
BRCMF_DBG(WLANIF, "Sending disassoc confirm to SME. status: %" PRIu32 "\n", status);
wlanif_impl_ifc_disassoc_conf(&ndev->if_proto, &resp);
}
static void brcmf_disconnect_done(struct brcmf_cfg80211_info* cfg) {
struct net_device* ndev = cfg_to_ndev(cfg);
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_profile* profile = &ifp->vif->profile;
BRCMF_DBG(TRACE, "Enter\n");
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_DISCONNECTING, &ifp->vif->sme_state)) {
cfg->disconnect_timer->Stop();
if (cfg->disconnect_mode == BRCMF_DISCONNECT_DEAUTH) {
brcmf_notify_deauth(ndev, profile->bssid);
} else {
brcmf_notify_disassoc(ndev, ZX_OK);
}
}
cfg->signal_report_timer->Stop();
BRCMF_DBG(TRACE, "Exit\n");
}
static zx_status_t brcmf_get_rssi_snr(net_device* ndev, int8_t* rssi_dbm, int8_t* snr_db) {
struct brcmf_if* ifp = ndev_to_if(ndev);
int32_t fw_err = 0;
int32_t rssi, snr;
*rssi_dbm = *snr_db = 0;
zx_status_t status = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_RSSI, &rssi, sizeof(rssi), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not get rssi: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
return status;
}
status = brcmf_fil_iovar_data_get(ifp, "snr", &snr, sizeof(snr), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not get snr: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
return status;
}
*rssi_dbm = rssi;
*snr_db = snr;
return status;
}
static void cfg80211_signal_ind(net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
// Send signal report indication only if client is in connected state
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
wlanif_signal_report_indication signal_ind;
int8_t rssi, snr;
if (brcmf_get_rssi_snr(ndev, &rssi, &snr) == ZX_OK) {
signal_ind.rssi_dbm = rssi;
signal_ind.snr_db = snr;
// Store the value in ndev (dumped out when link goes down)
ndev->last_known_rssi_dbm = rssi;
ndev->last_known_snr_db = snr;
wlanif_impl_ifc_signal_report(&ndev->if_proto, &signal_ind);
}
} else {
// If client is not connected, stop the timer
brcmf_cfg80211_info* cfg = ifp->drvr->config;
cfg->signal_report_timer->Stop();
}
}
static void brcmf_signal_report_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, signal_report_work);
struct net_device* ndev = cfg_to_ndev(cfg);
cfg80211_signal_ind(ndev);
}
static void brcmf_signal_report_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
BRCMF_DBG(TRACE, "Enter\n");
WorkQueue::ScheduleDefault(&cfg->signal_report_work);
cfg->pub->irq_callback_lock.unlock();
}
static void brcmf_disconnect_timeout_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, disconnect_timeout_work);
brcmf_disconnect_done(cfg);
}
static void brcmf_disconnect_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
BRCMF_DBG(TRACE, "Enter\n");
WorkQueue::ScheduleDefault(&cfg->disconnect_timeout_work);
cfg->pub->irq_callback_lock.unlock();
}
static zx_status_t brcmf_cfg80211_disconnect(struct net_device* ndev,
const uint8_t peer_sta_address[ETH_ALEN],
uint16_t reason_code, bool deauthenticate) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_profile* profile = &ifp->vif->profile;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_scb_val_le scbval;
zx_status_t status = ZX_OK;
int32_t fw_err = 0;
BRCMF_DBG(TRACE, "Enter. Reason code = %d\n", reason_code);
if (!check_vif_up(ifp->vif)) {
status = ZX_ERR_IO;
goto done;
}
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state) &&
!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
status = ZX_ERR_BAD_STATE;
goto done;
}
if (memcmp(peer_sta_address, profile->bssid, ETH_ALEN)) {
status = ZX_ERR_INVALID_ARGS;
goto done;
}
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state);
BRCMF_DBG(CONN, "Disconnecting\n");
// Set the timer before notifying firmware as this thread might get preempted to
// handle the response event back from firmware. Timer can be stopped if the command
// fails.
cfg->disconnect_timer->Start(BRCMF_DISCONNECT_TIMER_DUR_MS);
memcpy(&scbval.ea, peer_sta_address, ETH_ALEN);
scbval.val = reason_code;
cfg->disconnect_mode = deauthenticate ? BRCMF_DISCONNECT_DEAUTH : BRCMF_DISCONNECT_DISASSOC;
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_DISCONNECTING, &ifp->vif->sme_state);
status = brcmf_fil_cmd_data_set(ifp, BRCMF_C_DISASSOC, &scbval, sizeof(scbval), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Failed to disassociate: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
cfg->disconnect_timer->Stop();
}
done:
BRCMF_DBG(TRACE, "Exit\n");
return status;
}
static zx_status_t brcmf_cfg80211_del_key(struct net_device* ndev, uint8_t key_idx) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_wsec_key* key;
zx_status_t err;
BRCMF_DBG(TRACE, "Enter\n");
BRCMF_DBG(CONN, "key index (%d)\n", key_idx);
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) {
/* we ignore this key index in this case */
return ZX_ERR_INVALID_ARGS;
}
key = &ifp->vif->profile.key[key_idx];
if (key->algo == CRYPTO_ALGO_OFF) {
BRCMF_DBG(CONN, "Ignore clearing of (never configured) key\n");
return ZX_ERR_BAD_STATE;
}
memset(key, 0, sizeof(*key));
key->index = (uint32_t)key_idx;
key->flags = BRCMF_PRIMARY_KEY;
/* Clear the key/index */
err = send_key_to_dongle(ifp, key);
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
static zx_status_t brcmf_cfg80211_add_key(struct net_device* ndev,
const set_key_descriptor_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_wsec_key* key;
int32_t val;
int32_t wsec;
zx_status_t err;
bool ext_key;
uint8_t key_idx = req->key_id;
const uint8_t* mac_addr = req->address;
BRCMF_DBG(TRACE, "Enter\n");
BRCMF_DBG(CONN, "key index (%d)\n", key_idx);
if (!check_vif_up(ifp->vif)) {
return ZX_ERR_IO;
}
if (key_idx >= BRCMF_MAX_DEFAULT_KEYS) {
/* we ignore this key index in this case */
BRCMF_ERR("invalid key index (%d)\n", key_idx);
return ZX_ERR_INVALID_ARGS;
}
if (req->key_count == 0) {
return brcmf_cfg80211_del_key(ndev, key_idx);
}
if (req->key_count > sizeof(key->data)) {
BRCMF_ERR("Too long key length (%u)\n", req->key_count);
return ZX_ERR_INVALID_ARGS;
}
ext_key = false;
if (mac_addr && (req->cipher_suite_type != WPA_CIPHER_WEP_40) &&
(req->cipher_suite_type != WPA_CIPHER_WEP_104)) {
BRCMF_DBG(TRACE, "Ext key, mac %02x:%02x:%02x:%02x:%02x:%02x", mac_addr[0], mac_addr[1],
mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
ext_key = true;
}
key = &ifp->vif->profile.key[key_idx];
memset(key, 0, sizeof(*key));
if ((ext_key) && (!address_is_multicast(mac_addr))) {
memcpy((char*)&key->ea, (void*)mac_addr, ETH_ALEN);
}
key->len = req->key_count;
key->index = key_idx;
memcpy(key->data, req->key_list, key->len);
if (!ext_key) {
key->flags = BRCMF_PRIMARY_KEY;
}
switch (req->cipher_suite_type) {
case WPA_CIPHER_WEP_40:
key->algo = CRYPTO_ALGO_WEP1;
val = WEP_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_WEP_40\n");
break;
case WPA_CIPHER_WEP_104:
key->algo = CRYPTO_ALGO_WEP128;
val = WEP_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_WEP_104\n");
break;
case WPA_CIPHER_TKIP:
/* Note: Linux swaps the Tx and Rx MICs in client mode, but this doesn't work for us (see
NET-1679). It's unclear why this would be necessary. */
key->algo = CRYPTO_ALGO_TKIP;
val = TKIP_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_TKIP\n");
break;
case WPA_CIPHER_CMAC_128:
key->algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_CMAC_128\n");
break;
case WPA_CIPHER_CCMP_128:
key->algo = CRYPTO_ALGO_AES_CCM;
val = AES_ENABLED;
BRCMF_DBG(CONN, "WPA_CIPHER_CCMP_128\n");
break;
default:
BRCMF_ERR("Unsupported cipher (0x%x)\n", req->cipher_suite_type);
err = ZX_ERR_INVALID_ARGS;
goto done;
}
BRCMF_DBG(CONN, "key length (%d) key index (%d) algo (%d) flags (%d)\n", key->len, key->index,
key->algo, key->flags);
err = send_key_to_dongle(ifp, key);
if (err != ZX_OK) {
goto done;
}
if (ext_key) {
goto done;
}
err = brcmf_fil_bsscfg_int_get(ifp, "wsec", (uint32_t*)&wsec); // TODO(cphoenix): This cast?!?
if (err != ZX_OK) {
BRCMF_ERR("get wsec error (%d)\n", err);
goto done;
}
wsec |= val;
BRCMF_DBG(CONN, "setting wsec to 0x%x\n", wsec);
err = brcmf_fil_bsscfg_int_set(ifp, "wsec", wsec);
if (err != ZX_OK) {
BRCMF_ERR("set wsec error (%d)\n", err);
goto done;
}
done:
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
#define EAPOL_ETHERNET_TYPE_UINT16 0x8e88
void brcmf_cfg80211_rx(struct brcmf_if* ifp, const void* data, size_t size) {
struct net_device* ndev = ifp->ndev;
THROTTLE(10, BRCMF_DBG_HEX_DUMP(BRCMF_IS_ON(BYTES) && BRCMF_IS_ON(DATA), data,
std::min<size_t>(size, 64u),
"Data received (%d bytes, max 64 shown):\n", size););
// IEEE Std. 802.3-2015, 3.1.1
const uint16_t eth_type = ((uint16_t*)(data))[6];
const char* const data_bytes = reinterpret_cast<const char*>(data);
if (eth_type == EAPOL_ETHERNET_TYPE_UINT16) {
wlanif_eapol_indication_t eapol_ind;
// IEEE Std. 802.1X-2010, 11.3, Figure 11-1
memcpy(&eapol_ind.dst_addr, data_bytes, ETH_ALEN);
memcpy(&eapol_ind.src_addr, data_bytes + 6, ETH_ALEN);
eapol_ind.data_count = size - 14;
eapol_ind.data_list = reinterpret_cast<const uint8_t*>(data_bytes + 14);
BRCMF_DBG(WLANIF, "Sending EAPOL frame to SME. data_len: %zu\n", eapol_ind.data_count);
wlanif_impl_ifc_eapol_ind(&ndev->if_proto, &eapol_ind);
} else {
wlanif_impl_ifc_data_recv(&ndev->if_proto, data, size, 0);
}
}
static void brcmf_extract_ies(const uint8_t* ie, size_t ie_len, wlanif_bss_description_t* bss) {
size_t offset = 0;
bool wpa_ie_extracted = false;
while (offset < ie_len) {
uint8_t type = ie[offset];
uint8_t length = ie[offset + TLV_LEN_OFF];
switch (type) {
case WLAN_IE_TYPE_SSID: {
uint8_t ssid_len = std::min<uint8_t>(length, sizeof(bss->ssid.data));
memcpy(bss->ssid.data, ie + offset + TLV_HDR_LEN, ssid_len);
bss->ssid.len = ssid_len;
break;
}
case WLAN_IE_TYPE_SUPP_RATES: {
uint8_t num_supp_rates = std::min<uint8_t>(length, WLAN_MAC_MAX_SUPP_RATES);
memcpy(bss->rates, ie + offset + TLV_HDR_LEN, num_supp_rates);
bss->num_rates = num_supp_rates;
break;
}
case WLAN_IE_TYPE_EXT_SUPP_RATES: {
uint8_t num_ext_supp_rates = std::min<uint8_t>(length, WLAN_MAC_MAX_EXT_RATES);
memcpy(bss->rates + bss->num_rates, ie + offset + TLV_HDR_LEN, num_ext_supp_rates);
bss->num_rates += num_ext_supp_rates;
break;
}
case WLAN_IE_TYPE_RSNE: {
bss->rsne_len = length + TLV_HDR_LEN;
memcpy(bss->rsne, ie + offset, bss->rsne_len);
break;
}
case WLAN_IE_TYPE_VENDOR_SPECIFIC: {
if (!wpa_ie_extracted && (brcmf_tlv_has_wpa_ie(ie + offset))) {
bss->vendor_ie_len = length + TLV_HDR_LEN;
memcpy(bss->vendor_ie, ie + offset, bss->vendor_ie_len);
wpa_ie_extracted = true;
}
break;
}
default:
break;
}
offset += length + TLV_HDR_LEN;
}
}
static void brcmf_iedump(uint8_t* ies, size_t total_len) {
size_t offset = 0;
while (offset + TLV_HDR_LEN <= total_len) {
uint8_t elem_type = ies[offset];
uint8_t elem_len = ies[offset + TLV_LEN_OFF];
offset += TLV_HDR_LEN;
if (offset + elem_len > total_len) {
break;
}
if (elem_type == 0) {
BRCMF_DBG_STRING_DUMP(true, ies + offset, elem_len, "IE 0 (name), len %d:", elem_len);
} else {
BRCMF_DBG_HEX_DUMP(true, ies + offset, elem_len, "IE %d, len %d:\n", elem_type, elem_len);
}
offset += elem_len;
}
if (offset != total_len) {
BRCMF_DBG(ALL, " * * Offset %ld didn't match length %ld", offset, total_len);
}
}
static void brcmf_return_scan_result(struct net_device* ndev, uint16_t channel,
const uint8_t* bssid, uint16_t capability, uint16_t interval,
uint8_t* ie, size_t ie_len, int16_t rssi_dbm) {
wlanif_scan_result_t result = {};
if (!ndev->scan_busy) {
return;
}
result.txn_id = ndev->scan_txn_id;
memcpy(result.bss.bssid, bssid, ETH_ALEN);
brcmf_extract_ies(ie, ie_len, &result.bss);
result.bss.bss_type = WLAN_BSS_TYPE_ANY_BSS;
result.bss.beacon_period = 0;
result.bss.dtim_period = 0;
result.bss.timestamp = 0;
result.bss.local_time = 0;
result.bss.cap = capability;
result.bss.chan.primary = (uint8_t)channel;
result.bss.chan.cbw = WLAN_CHANNEL_BANDWIDTH__20; // TODO(cphoenix): Don't hard-code this.
result.bss.rssi_dbm = std::min<int16_t>(0, std::max<int16_t>(-255, rssi_dbm));
result.bss.rcpi_dbmh = 0;
result.bss.rsni_dbh = 0;
BRCMF_DBG(SCAN, "Returning scan result %.*s, channel %d, dbm %d, id %lu", result.bss.ssid.len,
result.bss.ssid.data, channel, result.bss.rssi_dbm, result.txn_id);
ndev->scan_num_results++;
wlanif_impl_ifc_on_scan_result(&ndev->if_proto, &result);
}
static zx_status_t brcmf_inform_single_bss(struct net_device* ndev, struct brcmf_cfg80211_info* cfg,
struct brcmf_bss_info_le* bi) {
struct brcmu_chan ch;
uint16_t channel;
uint16_t notify_capability;
uint16_t notify_interval;
uint8_t* notify_ie;
size_t notify_ielen;
int16_t notify_rssi_dbm;
if (bi->length > WL_BSS_INFO_MAX) {
BRCMF_ERR("Bss info is larger than buffer. Discarding\n");
BRCMF_DBG(TEMP, "Early return, due to length.");
return ZX_OK;
}
if (!bi->ctl_ch) {
ch.chspec = bi->chanspec;
cfg->d11inf.decchspec(&ch);
bi->ctl_ch = ch.control_ch_num;
}
channel = bi->ctl_ch;
notify_capability = bi->capability;
notify_interval = bi->beacon_period;
notify_ie = (uint8_t*)bi + bi->ie_offset;
notify_ielen = bi->ie_length;
notify_rssi_dbm = (int16_t)bi->RSSI;
BRCMF_DBG(CONN,
"Scan result received BSS: %02x:%02x:%02x:%02x:%02x:%02x"
" Channel: %3d Capability: %#6x Beacon interval: %5d Signal: %4d\n",
bi->BSSID[0], bi->BSSID[1], bi->BSSID[2], bi->BSSID[3], bi->BSSID[4], bi->BSSID[5],
channel, notify_capability, notify_interval, notify_rssi_dbm);
if (BRCMF_IS_ON(CONN) && BRCMF_IS_ON(BYTES)) {
brcmf_iedump(notify_ie, notify_ielen);
}
brcmf_return_scan_result(ndev, (uint8_t)channel, (const uint8_t*)bi->BSSID, notify_capability,
notify_interval, notify_ie, notify_ielen, notify_rssi_dbm);
return ZX_OK;
}
void brcmf_abort_scanning(struct brcmf_cfg80211_info* cfg) {
struct escan_info* escan = &cfg->escan_info;
brcmf_set_bit_in_array(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
if (cfg->int_escan_map || cfg->scan_request) {
escan->escan_state = WL_ESCAN_STATE_IDLE;
brcmf_notify_escan_complete(cfg, escan->ifp, true, true);
}
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_ABORT, &cfg->scan_status);
}
static void brcmf_cfg80211_escan_timeout_worker(WorkItem* work) {
struct brcmf_cfg80211_info* cfg =
containerof(work, struct brcmf_cfg80211_info, escan_timeout_work);
brcmf_notify_escan_complete(cfg, cfg->escan_info.ifp, true, true);
}
static void brcmf_escan_timeout(struct brcmf_cfg80211_info* cfg) {
cfg->pub->irq_callback_lock.lock();
if (cfg->int_escan_map || cfg->scan_request) {
BRCMF_ERR("scan timer expired\n");
WorkQueue::ScheduleDefault(&cfg->escan_timeout_work);
}
cfg->pub->irq_callback_lock.unlock();
}
static zx_status_t brcmf_cfg80211_escan_handler(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = cfg_to_ndev(cfg);
int32_t status;
struct brcmf_escan_result_le* escan_result_le;
uint32_t escan_buflen;
struct brcmf_bss_info_le* bss_info_le;
bool aborted;
status = e->status;
if (status == BRCMF_E_STATUS_ABORT) {
goto chk_scan_end;
}
if (!brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
BRCMF_ERR("scan not ready, bsscfgidx=%d\n", ifp->bsscfgidx);
return ZX_ERR_UNAVAILABLE;
}
escan_result_le = static_cast<decltype(escan_result_le)>(data);
if (!escan_result_le) {
BRCMF_ERR("Invalid escan result (NULL pointer)\n");
goto chk_scan_end;
}
bss_info_le = &escan_result_le->bss_info_le;
if (e->datalen < sizeof(*escan_result_le)) {
// Print the error only if the scan result is partial (as end of scan may not
// contain a scan result)
if (status == BRCMF_E_STATUS_PARTIAL) {
BRCMF_ERR("Insufficient escan result data exp: %d got: %d\n", sizeof(*escan_result_le),
e->datalen);
}
goto chk_scan_end;
}
escan_buflen = escan_result_le->buflen;
if (escan_buflen > BRCMF_ESCAN_BUF_SIZE || escan_buflen > e->datalen ||
escan_buflen < sizeof(*escan_result_le)) {
BRCMF_ERR("Invalid escan buffer length: %d\n", escan_buflen);
goto chk_scan_end;
}
if (escan_result_le->bss_count != 1) {
BRCMF_ERR("Invalid bss_count %d: ignoring\n", escan_result_le->bss_count);
goto chk_scan_end;
}
if (!cfg->int_escan_map && !cfg->scan_request) {
BRCMF_DBG(SCAN, "result without cfg80211 request\n");
goto chk_scan_end;
}
if (bss_info_le->length != escan_buflen - WL_ESCAN_RESULTS_FIXED_SIZE) {
BRCMF_ERR("Ignoring invalid bss_info length: %d\n", bss_info_le->length);
goto chk_scan_end;
}
brcmf_inform_single_bss(ndev, cfg, bss_info_le);
if (status == BRCMF_E_STATUS_PARTIAL) {
BRCMF_DBG(SCAN, "ESCAN Partial result\n");
goto done;
}
chk_scan_end:
// If this is not a partial notification, indicate scan complete to wlanstack
if (status != BRCMF_E_STATUS_PARTIAL) {
cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
if (cfg->int_escan_map || cfg->scan_request) {
aborted = status != BRCMF_E_STATUS_SUCCESS;
brcmf_notify_escan_complete(cfg, ifp, aborted, false);
} else {
BRCMF_DBG(SCAN, "Ignored scan complete result 0x%x\n", status);
}
}
done:
return ZX_OK;
}
static void brcmf_init_escan(struct brcmf_cfg80211_info* cfg) {
brcmf_fweh_register(cfg->pub, BRCMF_E_ESCAN_RESULT, brcmf_cfg80211_escan_handler);
cfg->escan_info.escan_state = WL_ESCAN_STATE_IDLE;
/* Init scan_timeout timer */
cfg->escan_timer = new Timer(cfg->pub->dispatcher, std::bind(brcmf_escan_timeout, cfg), false);
cfg->escan_timeout_work = WorkItem(brcmf_cfg80211_escan_timeout_worker);
}
static wlanif_scan_req_t* brcmf_alloc_internal_escan_request(void) {
return static_cast<wlanif_scan_req_t*>(calloc(1, sizeof(wlanif_scan_req_t)));
}
static zx_status_t brcmf_internal_escan_add_info(wlanif_scan_req_t* req, uint8_t* ssid,
uint8_t ssid_len, uint8_t channel) {
size_t i;
for (i = 0; i < req->num_channels; i++) {
if (req->channel_list[i] == channel) {
break;
}
}
if (i == req->num_channels) {
if (req->num_channels < WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS) {
req->channel_list[req->num_channels++] = channel;
} else {
BRCMF_ERR("escan channel list full, suppressing channel %d\n", channel);
}
}
for (i = 0; i < req->num_ssids; i++) {
if (req->ssid_list[i].len == ssid_len && !memcmp(req->ssid_list[i].data, ssid, ssid_len)) {
break;
}
}
if (i == req->num_ssids) {
if (req->num_ssids < WLAN_SCAN_MAX_SSIDS) {
memcpy(req->ssid_list[req->num_ssids].data, ssid, ssid_len);
req->ssid_list[req->num_ssids++].len = ssid_len;
} else {
BRCMF_ERR("escan ssid list full, suppressing '%.*s'\n", ssid_len, ssid);
}
}
return ZX_OK;
}
static zx_status_t brcmf_start_internal_escan(struct brcmf_if* ifp, uint32_t fwmap,
wlanif_scan_req_t* req) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err;
if (brcmf_test_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status)) {
if (cfg->int_escan_map) {
BRCMF_DBG(SCAN, "aborting internal scan: map=%u\n", cfg->int_escan_map);
}
/* Abort any on-going scan */
brcmf_abort_scanning(cfg);
}
BRCMF_DBG(SCAN, "start internal scan: map=%u\n", fwmap);
brcmf_set_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
cfg->escan_info.run = brcmf_run_escan;
err = brcmf_do_escan(ifp, req);
if (err != ZX_OK) {
brcmf_clear_bit_in_array(BRCMF_SCAN_STATUS_BUSY, &cfg->scan_status);
return err;
}
cfg->int_escan_map = fwmap;
return ZX_OK;
}
static struct brcmf_pno_net_info_le* brcmf_get_netinfo_array(
struct brcmf_pno_scanresults_le* pfn_v1) {
struct brcmf_pno_scanresults_v2_le* pfn_v2;
struct brcmf_pno_net_info_le* netinfo;
switch (pfn_v1->version) {
default:
WARN_ON(1);
/* fall-thru */
case 1:
netinfo = (struct brcmf_pno_net_info_le*)(pfn_v1 + 1);
break;
case 2:
pfn_v2 = (struct brcmf_pno_scanresults_v2_le*)pfn_v1;
netinfo = (struct brcmf_pno_net_info_le*)(pfn_v2 + 1);
break;
}
return netinfo;
}
/* PFN result doesn't have all the info which are required by the supplicant
* (For e.g IEs) Do a target Escan so that sched scan results are reported
* via wl_inform_single_bss in the required format.
*/
static zx_status_t brcmf_notify_sched_scan_results(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = cfg_to_ndev(cfg);
wlanif_scan_req_t* req = NULL;
struct brcmf_pno_net_info_le* netinfo;
struct brcmf_pno_net_info_le* netinfo_start;
int i;
zx_status_t err = ZX_OK;
struct brcmf_pno_scanresults_le* pfn_result;
uint32_t bucket_map;
uint32_t result_count;
uint32_t status;
uint32_t datalen;
BRCMF_DBG(SCAN, "Enter\n");
if (e->datalen < (sizeof(*pfn_result) + sizeof(*netinfo))) {
BRCMF_DBG(SCAN, "Event data to small. Ignore\n");
return ZX_OK;
}
if (e->event_code == BRCMF_E_PFN_NET_LOST) {
BRCMF_DBG(SCAN, "PFN NET LOST event. Do Nothing\n");
return ZX_OK;
}
pfn_result = (struct brcmf_pno_scanresults_le*)data;
result_count = pfn_result->count;
status = pfn_result->status;
/* PFN event is limited to fit 512 bytes so we may get
* multiple NET_FOUND events. For now place a warning here.
*/
WARN_ON(status != BRCMF_PNO_SCAN_COMPLETE);
BRCMF_DBG(SCAN, "PFN NET FOUND event. count: %d\n", result_count);
if (!result_count) {
BRCMF_ERR("FALSE PNO Event. (pfn_count == 0)\n");
// TODO(cphoenix): err isn't set here. Should it be?
goto out_err;
}
netinfo_start = brcmf_get_netinfo_array(pfn_result);
datalen = e->datalen - ((char*)netinfo_start - (char*)pfn_result);
if (datalen < result_count * sizeof(*netinfo)) {
BRCMF_ERR("insufficient event data\n");
// TODO(cphoenix): err isn't set here. Should it be?
goto out_err;
}
req = brcmf_alloc_internal_escan_request();
if (!req) {
err = ZX_ERR_NO_MEMORY;
goto out_err;
}
bucket_map = 0;
for (i = 0; i < (int32_t)result_count; i++) {
netinfo = &netinfo_start[i];
if (netinfo->SSID_len > WLAN_MAX_SSID_LEN) {
netinfo->SSID_len = WLAN_MAX_SSID_LEN;
}
BRCMF_DBG(SCAN, "SSID:%.32s Channel:%d\n", netinfo->SSID, netinfo->channel);
bucket_map |= brcmf_pno_get_bucket_map(cfg->pno, netinfo);
err = brcmf_internal_escan_add_info(req, netinfo->SSID, netinfo->SSID_len, netinfo->channel);
if (err != ZX_OK) {
goto out_err;
}
}
if (!bucket_map) {
goto free_req;
}
err = brcmf_start_internal_escan(ifp, bucket_map, req);
if (err == ZX_OK) {
goto free_req;
}
out_err:
if (ndev->scan_busy) {
BRCMF_ERR("scan id:%d err %d, signaling scan end", ndev->scan_txn_id, err);
brcmf_signal_scan_end(ndev, ndev->scan_txn_id, WLAN_SCAN_RESULT_INTERNAL_ERROR);
}
free_req:
free(req);
return err;
}
static zx_status_t brcmf_parse_vndr_ies(const uint8_t* vndr_ie_buf, uint32_t vndr_ie_len,
struct parsed_vndr_ies* vndr_ies) {
struct brcmf_vs_tlv* vndrie;
struct brcmf_tlv* ie;
struct parsed_vndr_ie_info* parsed_info;
int32_t remaining_len;
remaining_len = (int32_t)vndr_ie_len;
memset(vndr_ies, 0, sizeof(*vndr_ies));
ie = (struct brcmf_tlv*)vndr_ie_buf;
while (ie) {
if (ie->id != WLAN_IE_TYPE_VENDOR_SPECIFIC) {
goto next;
}
vndrie = (struct brcmf_vs_tlv*)ie;
/* len should be bigger than OUI length + one */
if (vndrie->len < (VS_IE_FIXED_HDR_LEN - TLV_HDR_LEN + 1)) {
BRCMF_ERR("invalid vndr ie. length is too small %d\n", vndrie->len);
goto next;
}
/* if wpa or wme ie, do not add ie */
if (!memcmp(vndrie->oui, (uint8_t*)WPA_OUI, TLV_OUI_LEN) &&
((vndrie->oui_type == WPA_OUI_TYPE) || (vndrie->oui_type == WME_OUI_TYPE))) {
BRCMF_DBG(TRACE, "Found WPA/WME oui. Do not add it\n");
goto next;
}
parsed_info = &vndr_ies->ie_info[vndr_ies->count];
/* save vndr ie information */
parsed_info->ie_ptr = (uint8_t*)vndrie;
parsed_info->ie_len = vndrie->len + TLV_HDR_LEN;
memcpy(&parsed_info->vndrie, vndrie, sizeof(*vndrie));
vndr_ies->count++;
BRCMF_DBG(TRACE, "** OUI %02x %02x %02x, type 0x%02x\n", parsed_info->vndrie.oui[0],
parsed_info->vndrie.oui[1], parsed_info->vndrie.oui[2], parsed_info->vndrie.oui_type);
if (vndr_ies->count >= VNDR_IE_PARSE_LIMIT) {
break;
}
next:
remaining_len -= (ie->len + TLV_HDR_LEN);
if (remaining_len <= TLV_HDR_LEN) {
ie = NULL;
} else {
ie = (struct brcmf_tlv*)(((uint8_t*)ie) + ie->len + TLV_HDR_LEN);
}
}
return ZX_OK;
}
static uint32_t brcmf_vndr_ie(uint8_t* iebuf, int32_t pktflag, uint8_t* ie_ptr, uint32_t ie_len,
int8_t* add_del_cmd) {
strncpy((char*)iebuf, (char*)add_del_cmd, VNDR_IE_CMD_LEN - 1);
iebuf[VNDR_IE_CMD_LEN - 1] = '\0';
*(uint32_t*)&iebuf[VNDR_IE_COUNT_OFFSET] = 1;
*(uint32_t*)&iebuf[VNDR_IE_PKTFLAG_OFFSET] = pktflag;
memcpy(&iebuf[VNDR_IE_VSIE_OFFSET], ie_ptr, ie_len);
return ie_len + VNDR_IE_HDR_SIZE;
}
zx_status_t brcmf_vif_set_mgmt_ie(struct brcmf_cfg80211_vif* vif, int32_t pktflag,
const uint8_t* vndr_ie_buf, uint32_t vndr_ie_len) {
struct brcmf_if* ifp;
struct vif_saved_ie* saved_ie;
zx_status_t err = ZX_OK;
uint8_t* iovar_ie_buf;
uint8_t* curr_ie_buf;
uint8_t* mgmt_ie_buf = NULL;
int mgmt_ie_buf_len;
uint32_t* mgmt_ie_len;
uint32_t del_add_ie_buf_len = 0;
uint32_t total_ie_buf_len = 0;
uint32_t parsed_ie_buf_len = 0;
struct parsed_vndr_ies old_vndr_ies;
struct parsed_vndr_ies new_vndr_ies;
struct parsed_vndr_ie_info* vndrie_info;
int32_t i;
uint8_t* ptr;
int remained_buf_len;
if (!vif) {
return ZX_ERR_IO_NOT_PRESENT;
}
ifp = vif->ifp;
saved_ie = &vif->saved_ie;
BRCMF_DBG(TRACE, "bsscfgidx %d, pktflag : 0x%02X\n", ifp->bsscfgidx, pktflag);
iovar_ie_buf = static_cast<decltype(iovar_ie_buf)>(calloc(1, WL_EXTRA_BUF_MAX));
if (!iovar_ie_buf) {
return ZX_ERR_NO_MEMORY;
}
curr_ie_buf = iovar_ie_buf;
switch (pktflag) {
case BRCMF_VNDR_IE_PRBREQ_FLAG:
mgmt_ie_buf = saved_ie->probe_req_ie;
mgmt_ie_len = &saved_ie->probe_req_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->probe_req_ie);
break;
case BRCMF_VNDR_IE_PRBRSP_FLAG:
mgmt_ie_buf = saved_ie->probe_res_ie;
mgmt_ie_len = &saved_ie->probe_res_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->probe_res_ie);
break;
case BRCMF_VNDR_IE_BEACON_FLAG:
mgmt_ie_buf = saved_ie->beacon_ie;
mgmt_ie_len = &saved_ie->beacon_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->beacon_ie);
break;
case BRCMF_VNDR_IE_ASSOCREQ_FLAG:
mgmt_ie_buf = saved_ie->assoc_req_ie;
mgmt_ie_len = &saved_ie->assoc_req_ie_len;
mgmt_ie_buf_len = sizeof(saved_ie->assoc_req_ie);
break;
default:
err = ZX_ERR_WRONG_TYPE;
BRCMF_ERR("not suitable type\n");
goto exit;
}
if ((int)vndr_ie_len > mgmt_ie_buf_len) {
err = ZX_ERR_NO_MEMORY;
BRCMF_ERR("extra IE size too big\n");
goto exit;
}
/* parse and save new vndr_ie in curr_ie_buff before comparing it */
if (vndr_ie_buf && vndr_ie_len && curr_ie_buf) {
ptr = curr_ie_buf;
brcmf_parse_vndr_ies(vndr_ie_buf, vndr_ie_len, &new_vndr_ies);
for (i = 0; i < (int32_t)new_vndr_ies.count; i++) {
vndrie_info = &new_vndr_ies.ie_info[i];
memcpy(ptr + parsed_ie_buf_len, vndrie_info->ie_ptr, vndrie_info->ie_len);
parsed_ie_buf_len += vndrie_info->ie_len;
}
}
if (mgmt_ie_buf && *mgmt_ie_len) {
if (parsed_ie_buf_len && (parsed_ie_buf_len == *mgmt_ie_len) &&
(memcmp(mgmt_ie_buf, curr_ie_buf, parsed_ie_buf_len) == 0)) {
BRCMF_DBG(TRACE, "Previous mgmt IE equals to current IE\n");
goto exit;
}
/* parse old vndr_ie */
brcmf_parse_vndr_ies(mgmt_ie_buf, *mgmt_ie_len, &old_vndr_ies);
/* make a command to delete old ie */
for (i = 0; i < (int32_t)old_vndr_ies.count; i++) {
vndrie_info = &old_vndr_ies.ie_info[i];
BRCMF_DBG(TRACE, "DEL ID : %d, Len: %d , OUI:%02x:%02x:%02x\n", vndrie_info->vndrie.id,
vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1],
vndrie_info->vndrie.oui[2]);
del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr,
vndrie_info->ie_len, (int8_t*)"del");
curr_ie_buf += del_add_ie_buf_len;
total_ie_buf_len += del_add_ie_buf_len;
}
}
*mgmt_ie_len = 0;
/* Add if there is any extra IE */
if (mgmt_ie_buf && parsed_ie_buf_len) {
ptr = mgmt_ie_buf;
remained_buf_len = mgmt_ie_buf_len;
/* make a command to add new ie */
for (i = 0; i < (int32_t)new_vndr_ies.count; i++) {
vndrie_info = &new_vndr_ies.ie_info[i];
/* verify remained buf size before copy data */
if (remained_buf_len < (vndrie_info->vndrie.len + VNDR_IE_VSIE_OFFSET)) {
BRCMF_ERR("no space in mgmt_ie_buf: len left %d", remained_buf_len);
break;
}
remained_buf_len -= (vndrie_info->ie_len + VNDR_IE_VSIE_OFFSET);
BRCMF_DBG(TRACE, "ADDED ID : %d, Len: %d, OUI:%02x:%02x:%02x\n", vndrie_info->vndrie.id,
vndrie_info->vndrie.len, vndrie_info->vndrie.oui[0], vndrie_info->vndrie.oui[1],
vndrie_info->vndrie.oui[2]);
del_add_ie_buf_len = brcmf_vndr_ie(curr_ie_buf, pktflag, vndrie_info->ie_ptr,
vndrie_info->ie_len, (int8_t*)"add");
/* save the parsed IE in wl struct */
memcpy(ptr + (*mgmt_ie_len), vndrie_info->ie_ptr, vndrie_info->ie_len);
*mgmt_ie_len += vndrie_info->ie_len;
curr_ie_buf += del_add_ie_buf_len;
total_ie_buf_len += del_add_ie_buf_len;
}
}
if (total_ie_buf_len) {
err = brcmf_fil_bsscfg_data_set(ifp, "vndr_ie", iovar_ie_buf, total_ie_buf_len);
if (err != ZX_OK) {
BRCMF_ERR("vndr ie set error : %d\n", err);
}
}
exit:
free(iovar_ie_buf);
return err;
}
zx_status_t brcmf_vif_clear_mgmt_ies(struct brcmf_cfg80211_vif* vif) {
int32_t pktflags[] = {BRCMF_VNDR_IE_PRBREQ_FLAG, BRCMF_VNDR_IE_PRBRSP_FLAG,
BRCMF_VNDR_IE_BEACON_FLAG};
int i;
for (i = 0; i < (int)countof(pktflags); i++) {
brcmf_vif_set_mgmt_ie(vif, pktflags[i], NULL, 0);
}
memset(&vif->saved_ie, 0, sizeof(vif->saved_ie));
return ZX_OK;
}
// Returns an MLME result code (WLAN_START_RESULT_*)
static uint8_t brcmf_cfg80211_start_ap(struct net_device* ndev, const wlanif_start_req_t* req) {
if (req->bss_type != WLAN_BSS_TYPE_INFRASTRUCTURE) {
BRCMF_ERR("Attempt to start AP in unsupported mode (%d)\n", req->bss_type);
return WLAN_START_RESULT_NOT_SUPPORTED;
}
BRCMF_DBG(TRACE, "ssid: %*s beacon period: %d dtim_period: %d channel: %d rsne_len: %zd",
req->ssid.len, req->ssid.data, req->beacon_period, req->dtim_period, req->channel,
req->rsne_len);
struct brcmf_if* ifp = ndev_to_if(ndev);
if (ifp->vif->mbss) {
BRCMF_ERR("Mesh role not yet supported\n");
return WLAN_START_RESULT_NOT_SUPPORTED;
}
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
wlan_channel_t channel = {};
uint16_t chanspec = 0;
zx_status_t status;
int32_t fw_err = 0;
struct brcmf_ssid_le ssid_le;
memset(&ssid_le, 0, sizeof(ssid_le));
memcpy(ssid_le.SSID, req->ssid.data, req->ssid.len);
ssid_le.SSID_len = req->ssid.len;
brcmf_enable_mpc(ifp, 0);
brcmf_configure_arp_nd_offload(ifp, false);
// set to open authentication for external supplicant
status = brcmf_fil_bsscfg_int_set(ifp, "auth", BRCMF_AUTH_MODE_OPEN);
if (status != ZX_OK) {
BRCMF_ERR("auth error %s\n", zx_status_get_string(status));
goto fail;
}
// Configure RSN IE
if (req->rsne_len != 0) {
struct brcmf_vs_tlv* tmp_ie = (struct brcmf_vs_tlv*)req->rsne;
status = brcmf_configure_wpaie(ifp, tmp_ie, true, true);
if (status != ZX_OK) {
BRCMF_ERR("Failed to install RSNE: %s\n", zx_status_get_string(status));
goto fail;
}
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_BCNPRD, req->beacon_period, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Beacon Interval Set Error: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
ifp->vif->profile.beacon_period = req->beacon_period;
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_DTIMPRD, req->dtim_period, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("DTIM Interval Set Error: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_INFRA, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SET INFRA error %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 1, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("setting AP mode failed %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
channel = {.primary = req->channel, .cbw = WLAN_CHANNEL_BANDWIDTH__20, .secondary80 = 0};
chanspec = channel_to_chanspec(&cfg->d11inf, &channel);
status = brcmf_fil_iovar_int_set(ifp, "chanspec", chanspec, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("Set Channel failed: chspec=%d, status=%s, fw_err=%s\n", chanspec,
zx_status_get_string(status), brcmf_fil_get_errstr(fw_err));
goto fail;
}
struct brcmf_join_params join_params;
memset(&join_params, 0, sizeof(join_params));
// join parameters starts with ssid
memcpy(&join_params.ssid_le, &ssid_le, sizeof(ssid_le));
// create softap
status =
brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SET SSID error: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail;
}
BRCMF_DBG(TRACE, "AP mode configuration complete\n");
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);
brcmf_net_setcarrier(ifp, true);
cfg->ap_started = true;
return WLAN_START_RESULT_SUCCESS;
fail:
brcmf_enable_mpc(ifp, 1);
brcmf_configure_arp_nd_offload(ifp, true);
return WLAN_START_RESULT_NOT_SUPPORTED;
}
// Returns an MLME result code (WLAN_STOP_RESULT_*)
static uint8_t brcmf_cfg80211_stop_ap(struct net_device* ndev, const wlanif_stop_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
zx_status_t status;
int32_t fw_err = 0;
uint8_t result = WLAN_STOP_RESULT_SUCCESS;
struct brcmf_join_params join_params;
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
if (!brcmf_test_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state)) {
BRCMF_ERR("attempt to stop already stopped AP\n");
return WLAN_STOP_RESULT_BSS_ALREADY_STOPPED;
}
memset(&join_params, 0, sizeof(join_params));
status =
brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, sizeof(join_params), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SET SSID error: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
result = WLAN_STOP_RESULT_INTERNAL_ERROR;
}
status = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_AP, 0, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("setting AP mode failed: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
result = WLAN_STOP_RESULT_INTERNAL_ERROR;
}
brcmf_vif_clear_mgmt_ies(ifp->vif);
brcmf_configure_arp_nd_offload(ifp, true);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_AP_CREATED, &ifp->vif->sme_state);
brcmf_net_setcarrier(ifp, false);
cfg->ap_started = false;
brcmf_enable_mpc(ifp, 1);
return result;
}
// Deauthenticate with specified STA. The reason provided should be from WLAN_DEAUTH_REASON_*
static zx_status_t brcmf_cfg80211_del_station(struct net_device* ndev, const uint8_t* mac,
uint8_t reason) {
BRCMF_DBG(TRACE, "Enter: reason: %d\n", reason);
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_scb_val_le scbval;
memset(&scbval, 0, sizeof(scbval));
memcpy(&scbval.ea, mac, ETH_ALEN);
scbval.val = reason;
int32_t fw_err = 0;
zx_status_t status = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SCB_DEAUTHENTICATE_FOR_REASON, &scbval,
sizeof(scbval), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("SCB_DEAUTHENTICATE_FOR_REASON failed: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
}
BRCMF_DBG(TRACE, "Exit\n");
return status;
}
static zx_status_t brcmf_notify_tdls_peer_event(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
switch (e->reason) {
case BRCMF_E_REASON_TDLS_PEER_DISCOVERED:
BRCMF_DBG(TRACE, "TDLS Peer Discovered\n");
break;
case BRCMF_E_REASON_TDLS_PEER_CONNECTED:
BRCMF_DBG(TRACE, "TDLS Peer Connected\n");
brcmf_proto_add_tdls_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
break;
case BRCMF_E_REASON_TDLS_PEER_DISCONNECTED:
BRCMF_DBG(TRACE, "TDLS Peer Disconnected\n");
brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
break;
}
return ZX_OK;
}
// Country is initialized to US by default. This should be retrieved from location services
// when available.
zx_status_t brcmf_if_start(net_device* ndev, const wlanif_impl_ifc_protocol_t* ifc,
zx_handle_t* out_sme_channel) {
if (!ndev->sme_channel.is_valid()) {
return ZX_ERR_ALREADY_BOUND;
}
BRCMF_DBG(WLANIF, "Starting wlanif interface\n");
ndev->if_proto = *ifc;
brcmf_netdev_open(ndev);
ndev->flags = IFF_UP;
ZX_DEBUG_ASSERT(out_sme_channel != nullptr);
*out_sme_channel = ndev->sme_channel.release();
return ZX_OK;
}
void brcmf_if_stop(net_device* ndev) {
BRCMF_DBG(WLANIF, "Stopping wlanif interface\n");
ndev->if_proto.ops = nullptr;
ndev->if_proto.ctx = nullptr;
}
void brcmf_if_start_scan(net_device* ndev, const wlanif_scan_req_t* req) {
zx_status_t result;
BRCMF_DBG(WLANIF, "Scan request from SME. txn_id: %" PRIu64 ", type: %s\n", req->txn_id,
req->scan_type == WLAN_SCAN_TYPE_PASSIVE
? "passive"
: req->scan_type == WLAN_SCAN_TYPE_ACTIVE ? "active" : "invalid");
if (ndev->scan_busy) {
BRCMF_ERR("scan already in progress id: %d\n", ndev->scan_txn_id);
brcmf_signal_scan_end(ndev, req->txn_id, WLAN_SCAN_RESULT_INTERNAL_ERROR);
return;
}
ndev->scan_txn_id = req->txn_id;
ndev->scan_busy = true;
ndev->scan_num_results = 0;
BRCMF_DBG(SCAN, "About to scan! Txn ID %lu\n", ndev->scan_txn_id);
result = brcmf_cfg80211_scan(ndev, req);
if (result != ZX_OK) {
BRCMF_ERR("Couldn't start scan: %d %s\n", result, zx_status_get_string(result));
brcmf_signal_scan_end(ndev, req->txn_id, WLAN_SCAN_RESULT_INTERNAL_ERROR);
ndev->scan_busy = false;
}
}
// Because brcm's join/assoc is handled in a single operation (BRCMF_C_SET_SSID), we save off the
// bss information, but otherwise wait until an ASSOCIATE.request is received to join so that we
// have the negotiated RSNE.
void brcmf_if_join_req(net_device* ndev, const wlanif_join_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
const uint8_t* bssid = req->selected_bss.bssid;
BRCMF_DBG(WLANIF, "Join request from SME. ssid: %.*s, bssid: " MAC_FMT_STR "\n",
req->selected_bss.ssid.len, req->selected_bss.ssid.data, MAC_FMT_ARGS(bssid));
memcpy(&ifp->bss, &req->selected_bss, sizeof(ifp->bss));
wlanif_join_confirm_t result;
result.result_code = WLAN_JOIN_RESULT_SUCCESS;
brcmf_configure_opensecurity(ifp);
BRCMF_DBG(WLANIF, "Sending join confirm to SME. result: %s\n",
result.result_code == WLAN_JOIN_RESULT_SUCCESS
? "success"
: result.result_code == WLAN_JOIN_RESULT_FAILURE_TIMEOUT ? "timeout" : "unknown");
wlanif_impl_ifc_join_conf(&ndev->if_proto, &result);
}
void brcmf_if_auth_req(net_device* ndev, const wlanif_auth_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
wlanif_auth_confirm_t response;
BRCMF_DBG(WLANIF, "Auth request from SME. type: %s, address: " MAC_FMT_STR "\n",
req->auth_type == WLAN_AUTH_TYPE_OPEN_SYSTEM
? "open"
: req->auth_type == WLAN_AUTH_TYPE_SHARED_KEY
? "shared"
: req->auth_type == WLAN_AUTH_TYPE_FAST_BSS_TRANSITION
? "fast BSS"
: req->auth_type == WLAN_AUTH_TYPE_SAE ? "SAE" : "invalid",
MAC_FMT_ARGS(req->peer_sta_address));
// Ensure that join bssid matches auth bssid
if (memcmp(req->peer_sta_address, ifp->bss.bssid, ETH_ALEN)) {
const uint8_t* old_mac = ifp->bss.bssid;
const uint8_t* new_mac = req->peer_sta_address;
BRCMF_ERR(
"Auth MAC (%02x:%02x:%02x:%02x:%02x:%02x) != "
"join MAC (%02x:%02x:%02x:%02x:%02x:%02x).\n",
new_mac[0], new_mac[1], new_mac[2], new_mac[3], new_mac[4], new_mac[5], old_mac[0],
old_mac[1], old_mac[2], old_mac[3], old_mac[4], old_mac[5]);
// In debug builds, we should investigate why the MLME is giving us inconsitent
// requests.
ZX_DEBUG_ASSERT(0);
// In release builds, ignore and continue.
BRCMF_ERR("Ignoring mismatch and using join MAC address\n");
}
brcmf_set_auth_type(ndev, req->auth_type);
response.result_code = WLAN_AUTH_RESULT_SUCCESS;
response.auth_type = req->auth_type;
memcpy(&response.peer_sta_address, ifp->bss.bssid, ETH_ALEN);
BRCMF_DBG(
WLANIF, "Sending auth confirm to SME. result: %s\n",
response.result_code == WLAN_AUTH_RESULT_SUCCESS
? "success"
: response.result_code == WLAN_AUTH_RESULT_REFUSED
? "refused"
: response.result_code == WLAN_AUTH_RESULT_ANTI_CLOGGING_TOKEN_REQUIRED
? "anti-clogging token required"
: response.result_code == WLAN_AUTH_RESULT_FINITE_CYCLIC_GROUP_NOT_SUPPORTED
? "finite cyclic group not supported"
: response.result_code == WLAN_AUTH_RESULT_REJECTED
? "rejected"
: response.result_code == WLAN_AUTH_RESULT_FAILURE_TIMEOUT
? "timeout"
: "unknown");
wlanif_impl_ifc_auth_conf(&ndev->if_proto, &response);
}
// In AP mode, receive a response from wlanif confirming that a client was successfully
// authenticated.
void brcmf_if_auth_resp(net_device* ndev, const wlanif_auth_resp_t* ind) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF, "Auth response from SME. result: %s, address: " MAC_FMT_STR "\n",
ind->result_code == WLAN_AUTH_RESULT_SUCCESS
? "success"
: ind->result_code == WLAN_AUTH_RESULT_REFUSED
? "refused"
: ind->result_code == WLAN_AUTH_RESULT_ANTI_CLOGGING_TOKEN_REQUIRED
? "anti-clogging token required"
: ind->result_code == WLAN_AUTH_RESULT_FINITE_CYCLIC_GROUP_NOT_SUPPORTED
? "finite cyclic group not supported"
: ind->result_code == WLAN_AUTH_RESULT_REJECTED
? "rejected"
: ind->result_code == WLAN_AUTH_RESULT_FAILURE_TIMEOUT
? "timeout"
: "invalid",
MAC_FMT_ARGS(ind->peer_sta_address));
if (!brcmf_is_apmode(ifp->vif)) {
BRCMF_ERR("Received AUTHENTICATE.response but not in AP mode - ignoring\n");
return;
}
if (ind->result_code == WLAN_AUTH_RESULT_SUCCESS) {
const uint8_t* mac = ind->peer_sta_address;
BRCMF_DBG(CONN, "Successfully authenticated client %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0],
mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
}
uint8_t reason;
switch (ind->result_code) {
case WLAN_AUTH_RESULT_REFUSED:
case WLAN_AUTH_RESULT_REJECTED:
reason = WLAN_DEAUTH_REASON_NOT_AUTHENTICATED;
break;
case WLAN_AUTH_RESULT_FAILURE_TIMEOUT:
reason = WLAN_DEAUTH_REASON_TIMEOUT;
break;
case WLAN_AUTH_RESULT_ANTI_CLOGGING_TOKEN_REQUIRED:
case WLAN_AUTH_RESULT_FINITE_CYCLIC_GROUP_NOT_SUPPORTED:
default:
reason = WLAN_DEAUTH_REASON_UNSPECIFIED;
break;
}
brcmf_cfg80211_del_station(ndev, ind->peer_sta_address, reason);
}
// Respond to a MLME-DEAUTHENTICATE.request message. Note that we are required to respond with a
// MLME-DEAUTHENTICATE.confirm on completion (or failure), even though there is no status
// reported.
void brcmf_if_deauth_req(net_device* ndev, const wlanif_deauth_req_t* req) {
BRCMF_DBG(WLANIF, "Deauth request from SME. reason: %" PRIu16 "\n", req->reason_code);
if (brcmf_cfg80211_disconnect(ndev, req->peer_sta_address, req->reason_code, true) != ZX_OK) {
// Request to disconnect failed, so respond immediately
brcmf_notify_deauth(ndev, req->peer_sta_address);
} // else wait for disconnect to complete before sending response
// Workaround for NET-1574: allow time for disconnect to complete
zx_nanosleep(zx_deadline_after(ZX_MSEC(50)));
}
void brcmf_if_assoc_req(net_device* ndev, const wlanif_assoc_req_t* req) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF,
"Assoc request from SME. address: " MAC_FMT_STR ", rsne_len: %zd venie len %zd\n",
MAC_FMT_ARGS(req->peer_sta_address), req->rsne_len, req->vendor_ie_len);
if (req->rsne_len != 0) {
BRCMF_DBG(TEMP, " * * RSNE non-zero! %ld\n", req->rsne_len);
BRCMF_DBG_HEX_DUMP(BRCMF_IS_ON(BYTES), req->rsne, req->rsne_len, "RSNE:\n");
}
if (memcmp(req->peer_sta_address, ifp->bss.bssid, ETH_ALEN)) {
const uint8_t* old_mac = ifp->bss.bssid;
const uint8_t* new_mac = req->peer_sta_address;
BRCMF_ERR(
"Requested MAC %02x:%02x:%02x:%02x:%02x:%02x != "
"connected MAC %02x:%02x:%02x:%02x:%02x:%02x\n",
new_mac[0], new_mac[1], new_mac[2], new_mac[3], new_mac[4], new_mac[5], old_mac[0],
old_mac[1], old_mac[2], old_mac[3], old_mac[4], old_mac[5]);
brcmf_return_assoc_result(ndev, WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
} else {
brcmf_cfg80211_connect(ndev, req);
}
}
void brcmf_if_assoc_resp(net_device* ndev, const wlanif_assoc_resp_t* ind) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(WLANIF,
"Assoc response from SME. address: " MAC_FMT_STR
", "
"result: %" PRIu8 ", aid: %" PRIu16 "\n",
MAC_FMT_ARGS(ind->peer_sta_address), ind->result_code, ind->association_id);
if (!brcmf_is_apmode(ifp->vif)) {
BRCMF_ERR("Received ASSOCIATE.response but not in AP mode - ignoring\n");
return;
}
if (ind->result_code == WLAN_ASSOC_RESULT_SUCCESS) {
const uint8_t* mac = ind->peer_sta_address;
BRCMF_DBG(CONN, "Successfully associated client %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0],
mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
}
uint8_t reason;
switch (ind->result_code) {
case WLAN_ASSOC_RESULT_REFUSED_NOT_AUTHENTICATED:
reason = WLAN_DEAUTH_REASON_NOT_AUTHENTICATED;
break;
case WLAN_ASSOC_RESULT_REFUSED_CAPABILITIES_MISMATCH:
reason = WLAN_DEAUTH_REASON_INVALID_RSNE_CAPABILITIES;
break;
case WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED:
case WLAN_ASSOC_RESULT_REFUSED_EXTERNAL_REASON:
case WLAN_ASSOC_RESULT_REFUSED_AP_OUT_OF_MEMORY:
case WLAN_ASSOC_RESULT_REFUSED_BASIC_RATES_MISMATCH:
case WLAN_ASSOC_RESULT_REJECTED_EMERGENCY_SERVICES_NOT_SUPPORTED:
case WLAN_ASSOC_RESULT_REFUSED_TEMPORARILY:
default:
reason = WLAN_DEAUTH_REASON_UNSPECIFIED;
break;
}
brcmf_cfg80211_del_station(ndev, ind->peer_sta_address, reason);
}
void brcmf_if_disassoc_req(net_device* ndev, const wlanif_disassoc_req_t* req) {
BRCMF_DBG(WLANIF, "Disassoc request from SME. address: " MAC_FMT_STR ", reason: %" PRIu16 "\n",
MAC_FMT_ARGS(req->peer_sta_address), req->reason_code);
zx_status_t status =
brcmf_cfg80211_disconnect(ndev, req->peer_sta_address, req->reason_code, false);
if (status != ZX_OK) {
brcmf_notify_disassoc(ndev, status);
} // else notification will happen asynchronously
}
void brcmf_if_reset_req(net_device* ndev, const wlanif_reset_req_t* req) {
BRCMF_DBG(WLANIF, "Reset request from SME. address: " MAC_FMT_STR "\n",
MAC_FMT_ARGS(req->sta_address));
BRCMF_ERR("Unimplemented\n");
}
/* Start AP mode */
void brcmf_if_start_req(net_device* ndev, const wlanif_start_req_t* req) {
BRCMF_DBG(WLANIF, "Start AP request from SME. ssid: %.*s, channel: %u, rsne_len: %zu\n",
req->ssid.len, req->ssid.data, req->channel, req->rsne_len);
uint8_t result_code = brcmf_cfg80211_start_ap(ndev, req);
wlanif_start_confirm_t result = {.result_code = result_code};
BRCMF_DBG(WLANIF, "Sending AP start confirm to SME. result_code: %s\n",
result_code == WLAN_START_RESULT_SUCCESS
? "success"
: result_code == WLAN_START_RESULT_BSS_ALREADY_STARTED_OR_JOINED
? "already started"
: result_code == WLAN_START_RESULT_RESET_REQUIRED_BEFORE_START
? "reset required"
: result_code == WLAN_START_RESULT_NOT_SUPPORTED ? "not supported"
: "unknown");
wlanif_impl_ifc_start_conf(&ndev->if_proto, &result);
}
/* Stop AP mode */
void brcmf_if_stop_req(net_device* ndev, const wlanif_stop_req_t* req) {
BRCMF_DBG(WLANIF, "Stop AP request from SME. ssid: %.*s\n", req->ssid.len, req->ssid.data);
uint8_t result_code = brcmf_cfg80211_stop_ap(ndev, req);
wlanif_stop_confirm_t result = {.result_code = result_code};
BRCMF_DBG(
WLANIF, "Sending AP stop confirm to SME. result_code: %s\n",
result_code == WLAN_STOP_RESULT_SUCCESS
? "success"
: result_code == WLAN_STOP_RESULT_BSS_ALREADY_STOPPED
? "already stopped"
: result_code == WLAN_STOP_RESULT_INTERNAL_ERROR ? "internal error" : "unknown");
wlanif_impl_ifc_stop_conf(&ndev->if_proto, &result);
}
void brcmf_if_set_keys_req(net_device* ndev, const wlanif_set_keys_req_t* req) {
BRCMF_DBG(WLANIF, "Set keys request from SME. num_keys: %zu\n", req->num_keys);
zx_status_t result;
// TODO(WLAN-733)
if (req->num_keys != 1) {
BRCMF_ERR("Help! num_keys needs to be 1! But it's %ld.", req->num_keys);
return;
}
result = brcmf_cfg80211_add_key(ndev, &req->keylist[0]);
}
void brcmf_if_del_keys_req(net_device* ndev, const wlanif_del_keys_req_t* req) {
BRCMF_DBG(WLANIF, "Del keys request from SME. num_keys: %zu\n", req->num_keys);
BRCMF_ERR("Unimplemented\n");
}
void brcmf_if_eapol_req(net_device* ndev, const wlanif_eapol_req_t* req) {
BRCMF_DBG(WLANIF, "EAPOL xmit request from SME. data_len: %zu\n", req->data_count);
wlanif_eapol_confirm_t confirm;
int packet_length;
// Ethernet header length + EAPOL PDU length
packet_length = 2 * ETH_ALEN + sizeof(uint16_t) + req->data_count;
auto packet_data = std::make_unique<char[]>(packet_length);
// IEEE Std. 802.3-2015, 3.1.1
memcpy(packet_data.get(), req->dst_addr, ETH_ALEN);
memcpy(packet_data.get() + ETH_ALEN, req->src_addr, ETH_ALEN);
*(uint16_t*)(packet_data.get() + 2 * ETH_ALEN) = EAPOL_ETHERNET_TYPE_UINT16;
memcpy(packet_data.get() + 2 * ETH_ALEN + sizeof(uint16_t), req->data_list, req->data_count);
auto packet =
std::make_unique<wlan::brcmfmac::AllocatedNetbuf>(std::move(packet_data), packet_length);
brcmf_netdev_start_xmit(ndev, std::move(packet));
confirm.result_code = WLAN_EAPOL_RESULT_SUCCESS;
zx_nanosleep(zx_deadline_after(ZX_MSEC(5)));
BRCMF_DBG(
WLANIF, "Sending EAPOL xmit confirm to SME. result: %s\n",
confirm.result_code == WLAN_EAPOL_RESULT_SUCCESS
? "success"
: confirm.result_code == WLAN_EAPOL_RESULT_TRANSMISSION_FAILURE ? "failure" : "unknown");
wlanif_impl_ifc_eapol_conf(&ndev->if_proto, &confirm);
}
static void brcmf_get_bwcap(struct brcmf_if* ifp, uint32_t bw_cap[]) {
// 2.4 GHz
uint32_t val = WLC_BAND_2G;
zx_status_t status = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val, nullptr);
if (status == ZX_OK) {
bw_cap[WLAN_INFO_BAND_2GHZ] = val;
// 5 GHz
val = WLC_BAND_5G;
status = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val, nullptr);
if (status == ZX_OK) {
bw_cap[WLAN_INFO_BAND_5GHZ] = val;
return;
}
BRCMF_ERR("Unable to get bw_cap for 5GHz bands\n");
return;
}
// bw_cap not supported in this version of fw
BRCMF_DBG(INFO, "fallback to mimo_bw_cap info\n");
uint32_t mimo_bwcap = 0;
status = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &mimo_bwcap, nullptr);
if (status != ZX_OK) {
/* assume 20MHz if firmware does not give a clue */
mimo_bwcap = WLC_N_BW_20ALL;
}
switch (mimo_bwcap) {
case WLC_N_BW_40ALL:
bw_cap[WLAN_INFO_BAND_2GHZ] |= WLC_BW_40MHZ_BIT;
/* fall-thru */
case WLC_N_BW_20IN2G_40IN5G:
bw_cap[WLAN_INFO_BAND_5GHZ] |= WLC_BW_40MHZ_BIT;
/* fall-thru */
case WLC_N_BW_20ALL:
bw_cap[WLAN_INFO_BAND_2GHZ] |= WLC_BW_20MHZ_BIT;
bw_cap[WLAN_INFO_BAND_5GHZ] |= WLC_BW_20MHZ_BIT;
break;
default:
BRCMF_ERR("invalid mimo_bw_cap value\n");
}
}
static uint16_t brcmf_get_mcs_map(uint32_t nchain, uint16_t supp) {
uint16_t mcs_map = 0xffff;
for (uint32_t i = 0; i < nchain; i++) {
mcs_map = (mcs_map << 2) | supp;
}
return mcs_map;
}
static void brcmf_update_ht_cap(struct brcmf_if* ifp, wlanif_band_capabilities_t* band,
uint32_t bw_cap[2], uint32_t ldpc_cap, uint32_t nchain,
uint32_t max_ampdu_len_exp) {
zx_status_t status;
band->ht_supported = true;
// LDPC Support
if (ldpc_cap) {
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_LDPC;
}
// Bandwidth-related flags
if (bw_cap[band->band_id] & WLC_BW_40MHZ_BIT) {
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_CHAN_WIDTH;
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_SGI_40;
}
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_SGI_20;
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_DSSS_CCK_40;
// SM Power Save
// At present SMPS appears to never be enabled in firmware (see WLAN-1030)
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_SMPS_DISABLED;
// Rx STBC
uint32_t rx_stbc = 0;
(void)brcmf_fil_iovar_int_get(ifp, "stbc_rx", &rx_stbc, nullptr);
band->ht_caps.ht_capability_info |= ((rx_stbc & 0x3) << IEEE80211_HT_CAPS_RX_STBC_SHIFT);
// Tx STBC
// According to Broadcom, Tx STBC capability should be induced from the value of the
// "stbc_rx" iovar and not "stbc_tx".
if (rx_stbc != 0) {
band->ht_caps.ht_capability_info |= IEEE80211_HT_CAPS_TX_STBC;
}
// AMPDU Parameters
uint32_t ampdu_rx_density = 0;
status = brcmf_fil_iovar_int_get(ifp, "ampdu_rx_density", &ampdu_rx_density, nullptr);
if (status != ZX_OK) {
BRCMF_ERR("Unable to retrieve value for AMPDU Rx density from firmware, using 16 us\n");
ampdu_rx_density = 7;
}
band->ht_caps.ampdu_params |= ((ampdu_rx_density & 0x7) << IEEE80211_AMPDU_DENSITY_SHIFT);
if (max_ampdu_len_exp > 3) {
// Cap A-MPDU length at 64K
max_ampdu_len_exp = 3;
}
band->ht_caps.ampdu_params |= (max_ampdu_len_exp << IEEE80211_AMPDU_RX_LEN_SHIFT);
// Supported MCS Set
ZX_ASSERT(nchain <= sizeof(band->ht_caps.supported_mcs_set.bytes));
memset(&band->ht_caps.supported_mcs_set.bytes[0], 0xff, nchain);
}
static void brcmf_update_vht_cap(struct brcmf_if* ifp, wlanif_band_capabilities_t* band,
uint32_t bw_cap[2], uint32_t nchain, uint32_t ldpc_cap,
uint32_t max_ampdu_len_exp) {
uint16_t mcs_map;
band->vht_supported = true;
// Set Max MPDU length to 11454
// TODO (WLAN-485): Value hardcoded from firmware behavior of the BCM4356 and BCM4359 chips.
band->vht_caps.vht_capability_info |= (2 << IEEE80211_VHT_CAPS_MAX_MPDU_LEN_SHIFT);
/* 80MHz is mandatory */
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SGI_80;
if (bw_cap[band->band_id] & WLC_BW_160MHZ_BIT) {
band->vht_caps.vht_capability_info |= (1 << IEEE80211_VHT_CAPS_SUPP_CHAN_WIDTH_SHIFT);
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SGI_160;
}
if (ldpc_cap) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_RX_LDPC;
}
// Tx STBC
// TODO (WLAN-485): Value is hardcoded for now
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_IS_4359)) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_TX_STBC;
}
/* all support 256-QAM */
mcs_map = brcmf_get_mcs_map(nchain, IEEE80211_VHT_MCS_0_9);
/* Rx MCS map (B0:15) */
band->vht_caps.supported_vht_mcs_and_nss_set = (uint64_t)mcs_map;
/* Tx MCS map (B0:15) */
band->vht_caps.supported_vht_mcs_and_nss_set |= ((uint64_t)mcs_map << 32);
/* Beamforming support information */
uint32_t txbf_bfe_cap = 0;
uint32_t txbf_bfr_cap = 0;
// Use the *_cap_hw value when possible, since the reflects the capabilities of the device
// regardless of current operating mode.
zx_status_t status;
status = brcmf_fil_iovar_int_get(ifp, "txbf_bfe_cap_hw", &txbf_bfe_cap, nullptr);
if (status != ZX_OK) {
(void)brcmf_fil_iovar_int_get(ifp, "txbf_bfe_cap", &txbf_bfe_cap, nullptr);
}
status = brcmf_fil_iovar_int_get(ifp, "txbf_bfr_cap_hw", &txbf_bfr_cap, nullptr);
if (status != ZX_OK) {
(void)brcmf_fil_iovar_int_get(ifp, "txbf_bfr_cap", &txbf_bfr_cap, nullptr);
}
if (txbf_bfe_cap & BRCMF_TXBF_SU_BFE_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SU_BEAMFORMEE;
}
if (txbf_bfe_cap & BRCMF_TXBF_MU_BFE_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_MU_BEAMFORMEE;
}
if (txbf_bfr_cap & BRCMF_TXBF_SU_BFR_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_SU_BEAMFORMER;
}
if (txbf_bfr_cap & BRCMF_TXBF_MU_BFR_CAP) {
band->vht_caps.vht_capability_info |= IEEE80211_VHT_CAPS_MU_BEAMFORMER;
}
uint32_t txstreams = 0;
// txstreams_cap is not supported in all firmware versions, but when it is supported it
// provides capability info regardless of current operating state.
status = brcmf_fil_iovar_int_get(ifp, "txstreams_cap", &txstreams, nullptr);
if (status != ZX_OK) {
(void)brcmf_fil_iovar_int_get(ifp, "txstreams", &txstreams, nullptr);
}
if ((txbf_bfe_cap || txbf_bfr_cap) && (txstreams > 1)) {
band->vht_caps.vht_capability_info |= (2 << IEEE80211_VHT_CAPS_BEAMFORMEE_STS_SHIFT);
band->vht_caps.vht_capability_info |=
(((txstreams - 1) << IEEE80211_VHT_CAPS_SOUND_DIM_SHIFT) & IEEE80211_VHT_CAPS_SOUND_DIM);
// Link adapt = Both
band->vht_caps.vht_capability_info |= (3 << IEEE80211_VHT_CAPS_VHT_LINK_ADAPT_SHIFT);
}
// Maximum A-MPDU Length Exponent
band->vht_caps.vht_capability_info |=
((max_ampdu_len_exp & 0x7) << IEEE80211_VHT_CAPS_MAX_AMPDU_LEN_SHIFT);
}
static void brcmf_dump_ht_caps(ieee80211_ht_capabilities_t* caps) {
BRCMF_INFO("brcmfmac: ht_capability_info: %#x\n", caps->ht_capability_info);
BRCMF_INFO("brcmfmac: ampdu_params: %#x\n", caps->ampdu_params);
char mcs_set_str[countof(caps->supported_mcs_set.bytes) * 5 + 1];
char* str = mcs_set_str;
for (unsigned i = 0; i < countof(caps->supported_mcs_set.bytes); i++) {
str += sprintf(str, "%s0x%02hhx", i > 0 ? " " : "", caps->supported_mcs_set.bytes[i]);
}
BRCMF_INFO("brcmfmac: mcs_set: %s\n", mcs_set_str);
BRCMF_INFO("brcmfmac: ht_ext_capabilities: %#x\n", caps->ht_ext_capabilities);
BRCMF_INFO("brcmfmac: asel_capabilities: %#x\n", caps->asel_capabilities);
}
static void brcmf_dump_vht_caps(ieee80211_vht_capabilities_t* caps) {
BRCMF_INFO("brcmfmac: vht_capability_info: %#x\n", caps->vht_capability_info);
BRCMF_INFO("brcmfmac: supported_vht_mcs_and_nss_set: %#" PRIx64 "\n",
caps->supported_vht_mcs_and_nss_set);
}
static void brcmf_dump_band_caps(wlanif_band_capabilities_t* band) {
char band_id_str[32];
switch (band->band_id) {
case WLAN_INFO_BAND_2GHZ:
sprintf(band_id_str, "2GHz");
break;
case WLAN_INFO_BAND_5GHZ:
sprintf(band_id_str, "5GHz");
break;
default:
sprintf(band_id_str, "unknown (%d)", band->band_id);
break;
}
BRCMF_INFO("brcmfmac: band_id: %s\n", band_id_str);
ZX_ASSERT(band->num_rates <= WLAN_INFO_BAND_INFO_MAX_RATES);
char rates_str[WLAN_INFO_BAND_INFO_MAX_RATES * 6 + 1];
char* str = rates_str;
for (unsigned i = 0; i < band->num_rates; i++) {
str += sprintf(str, "%s%d", i > 0 ? " " : "", band->rates[i]);
}
BRCMF_INFO("brcmfmac: basic_rates: %s\n", rates_str);
BRCMF_INFO("brcmfmac: base_frequency: %d\n", band->base_frequency);
ZX_ASSERT(band->num_channels <= WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS);
char channels_str[WLAN_INFO_CHANNEL_LIST_MAX_CHANNELS * 4 + 1];
str = channels_str;
for (unsigned i = 0; i < band->num_channels; i++) {
str += sprintf(str, "%s%d", i > 0 ? " " : "", band->channels[i]);
}
BRCMF_INFO("brcmfmac: channels: %s\n", channels_str);
BRCMF_INFO("brcmfmac: ht_supported: %s\n", band->ht_supported ? "true" : "false");
if (band->ht_supported) {
brcmf_dump_ht_caps(&band->ht_caps);
}
BRCMF_INFO("brcmfmac: vht_supported: %s\n", band->vht_supported ? "true" : "false");
if (band->vht_supported) {
brcmf_dump_vht_caps(&band->vht_caps);
}
}
static void brcmf_dump_query_info(wlanif_query_info_t* info) {
BRCMF_INFO("brcmfmac: Device capabilities as reported to wlanif:\n");
BRCMF_INFO("brcmfmac: mac_addr: %02x:%02x:%02x:%02x:%02x:%02x\n", info->mac_addr[0],
info->mac_addr[1], info->mac_addr[2], info->mac_addr[3], info->mac_addr[4],
info->mac_addr[5]);
BRCMF_INFO("brcmfmac: role(s): %s%s%s\n",
info->role & WLAN_INFO_MAC_ROLE_CLIENT ? "client " : "",
info->role & WLAN_INFO_MAC_ROLE_AP ? "ap " : "",
info->role & WLAN_INFO_MAC_ROLE_MESH ? "mesh " : "");
BRCMF_INFO("brcmfmac: feature(s): %s%s\n", info->features & WLANIF_FEATURE_DMA ? "DMA " : "",
info->features & WLANIF_FEATURE_SYNTH ? "SYNTH " : "");
for (unsigned i = 0; i < info->num_bands; i++) {
brcmf_dump_band_caps(&info->bands[i]);
}
}
void brcmf_if_query(net_device* ndev, wlanif_query_info_t* info) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct wireless_dev* wdev = ndev_to_wdev(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_chanspec_list* list = NULL;
uint32_t nmode = 0;
uint32_t vhtmode = 0;
uint32_t rxchain = 0, nchain = 0;
uint32_t bw_cap[2] = {WLC_BW_20MHZ_BIT, WLC_BW_20MHZ_BIT};
uint32_t ldpc_cap = 0;
uint32_t max_ampdu_len_exp = 0;
zx_status_t status;
int32_t fw_err = 0;
BRCMF_DBG(WLANIF, "Query request received from SME.\n");
memset(info, 0, sizeof(*info));
// mac_addr
memcpy(info->mac_addr, ifp->mac_addr, ETH_ALEN);
// role
info->role = wdev->iftype;
// features
info->driver_features |=
WLAN_INFO_DRIVER_FEATURE_DFS | WLAN_INFO_DRIVER_FEATURE_TEMP_DIRECT_SME_CHANNEL;
// bands
uint32_t bandlist[3];
status = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST, &bandlist, sizeof(bandlist), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not obtain band info: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
return;
}
wlanif_band_capabilities_t* band_2ghz = NULL;
wlanif_band_capabilities_t* band_5ghz = NULL;
/* first entry in bandlist is number of bands */
info->num_bands = bandlist[0];
for (unsigned i = 1; i <= info->num_bands && i < countof(bandlist); i++) {
if (i > countof(info->bands)) {
BRCMF_ERR("insufficient space in query response for all bands, truncating\n");
continue;
}
wlanif_band_capabilities_t* band = &info->bands[i - 1];
if (bandlist[i] == WLC_BAND_2G) {
band->band_id = WLAN_INFO_BAND_2GHZ;
band->num_rates = std::min<size_t>(WLAN_INFO_BAND_INFO_MAX_RATES, wl_g_rates_size);
memcpy(band->rates, wl_g_rates, band->num_rates * sizeof(uint16_t));
band->base_frequency = 2407;
band_2ghz = band;
} else if (bandlist[i] == WLC_BAND_5G) {
band->band_id = WLAN_INFO_BAND_5GHZ;
band->num_rates = std::min<size_t>(WLAN_INFO_BAND_INFO_MAX_RATES, wl_a_rates_size);
memcpy(band->rates, wl_a_rates, band->num_rates * sizeof(uint16_t));
band->base_frequency = 5000;
band_5ghz = band;
}
}
// channels
uint8_t* pbuf = static_cast<decltype(pbuf)>(calloc(BRCMF_DCMD_MEDLEN, 1));
if (pbuf == NULL) {
BRCMF_ERR("unable to allocate memory for channel information\n");
return;
}
status = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf, BRCMF_DCMD_MEDLEN, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("get chanspecs error: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
goto fail_pbuf;
}
list = (struct brcmf_chanspec_list*)pbuf;
for (uint32_t i = 0; i < list->count; i++) {
struct brcmu_chan ch;
ch.chspec = list->element[i];
cfg->d11inf.decchspec(&ch);
// Find the appropriate band
wlanif_band_capabilities_t* band = NULL;
if (ch.band == BRCMU_CHAN_BAND_2G) {
band = band_2ghz;
} else if (ch.band == BRCMU_CHAN_BAND_5G) {
band = band_5ghz;
} else {
BRCMF_ERR("unrecognized band for channel %d\n", ch.control_ch_num);
continue;
}
if (band == NULL) {
continue;
}
// Fuchsia's wlan channels are simply the control channel (for now), whereas
// brcm specifies each channel + bw + sb configuration individually. Until we
// offer that level of resolution, just filter out duplicates.
uint32_t j;
for (j = 0; j < band->num_channels; j++) {
if (band->channels[j] == ch.control_ch_num) {
break;
}
}
if (j != band->num_channels) {
continue;
}
if (band->num_channels + 1 >= sizeof(band->channels)) {
BRCMF_ERR("insufficient space for channel %d, skipping\n", ch.control_ch_num);
continue;
}
band->channels[band->num_channels++] = ch.control_ch_num;
}
// Parse HT/VHT information
nmode = 0;
vhtmode = 0;
rxchain = 0;
nchain = 0;
(void)brcmf_fil_iovar_int_get(ifp, "vhtmode", &vhtmode, nullptr);
status = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode, &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("nmode error: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
// VHT requires HT support
vhtmode = 0;
} else {
brcmf_get_bwcap(ifp, bw_cap);
}
BRCMF_DBG(INFO, "nmode=%d, vhtmode=%d, bw_cap=(%d, %d)\n", nmode, vhtmode,
bw_cap[WLAN_INFO_BAND_2GHZ], bw_cap[WLAN_INFO_BAND_5GHZ]);
// LDPC support, applies to both HT and VHT
ldpc_cap = 0;
(void)brcmf_fil_iovar_int_get(ifp, "ldpc_cap", &ldpc_cap, nullptr);
// Max AMPDU length
max_ampdu_len_exp = 0;
status = brcmf_fil_iovar_int_get(ifp, "ampdu_rx_factor", &max_ampdu_len_exp, nullptr);
if (status != ZX_OK) {
BRCMF_ERR("Unable to retrieve value for AMPDU maximum Rx length, using 8191 bytes\n");
}
// Rx chains (and streams)
// The "rxstreams_cap" iovar, when present, indicates the maximum number of Rx streams
// possible, encoded as one bit per stream (i.e., a value of 0x3 indicates 2 streams/chains).
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_IS_4359)) {
// TODO (WLAN-485): The BCM4359 firmware supports rxstreams_cap, but it returns 0x2
// instead of 0x3, which is incorrect.
rxchain = 0x3;
} else {
// According to Broadcom, rxstreams_cap, when available, is an accurate representation of
// the number of rx chains.
status = brcmf_fil_iovar_int_get(ifp, "rxstreams_cap", &rxchain, nullptr);
if (status != ZX_OK) {
// TODO (WLAN-485): The rxstreams_cap iovar isn't yet supported in the BCM4356
// firmware. For now we use a hard-coded value (another option would be to parse the
// nvram contents ourselves (looking for the value associated with the key "rxchain").
rxchain = 0x3;
}
}
for (nchain = 0; rxchain; nchain++) {
rxchain = rxchain & (rxchain - 1);
}
BRCMF_DBG(INFO, "nchain=%d\n", nchain);
if (nmode) {
if (band_2ghz) {
brcmf_update_ht_cap(ifp, band_2ghz, bw_cap, ldpc_cap, nchain, max_ampdu_len_exp);
}
if (band_5ghz) {
brcmf_update_ht_cap(ifp, band_5ghz, bw_cap, ldpc_cap, nchain, max_ampdu_len_exp);
}
}
if (vhtmode && band_5ghz) {
brcmf_update_vht_cap(ifp, band_5ghz, bw_cap, nchain, ldpc_cap, max_ampdu_len_exp);
}
if (BRCMF_IS_ON(INFO)) {
brcmf_dump_query_info(info);
}
fail_pbuf:
free(pbuf);
}
void brcmf_if_stats_query_req(net_device* ndev) {
struct wireless_dev* wdev = ndev_to_wdev(ndev);
wlanif_stats_query_response_t response = {};
struct brcmf_if* ifp = ndev_to_if(ndev);
int32_t fw_err;
BRCMF_DBG(TRACE, "Enter\n");
// TODO(cphoenix): Fill in all the stats fields.
switch (wdev->iftype) {
case WLAN_INFO_MAC_ROLE_CLIENT: {
zx_status_t status;
struct brcmf_pktcnt_le pktcnt;
wlanif_mlme_stats_t mlme_stats = {};
response.stats.mlme_stats_list = &mlme_stats;
response.stats.mlme_stats_count = 1;
mlme_stats.tag = WLANIF_MLME_STATS_TYPE_CLIENT;
wlanif_client_mlme_stats_t* stats = &mlme_stats.stats.client_mlme_stats;
memset(stats, 0, sizeof(*stats));
// Retrieve the stats from firmware and fill in the relevant mlme
// stats
status =
brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_GET_PKTCNTS, &pktcnt, sizeof(pktcnt), &fw_err);
if (status != ZX_OK) {
BRCMF_ERR("could not get pkt cnts: %s, fw err %s\n", zx_status_get_string(status),
brcmf_fil_get_errstr(fw_err));
} else {
BRCMF_DBG(INFO, "Cntrs: rxgood:%d rxbad:%d txgood:%d txbad:%d rxocast:%d\n",
pktcnt.rx_good_pkt, pktcnt.rx_bad_pkt, pktcnt.tx_good_pkt, pktcnt.tx_bad_pkt,
pktcnt.rx_ocast_good_pkt);
mlme_stats.stats.client_mlme_stats.rx_frame.in.count =
pktcnt.rx_good_pkt + pktcnt.rx_bad_pkt + pktcnt.rx_ocast_good_pkt;
mlme_stats.stats.client_mlme_stats.rx_frame.in.name = "Good+Bad+Ocast";
mlme_stats.stats.client_mlme_stats.rx_frame.out.count =
pktcnt.rx_good_pkt + pktcnt.rx_ocast_good_pkt;
mlme_stats.stats.client_mlme_stats.rx_frame.out.name = "Good+Ocast";
mlme_stats.stats.client_mlme_stats.rx_frame.drop.count = pktcnt.rx_bad_pkt;
mlme_stats.stats.client_mlme_stats.rx_frame.drop.name = "Bad";
mlme_stats.stats.client_mlme_stats.tx_frame.in.count =
pktcnt.tx_good_pkt + pktcnt.tx_bad_pkt;
mlme_stats.stats.client_mlme_stats.tx_frame.in.name = "Good+Bad";
mlme_stats.stats.client_mlme_stats.tx_frame.out.count = pktcnt.tx_good_pkt;
mlme_stats.stats.client_mlme_stats.tx_frame.out.name = "Good";
mlme_stats.stats.client_mlme_stats.tx_frame.drop.count = pktcnt.tx_bad_pkt;
mlme_stats.stats.client_mlme_stats.tx_frame.drop.name = "Bad";
}
break;
}
case WLAN_INFO_MAC_ROLE_AP: {
response.stats.mlme_stats_list = nullptr;
response.stats.mlme_stats_count = 0;
break;
}
default:
response.stats.mlme_stats_list = nullptr;
response.stats.mlme_stats_count = 0;
break;
}
wlanif_impl_ifc_stats_query_resp(&ndev->if_proto, &response);
}
void brcmf_if_data_queue_tx(net_device* ndev, uint32_t options, ethernet_netbuf_t* netbuf,
ethernet_impl_queue_tx_callback completion_cb, void* cookie) {
auto b = std::make_unique<wlan::brcmfmac::EthernetNetbuf>(netbuf, completion_cb, cookie);
brcmf_netdev_start_xmit(ndev, std::move(b));
}
zx_status_t brcmf_if_set_multicast_promisc(net_device* ndev, bool enable) {
ndev->multicast_promisc = enable;
brcmf_netdev_set_multicast_list(ndev);
return ZX_OK;
}
void brcmf_if_start_capture_frames(net_device* ndev, const wlanif_start_capture_frames_req_t* req,
wlanif_start_capture_frames_resp_t* resp) {
BRCMF_ERR("start_capture_frames not supported\n");
resp->status = ZX_ERR_NOT_SUPPORTED;
resp->supported_mgmt_frames = 0;
}
void brcmf_if_stop_capture_frames(net_device* ndev) {
BRCMF_ERR("stop_capture_frames not supported\n");
}
zx_status_t brcmf_alloc_vif(struct brcmf_cfg80211_info* cfg, uint16_t type,
struct brcmf_cfg80211_vif** vif_out) {
struct brcmf_cfg80211_vif* vif_walk;
struct brcmf_cfg80211_vif* vif;
bool mbss;
BRCMF_DBG(TRACE, "allocating virtual interface (size=%zu)\n", sizeof(*vif));
vif = static_cast<decltype(vif)>(calloc(1, sizeof(*vif)));
if (!vif) {
if (vif_out) {
*vif_out = NULL;
}
return ZX_ERR_NO_MEMORY;
}
vif->wdev.iftype = type;
vif->saved_ie.assoc_req_ie_len = 0;
brcmf_init_prof(&vif->profile);
if (type == WLAN_INFO_MAC_ROLE_AP) {
mbss = false;
list_for_every_entry (&cfg->vif_list, vif_walk, struct brcmf_cfg80211_vif, list) {
if (vif_walk->wdev.iftype == WLAN_INFO_MAC_ROLE_AP) {
mbss = true;
break;
}
}
vif->mbss = mbss;
}
list_add_tail(&cfg->vif_list, &vif->list);
if (vif_out) {
*vif_out = vif;
}
return ZX_OK;
}
void brcmf_free_vif(struct brcmf_cfg80211_vif* vif) {
list_delete(&vif->list);
free(vif);
}
void brcmf_free_net_device_vif(struct net_device* ndev) {
struct brcmf_cfg80211_vif* vif = ndev_to_vif(ndev);
if (vif) {
brcmf_free_vif(vif);
}
}
// TODO(cphoenix): Rename and/or refactor this function - it has way too many side effects for a
// function that looks like it just returns info about state.
static bool brcmf_is_linkup(struct brcmf_cfg80211_vif* vif, const struct brcmf_event_msg* e) {
uint32_t event = e->event_code;
uint32_t status = e->status;
// BRCMF_DBG(TEMP, "Enter, event %d, status %d, sme_state 0x%lx\n", event, status,
// atomic_load(&vif->sme_state));
if (vif->profile.use_fwsup == BRCMF_PROFILE_FWSUP_PSK && event == BRCMF_E_PSK_SUP &&
status == BRCMF_E_STATUS_FWSUP_COMPLETED) {
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state);
}
if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) {
BRCMF_DBG(CONN, "Processing set ssid\n");
memcpy(vif->profile.bssid, e->addr, ETH_ALEN);
if (vif->profile.use_fwsup != BRCMF_PROFILE_FWSUP_PSK) {
// BRCMF_DBG(TEMP, "Ret true\n");
return true;
}
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state);
}
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state) &&
brcmf_test_bit_in_array(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state)) {
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_EAP_SUCCESS, &vif->sme_state);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_ASSOC_SUCCESS, &vif->sme_state);
// BRCMF_DBG(TEMP, "Ret true\n");
return true;
}
// BRCMF_DBG(TEMP, "Ret false\n");
return false;
}
static bool brcmf_is_linkdown(const net_device* ndev, const struct brcmf_event_msg* e) {
uint32_t event = e->event_code;
uint16_t flags = e->flags;
if ((event == BRCMF_E_DEAUTH) || (event == BRCMF_E_DEAUTH_IND) ||
(event == BRCMF_E_DISASSOC_IND) ||
((event == BRCMF_E_LINK) && (!(flags & BRCMF_EVENT_MSG_LINK)))) {
BRCMF_DBG(CONN, "Processing link down\n");
// Adding this log for debugging disconnect issues.
// TODO(karthikrish) : Move this to CONN level for production code
BRCMF_INFO("Link Down Event: %d flg: 0x%x reas: %d sts: %d rssi: %d snr: %d\n", event, flags,
e->reason, e->status, ndev->last_known_rssi_dbm, ndev->last_known_snr_db);
return true;
}
return false;
}
static bool brcmf_is_nonetwork(struct brcmf_cfg80211_info* cfg, const struct brcmf_event_msg* e) {
uint32_t event = e->event_code;
uint32_t status = e->status;
if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) {
BRCMF_DBG(CONN, "Processing Link %s & no network found\n",
e->flags & BRCMF_EVENT_MSG_LINK ? "up" : "down");
return true;
}
if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) {
BRCMF_DBG(CONN, "Processing connecting & no network found: %d\n", status);
return true;
}
if (event == BRCMF_E_PSK_SUP && status != BRCMF_E_STATUS_FWSUP_COMPLETED) {
BRCMF_DBG(CONN, "Processing failed supplicant state: %u\n", status);
return true;
}
return false;
}
static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_info* cfg) {
struct brcmf_cfg80211_connect_info* conn_info = cfg_to_conn(cfg);
free(conn_info->req_ie);
conn_info->req_ie = NULL;
conn_info->req_ie_len = 0;
free(conn_info->resp_ie);
conn_info->resp_ie = NULL;
conn_info->resp_ie_len = 0;
}
static zx_status_t brcmf_get_assoc_ies(struct brcmf_cfg80211_info* cfg, struct brcmf_if* ifp) {
struct brcmf_cfg80211_assoc_ielen_le* assoc_info;
struct brcmf_cfg80211_connect_info* conn_info = cfg_to_conn(cfg);
uint32_t req_len;
uint32_t resp_len;
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
brcmf_clear_assoc_ies(cfg);
err = brcmf_fil_iovar_data_get(ifp, "assoc_info", cfg->extra_buf, WL_ASSOC_INFO_MAX, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("could not get assoc info: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
assoc_info = (struct brcmf_cfg80211_assoc_ielen_le*)cfg->extra_buf;
req_len = assoc_info->req_len;
resp_len = assoc_info->resp_len;
if (req_len) {
err =
brcmf_fil_iovar_data_get(ifp, "assoc_req_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("could not get assoc req: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
conn_info->req_ie_len = req_len;
conn_info->req_ie = static_cast<decltype(conn_info->req_ie)>(
brcmu_alloc_and_copy(cfg->extra_buf, conn_info->req_ie_len));
} else {
conn_info->req_ie_len = 0;
conn_info->req_ie = NULL;
}
if (resp_len) {
err =
brcmf_fil_iovar_data_get(ifp, "assoc_resp_ies", cfg->extra_buf, WL_ASSOC_INFO_MAX, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("could not get assoc resp: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
return err;
}
conn_info->resp_ie_len = resp_len;
conn_info->resp_ie = static_cast<decltype(conn_info->resp_ie)>(
brcmu_alloc_and_copy(cfg->extra_buf, conn_info->resp_ie_len));
} else {
conn_info->resp_ie_len = 0;
conn_info->resp_ie = NULL;
}
BRCMF_DBG(CONN, "req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len);
return err;
}
static zx_status_t brcmf_bss_connect_done(struct brcmf_cfg80211_info* cfg, struct net_device* ndev,
const struct brcmf_event_msg* e, bool completed) {
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(TRACE, "Enter\n");
if (brcmf_test_and_clear_bit_in_array(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state)) {
if (completed) {
brcmf_get_assoc_ies(cfg, ifp);
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state);
// Start the signal report timer
cfg->signal_report_timer->Start(BRCMF_SIGNAL_REPORT_TIMER_DUR_MS);
// Indicate the rssi soon after connection
cfg80211_signal_ind(ndev);
}
// Connected bssid is in profile->bssid.
// connection IEs are in conn_info->req_ie, req_ie_len, resp_ie, resp_ie_len.
BRCMF_DBG(CONN, "Report connect result - connection %s\n",
completed ? "succeeded" : "timed out");
brcmf_return_assoc_result(
ndev, completed ? WLAN_ASSOC_RESULT_SUCCESS : WLAN_ASSOC_RESULT_REFUSED_REASON_UNSPECIFIED);
}
BRCMF_DBG(TRACE, "Exit\n");
return ZX_OK;
}
static zx_status_t brcmf_notify_connect_status_ap(struct brcmf_cfg80211_info* cfg,
struct net_device* ndev,
const struct brcmf_event_msg* e, void* data) {
uint32_t event = e->event_code;
uint32_t reason = e->reason;
struct brcmf_if* ifp = ndev_to_if(ndev);
BRCMF_DBG(CONN, "event %s (%u), reason %d\n",
brcmf_fweh_event_name(static_cast<brcmf_fweh_event_code>(event)), event, reason);
if (event == BRCMF_E_LINK && reason == BRCMF_E_REASON_LINK_BSSCFG_DIS &&
ndev != cfg_to_ndev(cfg)) {
BRCMF_DBG(CONN, "AP mode link down\n");
sync_completion_signal(&cfg->vif_disabled);
return ZX_OK;
}
// Client has authenticated
if ((event == BRCMF_E_AUTH_IND) && (reason == BRCMF_E_STATUS_SUCCESS)) {
wlanif_auth_ind_t auth_ind_params;
memset(&auth_ind_params, 0, sizeof(auth_ind_params));
memcpy(auth_ind_params.peer_sta_address, e->addr, ETH_ALEN);
// We always authenticate as an open system for WPA
auth_ind_params.auth_type = WLAN_AUTH_TYPE_OPEN_SYSTEM;
BRCMF_DBG(
WLANIF, "Sending auth indication to SME. address: " MAC_FMT_STR ", type: %s\n",
MAC_FMT_ARGS(auth_ind_params.peer_sta_address),
auth_ind_params.auth_type == WLAN_AUTH_TYPE_OPEN_SYSTEM
? "open"
: auth_ind_params.auth_type == WLAN_AUTH_TYPE_SHARED_KEY
? "shared key"
: auth_ind_params.auth_type == WLAN_AUTH_TYPE_FAST_BSS_TRANSITION
? "fast bss transition"
: auth_ind_params.auth_type == WLAN_AUTH_TYPE_SAE ? "SAE" : "unknown");
wlanif_impl_ifc_auth_ind(&ndev->if_proto, &auth_ind_params);
} else if (((event == BRCMF_E_ASSOC_IND) || (event == BRCMF_E_REASSOC_IND)) &&
(reason == BRCMF_E_STATUS_SUCCESS)) {
if (data == NULL || e->datalen == 0) {
BRCMF_ERR("Received ASSOC_IND with no IEs\n");
return ZX_ERR_INVALID_ARGS;
}
const struct brcmf_tlv* ssid_ie = brcmf_parse_tlvs(data, e->datalen, WLAN_IE_TYPE_SSID);
if (ssid_ie == NULL) {
BRCMF_ERR("Received ASSOC_IND with no SSID IE\n");
return ZX_ERR_INVALID_ARGS;
}
if (ssid_ie->len > WLAN_MAX_SSID_LEN) {
BRCMF_ERR("Received ASSOC_IND with invalid SSID IE\n");
return ZX_ERR_INVALID_ARGS;
}
const struct brcmf_tlv* rsn_ie = brcmf_parse_tlvs(data, e->datalen, WLAN_IE_TYPE_RSNE);
if (rsn_ie && rsn_ie->len > WLAN_RSNE_MAX_LEN) {
BRCMF_ERR("Received ASSOC_IND with invalid RSN IE\n");
return ZX_ERR_INVALID_ARGS;
}
wlanif_assoc_ind_t assoc_ind_params;
memset(&assoc_ind_params, 0, sizeof(assoc_ind_params));
memcpy(assoc_ind_params.peer_sta_address, e->addr, ETH_ALEN);
// Unfortunately, we have to ask the firmware to provide the associated station's
// listen interval.
struct brcmf_sta_info_le sta_info;
uint8_t mac[ETH_ALEN];
memcpy(mac, e->addr, ETH_ALEN);
brcmf_cfg80211_get_station(ndev, mac, &sta_info);
// convert from ms to beacon periods
assoc_ind_params.listen_interval =
sta_info.listen_interval_inms / ifp->vif->profile.beacon_period;
// Extract the SSID from the IEs
assoc_ind_params.ssid.len = ssid_ie->len;
memcpy(assoc_ind_params.ssid.data, ssid_ie->data, ssid_ie->len);
// Extract the RSN information from the IEs
if (rsn_ie != NULL) {
assoc_ind_params.rsne_len = rsn_ie->len + TLV_HDR_LEN;
memcpy(assoc_ind_params.rsne, rsn_ie, assoc_ind_params.rsne_len);
}
BRCMF_DBG(WLANIF, "Sending assoc indication to SME. address: " MAC_FMT_STR "\n",
MAC_FMT_ARGS(assoc_ind_params.peer_sta_address));
wlanif_impl_ifc_assoc_ind(&ndev->if_proto, &assoc_ind_params);
// Client has disassociated
} else if (event == BRCMF_E_DISASSOC_IND) {
wlanif_disassoc_indication_t disassoc_ind_params;
memset(&disassoc_ind_params, 0, sizeof(disassoc_ind_params));
memcpy(disassoc_ind_params.peer_sta_address, e->addr, ETH_ALEN);
disassoc_ind_params.reason_code = e->reason;
BRCMF_DBG(WLANIF,
"Sending disassoc indication to SME. address: " MAC_FMT_STR ", reason: %" PRIu16 "\n",
MAC_FMT_ARGS(disassoc_ind_params.peer_sta_address), disassoc_ind_params.reason_code);
wlanif_impl_ifc_disassoc_ind(&ndev->if_proto, &disassoc_ind_params);
// Client has deauthenticated
} else if ((event == BRCMF_E_DEAUTH_IND) || (event == BRCMF_E_DEAUTH)) {
wlanif_deauth_indication_t deauth_ind_params;
memset(&deauth_ind_params, 0, sizeof(deauth_ind_params));
memcpy(deauth_ind_params.peer_sta_address, e->addr, ETH_ALEN);
deauth_ind_params.reason_code = e->reason;
BRCMF_DBG(WLANIF,
"Sending deauth indication to SME. address: " MAC_FMT_STR
", type: %s reason: %" PRIu16 "\n",
MAC_FMT_ARGS(deauth_ind_params.peer_sta_address),
(event == BRCMF_E_DEAUTH_IND) ? "DEAUTH_IND" : "DEAUTH",
deauth_ind_params.reason_code);
wlanif_impl_ifc_deauth_ind(&ndev->if_proto, &deauth_ind_params);
}
return ZX_OK;
}
static zx_status_t brcmf_notify_connect_status(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct net_device* ndev = ifp->ndev;
zx_status_t err = ZX_OK;
BRCMF_DBG(TRACE, "Enter\n");
BRCMF_DBG(CONN, "IF: %d Event code %d, status %d reason %d auth %d flags 0x%x\n", ifp->ifidx,
e->event_code, e->status, e->reason, e->auth_type, e->flags);
if ((e->event_code == BRCMF_E_DEAUTH) || (e->event_code == BRCMF_E_DEAUTH_IND) ||
(e->event_code == BRCMF_E_DISASSOC_IND) || ((e->event_code == BRCMF_E_LINK) && (!e->flags))) {
brcmf_proto_delete_peer(ifp->drvr, ifp->ifidx, (uint8_t*)e->addr);
}
if (brcmf_is_apmode(ifp->vif)) {
err = brcmf_notify_connect_status_ap(cfg, ndev, e, data);
} else if (brcmf_is_linkup(ifp->vif, e)) {
BRCMF_DBG(CONN, "Linkup\n");
brcmf_bss_connect_done(cfg, ndev, e, true);
brcmf_net_setcarrier(ifp, true);
} else if (brcmf_is_linkdown(ndev, e)) {
BRCMF_DBG(CONN, "Linkdown\n");
brcmf_bss_connect_done(cfg, ndev, e, false);
brcmf_disconnect_done(cfg);
brcmf_link_down(ifp->vif, brcmf_map_fw_linkdown_reason(e));
brcmf_init_prof(ndev_to_prof(ndev));
if (ndev != cfg_to_ndev(cfg)) {
sync_completion_signal(&cfg->vif_disabled);
}
brcmf_net_setcarrier(ifp, false);
} else if (brcmf_is_nonetwork(cfg, e)) {
BRCMF_DBG(CONN, "No network\n");
brcmf_bss_connect_done(cfg, ndev, e, false);
brcmf_disconnect_done(cfg);
}
BRCMF_DBG(TRACE, "Exit\n");
return err;
}
static zx_status_t brcmf_notify_roaming_status(struct brcmf_if* ifp,
const struct brcmf_event_msg* e, void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
uint32_t event = e->event_code;
uint32_t status = e->status;
if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) {
if (brcmf_test_bit_in_array(BRCMF_VIF_STATUS_CONNECTED, &ifp->vif->sme_state)) {
BRCMF_ERR("Received roaming notification - unsupported\n");
} else {
brcmf_bss_connect_done(cfg, ifp->ndev, e, true);
brcmf_net_setcarrier(ifp, true);
}
}
return ZX_OK;
}
static zx_status_t brcmf_notify_mic_status(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
uint16_t flags = e->flags;
enum nl80211_key_type key_type;
if (flags & BRCMF_EVENT_MSG_GROUP) {
key_type = NL80211_KEYTYPE_GROUP;
} else {
key_type = NL80211_KEYTYPE_PAIRWISE;
}
cfg80211_michael_mic_failure(ifp->ndev, (uint8_t*)&e->addr, key_type, -1, NULL);
return ZX_OK;
}
static zx_status_t brcmf_notify_vif_event(struct brcmf_if* ifp, const struct brcmf_event_msg* e,
void* data) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
struct brcmf_if_event* ifevent = (struct brcmf_if_event*)data;
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
struct brcmf_cfg80211_vif* vif;
BRCMF_DBG(TRACE, "Enter: action %u flags %u ifidx %u bsscfgidx %u\n", ifevent->action,
ifevent->flags, ifevent->ifidx, ifevent->bsscfgidx);
mtx_lock(&event->vif_event_lock);
event->action = ifevent->action;
vif = event->vif;
switch (ifevent->action) {
case BRCMF_E_IF_ADD:
/* waiting process may have timed out */
if (!cfg->vif_event.vif) {
mtx_unlock(&event->vif_event_lock);
return ZX_ERR_SHOULD_WAIT;
}
ifp->vif = vif;
vif->ifp = ifp;
if (ifp->ndev) {
vif->wdev.netdev = ifp->ndev;
}
mtx_unlock(&event->vif_event_lock);
if (event->action == cfg->vif_event_pending_action) {
sync_completion_signal(&event->vif_event_wait);
}
return ZX_OK;
case BRCMF_E_IF_DEL:
mtx_unlock(&event->vif_event_lock);
/* event may not be upon user request */
if (brcmf_cfg80211_vif_event_armed(cfg) && event->action == cfg->vif_event_pending_action) {
sync_completion_signal(&event->vif_event_wait);
}
return ZX_OK;
case BRCMF_E_IF_CHANGE:
mtx_unlock(&event->vif_event_lock);
if (event->action == cfg->vif_event_pending_action) {
sync_completion_signal(&event->vif_event_wait);
}
return ZX_OK;
default:
mtx_unlock(&event->vif_event_lock);
break;
}
return ZX_ERR_INVALID_ARGS;
}
static void brcmf_init_conf(struct brcmf_cfg80211_conf* conf) {
conf->frag_threshold = (uint32_t)-1;
conf->rts_threshold = (uint32_t)-1;
conf->retry_short = (uint32_t)-1;
conf->retry_long = (uint32_t)-1;
}
static void brcmf_register_event_handlers(struct brcmf_cfg80211_info* cfg) {
brcmf_fweh_register(cfg->pub, BRCMF_E_LINK, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_AUTH_IND, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH_IND, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_DEAUTH, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_DISASSOC_IND, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_ASSOC_IND, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_REASSOC_IND, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_ROAM, brcmf_notify_roaming_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_MIC_ERROR, brcmf_notify_mic_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_SET_SSID, brcmf_notify_connect_status);
brcmf_fweh_register(cfg->pub, BRCMF_E_PFN_NET_FOUND, brcmf_notify_sched_scan_results);
brcmf_fweh_register(cfg->pub, BRCMF_E_IF, brcmf_notify_vif_event);
brcmf_fweh_register(cfg->pub, BRCMF_E_PSK_SUP, brcmf_notify_connect_status);
}
static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_info* cfg) {
free(cfg->conf);
cfg->conf = NULL;
free(cfg->extra_buf);
cfg->extra_buf = NULL;
free(cfg->wowl.nd);
cfg->wowl.nd = NULL;
free(cfg->wowl.nd_info);
cfg->wowl.nd_info = NULL;
delete cfg->disconnect_timer;
delete cfg->escan_timer;
delete cfg->signal_report_timer;
}
static zx_status_t brcmf_init_priv_mem(struct brcmf_cfg80211_info* cfg) {
cfg->conf = static_cast<decltype(cfg->conf)>(calloc(1, sizeof(*cfg->conf)));
if (!cfg->conf) {
goto init_priv_mem_out;
}
cfg->extra_buf = static_cast<decltype(cfg->extra_buf)>(calloc(1, WL_EXTRA_BUF_MAX));
if (!cfg->extra_buf) {
goto init_priv_mem_out;
}
cfg->wowl.nd =
static_cast<decltype(cfg->wowl.nd)>(calloc(1, sizeof(*cfg->wowl.nd) + sizeof(uint32_t)));
if (!cfg->wowl.nd) {
goto init_priv_mem_out;
}
cfg->wowl.nd_info = static_cast<decltype(cfg->wowl.nd_info)>(
calloc(1, sizeof(*cfg->wowl.nd_info) + sizeof(struct cfg80211_wowlan_nd_match*)));
if (!cfg->wowl.nd_info) {
goto init_priv_mem_out;
}
return ZX_OK;
init_priv_mem_out:
brcmf_deinit_priv_mem(cfg);
return ZX_ERR_NO_MEMORY;
}
static zx_status_t wl_init_priv(struct brcmf_cfg80211_info* cfg) {
zx_status_t err = ZX_OK;
cfg->scan_request = NULL;
cfg->pwr_save = false; // FIXME #37793: should be set per-platform
cfg->dongle_up = false; /* dongle is not up yet */
err = brcmf_init_priv_mem(cfg);
if (err != ZX_OK) {
return err;
}
brcmf_register_event_handlers(cfg);
mtx_init(&cfg->usr_sync, mtx_plain);
brcmf_init_escan(cfg);
brcmf_init_conf(cfg->conf);
// Initialize the disconnect timer
cfg->disconnect_timer =
new Timer(cfg->pub->dispatcher, std::bind(brcmf_disconnect_timeout, cfg), false);
cfg->disconnect_timeout_work = WorkItem(brcmf_disconnect_timeout_worker);
// Initialize the signal report timer
cfg->signal_report_timer =
new Timer(cfg->pub->dispatcher, std::bind(brcmf_signal_report_timeout, cfg), true);
cfg->signal_report_work = WorkItem(brcmf_signal_report_worker);
cfg->vif_disabled = {};
return err;
}
static void wl_deinit_priv(struct brcmf_cfg80211_info* cfg) {
cfg->dongle_up = false; /* dongle down */
brcmf_abort_scanning(cfg);
brcmf_deinit_priv_mem(cfg);
}
static void init_vif_event(struct brcmf_cfg80211_vif_event* event) {
event->vif_event_wait = {};
mtx_init(&event->vif_event_lock, mtx_plain);
}
static zx_status_t brcmf_dongle_roam(struct brcmf_if* ifp) {
zx_status_t err;
int32_t fw_err = 0;
uint32_t bcn_timeout;
uint32_t roamtrigger[2];
uint32_t roam_delta[2];
if (brcmf_feat_is_quirk_enabled(ifp, BRCMF_FEAT_QUIRK_IS_4359)) {
return ZX_OK; // TODO(WLAN-733) Find out why, and document.
}
/* Configure beacon timeout value based upon roaming setting */
if (ifp->drvr->settings->roamoff) {
bcn_timeout = BRCMF_DEFAULT_BCN_TIMEOUT_ROAM_OFF;
} else {
bcn_timeout = BRCMF_DEFAULT_BCN_TIMEOUT_ROAM_ON;
}
err = brcmf_fil_iovar_int_set(ifp, "bcn_timeout", bcn_timeout, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("bcn_timeout error: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
/* Enable/Disable built-in roaming to allow supplicant to take care of
* roaming.
*/
BRCMF_DBG(INFO, "Internal Roaming = %s\n", ifp->drvr->settings->roamoff ? "Off" : "On");
err = brcmf_fil_iovar_int_set(ifp, "roam_off", ifp->drvr->settings->roamoff, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("roam_off error: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
roamtrigger[0] = WL_ROAM_TRIGGER_LEVEL;
roamtrigger[1] = BRCM_BAND_ALL;
err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_TRIGGER, roamtrigger, sizeof(roamtrigger),
&fw_err);
if (err != ZX_OK) {
BRCMF_ERR("WLC_SET_ROAM_TRIGGER error: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
roam_delta[0] = WL_ROAM_DELTA;
roam_delta[1] = BRCM_BAND_ALL;
err =
brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_ROAM_DELTA, roam_delta, sizeof(roam_delta), &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("WLC_SET_ROAM_DELTA error: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto roam_setup_done;
}
roam_setup_done:
return err;
}
static zx_status_t brcmf_dongle_scantime(struct brcmf_if* ifp) {
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_CHANNEL_TIME, BRCMF_SCAN_CHANNEL_TIME, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Scan assoc time error: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto dongle_scantime_out;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_UNASSOC_TIME, BRCMF_SCAN_UNASSOC_TIME, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Scan unassoc time error %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto dongle_scantime_out;
}
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_SCAN_PASSIVE_TIME, BRCMF_SCAN_PASSIVE_TIME, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Scan passive time error %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto dongle_scantime_out;
}
dongle_scantime_out:
return err;
}
static zx_status_t brcmf_enable_bw40_2g(struct brcmf_cfg80211_info* cfg) {
struct brcmf_if* ifp = cfg_to_if(cfg);
struct brcmf_fil_bwcap_le band_bwcap;
uint32_t val;
zx_status_t err;
/* verify support for bw_cap command */
val = WLC_BAND_5G;
err = brcmf_fil_iovar_int_get(ifp, "bw_cap", &val, nullptr);
if (err == ZX_OK) {
/* only set 2G bandwidth using bw_cap command */
band_bwcap.band = WLC_BAND_2G;
band_bwcap.bw_cap = WLC_BW_CAP_40MHZ;
err = brcmf_fil_iovar_data_set(ifp, "bw_cap", &band_bwcap, sizeof(band_bwcap), nullptr);
} else {
BRCMF_DBG(INFO, "fallback to mimo_bw_cap\n");
val = WLC_N_BW_40ALL;
err = brcmf_fil_iovar_int_set(ifp, "mimo_bw_cap", val, nullptr);
}
return err;
}
static zx_status_t brcmf_config_dongle(struct brcmf_cfg80211_info* cfg) {
struct net_device* ndev;
struct wireless_dev* wdev;
struct brcmf_if* ifp;
int32_t power_mode;
zx_status_t err = ZX_OK;
BRCMF_DBG(TEMP, "Enter\n");
if (cfg->dongle_up) {
BRCMF_DBG(TEMP, "Early done\n");
return err;
}
ndev = cfg_to_ndev(cfg);
wdev = ndev_to_wdev(ndev);
ifp = ndev_to_if(ndev);
/* make sure RF is ready for work */
brcmf_fil_cmd_int_set(ifp, BRCMF_C_UP, 0, nullptr);
brcmf_dongle_scantime(ifp);
power_mode = cfg->pwr_save ? PM_FAST : PM_OFF;
err = brcmf_fil_cmd_int_set(ifp, BRCMF_C_SET_PM, power_mode, nullptr);
if (err != ZX_OK) {
goto default_conf_out;
}
BRCMF_DBG(INFO, "power save set to %s\n", (power_mode ? "enabled" : "disabled"));
err = brcmf_dongle_roam(ifp);
if (err != ZX_OK) {
goto default_conf_out;
}
err = brcmf_cfg80211_change_iface(cfg, ndev, wdev->iftype, NULL);
if (err != ZX_OK) {
goto default_conf_out;
}
brcmf_configure_arp_nd_offload(ifp, true);
cfg->dongle_up = true;
default_conf_out:
BRCMF_DBG(TEMP, "Returning %d\n", err);
return err;
}
static zx_status_t __brcmf_cfg80211_up(struct brcmf_if* ifp) {
brcmf_set_bit_in_array(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);
return brcmf_config_dongle(ifp->drvr->config);
}
static zx_status_t __brcmf_cfg80211_down(struct brcmf_if* ifp) {
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
/*
* While going down, if associated with AP disassociate
* from AP to save power
*/
if (check_vif_up(ifp->vif)) {
brcmf_link_down(ifp->vif, WLAN_DEAUTH_REASON_UNSPECIFIED);
/* Make sure WPA_Supplicant receives all the event
generated due to DISASSOC call to the fw to keep
the state fw and WPA_Supplicant state consistent
*/
msleep(500);
}
brcmf_abort_scanning(cfg);
brcmf_clear_bit_in_array(BRCMF_VIF_STATUS_READY, &ifp->vif->sme_state);
return ZX_OK;
}
zx_status_t brcmf_cfg80211_up(struct net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err = ZX_OK;
mtx_lock(&cfg->usr_sync);
err = __brcmf_cfg80211_up(ifp);
mtx_unlock(&cfg->usr_sync);
return err;
}
zx_status_t brcmf_cfg80211_down(struct net_device* ndev) {
struct brcmf_if* ifp = ndev_to_if(ndev);
struct brcmf_cfg80211_info* cfg = ifp->drvr->config;
zx_status_t err = ZX_OK;
mtx_lock(&cfg->usr_sync);
err = __brcmf_cfg80211_down(ifp);
mtx_unlock(&cfg->usr_sync);
return err;
}
uint16_t brcmf_cfg80211_get_iftype(struct brcmf_if* ifp) {
struct wireless_dev* wdev = &ifp->vif->wdev;
return wdev->iftype;
}
bool brcmf_get_vif_state_any(struct brcmf_cfg80211_info* cfg, unsigned long state) {
struct brcmf_cfg80211_vif* vif;
list_for_every_entry (&cfg->vif_list, vif, struct brcmf_cfg80211_vif, list) {
if (brcmf_test_bit_in_array(state, &vif->sme_state)) {
return true;
}
}
return false;
}
void brcmf_cfg80211_arm_vif_event(struct brcmf_cfg80211_info* cfg, struct brcmf_cfg80211_vif* vif,
uint8_t pending_action) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
mtx_lock(&event->vif_event_lock);
event->vif = vif;
event->action = 0;
sync_completion_reset(&event->vif_event_wait);
cfg->vif_event_pending_action = pending_action;
mtx_unlock(&event->vif_event_lock);
}
void brcmf_cfg80211_disarm_vif_event(struct brcmf_cfg80211_info* cfg) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
mtx_lock(&event->vif_event_lock);
event->vif = NULL;
event->action = 0;
mtx_unlock(&event->vif_event_lock);
}
bool brcmf_cfg80211_vif_event_armed(struct brcmf_cfg80211_info* cfg) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
bool armed;
mtx_lock(&event->vif_event_lock);
armed = event->vif != NULL;
mtx_unlock(&event->vif_event_lock);
return armed;
}
zx_status_t brcmf_cfg80211_wait_vif_event(struct brcmf_cfg80211_info* cfg, zx_duration_t timeout) {
struct brcmf_cfg80211_vif_event* event = &cfg->vif_event;
return sync_completion_wait(&event->vif_event_wait, timeout);
}
struct brcmf_cfg80211_info* brcmf_cfg80211_attach(struct brcmf_pub* drvr) {
struct net_device* ndev = brcmf_get_ifp(drvr, 0)->ndev;
struct brcmf_cfg80211_info* cfg;
struct brcmf_cfg80211_vif* vif;
struct brcmf_if* ifp;
zx_status_t err = ZX_OK;
int32_t fw_err = 0;
int32_t io_type;
BRCMF_DBG(TEMP, "Enter\n");
if (!ndev) {
BRCMF_ERR("ndev is invalid\n");
return NULL;
}
ifp = ndev_to_if(ndev);
cfg = static_cast<decltype(cfg)>(calloc(1, sizeof(struct brcmf_cfg80211_info)));
if (cfg == NULL) {
goto cfg80211_info_out;
}
cfg->pub = drvr;
init_vif_event(&cfg->vif_event);
list_initialize(&cfg->vif_list);
err = brcmf_alloc_vif(cfg, WLAN_INFO_MAC_ROLE_CLIENT, &vif);
if (err != ZX_OK) {
goto cfg80211_info_out;
}
vif->ifp = ifp;
vif->wdev.netdev = ndev;
err = wl_init_priv(cfg);
if (err != ZX_OK) {
BRCMF_ERR("Failed to init iwm_priv (%d)\n", err);
brcmf_free_vif(vif);
goto cfg80211_info_out;
}
ifp->vif = vif;
/* determine d11 io type before wiphy setup */
err = brcmf_fil_cmd_int_get(ifp, BRCMF_C_GET_VERSION, (uint32_t*)&io_type, &fw_err);
if (err != ZX_OK) {
BRCMF_ERR("Failed to get D11 version: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
goto priv_out;
}
cfg->d11inf.io_type = (uint8_t)io_type;
brcmu_d11_attach(&cfg->d11inf);
// NOTE: linux first verifies that 40 MHz operation is enabled in 2.4 GHz channels.
err = brcmf_enable_bw40_2g(cfg);
if (err == ZX_OK) {
err = brcmf_fil_iovar_int_set(ifp, "obss_coex", BRCMF_OBSS_COEX_AUTO, nullptr);
}
/* p2p might require that "if-events" get processed by fweh. So
* activate the already registered event handlers now and activate
* the rest when initialization has completed. drvr->config needs to
* be assigned before activating events.
*/
drvr->config = cfg;
err = brcmf_fweh_activate_events(ifp);
if (err != ZX_OK) {
BRCMF_ERR("FWEH activation failed (%d)\n", err);
goto unreg_out;
}
err = brcmf_btcoex_attach(cfg);
if (err != ZX_OK) {
BRCMF_ERR("BT-coex initialisation failed (%d)\n", err);
goto unreg_out;
}
err = brcmf_pno_attach(cfg);
if (err != ZX_OK) {
BRCMF_ERR("PNO initialisation failed (%d)\n", err);
brcmf_btcoex_detach(cfg);
goto unreg_out;
}
if (brcmf_feat_is_enabled(ifp, BRCMF_FEAT_TDLS)) {
err = brcmf_fil_iovar_int_set(ifp, "tdls_enable", 1, &fw_err);
if (err != ZX_OK) {
BRCMF_DBG(INFO, "TDLS not enabled: %s, fw err %s\n", zx_status_get_string(err),
brcmf_fil_get_errstr(fw_err));
} else {
brcmf_fweh_register(cfg->pub, BRCMF_E_TDLS_PEER_EVENT, brcmf_notify_tdls_peer_event);
}
}
/* (re-) activate FWEH event handling */
err = brcmf_fweh_activate_events(ifp);
if (err != ZX_OK) {
BRCMF_ERR("FWEH activation failed (%d)\n", err);
goto detach;
}
BRCMF_DBG(TEMP, "Exit\n");
return cfg;
detach:
brcmf_pno_detach(cfg);
brcmf_btcoex_detach(cfg);
unreg_out:
BRCMF_DBG(TEMP, "* * Would have called wiphy_unregister(cfg->wiphy);");
priv_out:
wl_deinit_priv(cfg);
brcmf_free_vif(vif);
ifp->vif = NULL;
cfg80211_info_out:
free(cfg);
return NULL;
}
void brcmf_cfg80211_detach(struct brcmf_cfg80211_info* cfg) {
if (!cfg) {
return;
}
brcmf_pno_detach(cfg);
brcmf_btcoex_detach(cfg);
BRCMF_DBG(TEMP, "* * Would have called wiphy_unregister(cfg->wiphy);");
wl_deinit_priv(cfg);
}