blob: 87e2ebdf45c17302d8d952ea8b7b0e1b4e616657 [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
#pragma once
#include <lib/fidl/internal.h>
#include <lib/fidl/llcpp/array.h>
#include <lib/fidl/llcpp/buffer_allocator.h>
#include <lib/fidl/llcpp/buffer_then_heap_allocator.h>
#include <lib/fidl/llcpp/coding.h>
#include <lib/fidl/llcpp/envelope.h>
#include <lib/fidl/llcpp/errors.h>
#include <lib/fidl/llcpp/linearized_and_encoded.h>
#include <lib/fidl/llcpp/memory.h>
#include <lib/fidl/llcpp/string_view.h>
#include <lib/fidl/llcpp/tracking_ptr.h>
#include <lib/fidl/llcpp/traits.h>
#include <lib/fidl/llcpp/vector_view.h>
#include <lib/fit/function.h>
#include <lib/fit/optional.h>
#include <variant>
#ifdef __Fuchsia__
#include <lib/fidl/llcpp/client.h>
#include <lib/fidl/llcpp/connect_service.h>
#include <lib/fidl/llcpp/message.h>
#include <lib/fidl/llcpp/result.h>
#include <lib/fidl/llcpp/server.h>
#include <lib/fidl/llcpp/service_handler_interface.h>
#include <lib/fidl/llcpp/sync_call.h>
#include <lib/fidl/llcpp/transaction.h>
#include <lib/fidl/txn_header.h>
#include <lib/zx/channel.h>
#endif // __Fuchsia__
#include <exampleusing/llcpp/fidl.h>
#include <zircon/fidl.h>
namespace llcpp {
namespace example {
class ExampleProtocol;
class ExampleXUnion;
class ExampleUnion;
class ExampleTable;
struct ExampleStruct;
enum class ExampleEnum : uint32_t {
MEMBER = 1u,
};
// |ExampleBits| is strict, hence is guaranteed to only contain
// members defined in the FIDL schema.
class ExampleBits final {
public:
constexpr ExampleBits() = default;
constexpr ExampleBits(const ExampleBits& other) = default;
const static ExampleBits MEMBER;
const static ExampleBits mask;
explicit constexpr inline operator uint32_t() const { return value_; }
explicit constexpr inline operator bool() const {
return static_cast<bool>(value_);
}
constexpr inline bool operator==(const ExampleBits& other) const {
return value_ == other.value_;
}
constexpr inline bool operator!=(const ExampleBits& other) const {
return value_ != other.value_;
}
constexpr inline ExampleBits operator~() const;
constexpr inline ExampleBits operator|(const ExampleBits& other) const;
constexpr inline ExampleBits operator&(const ExampleBits& other) const;
constexpr inline ExampleBits operator^(const ExampleBits& other) const;
constexpr inline void operator|=(const ExampleBits& other);
constexpr inline void operator&=(const ExampleBits& other);
constexpr inline void operator^=(const ExampleBits& other);
// Constructs an instance of |ExampleBits| from an underlying primitive value
// if the primitive does not contain any unknown members not defined in the
// FIDL schema. Otherwise, returns |fit::nullopt|.
constexpr inline static fit::optional<ExampleBits> TryFrom(uint32_t value) {
if (value & ~mask.value_) {
return fit::nullopt;
}
return ExampleBits(value & ExampleBits::mask.value_);
}
// Constructs an instance of |ExampleBits| from an underlying primitive value,
// clearing any bit member not defined in the FIDL schema.
constexpr inline static ExampleBits TruncatingUnknown(uint32_t value) {
return ExampleBits(value & ExampleBits::mask.value_);
}
private:
constexpr explicit ExampleBits(uint32_t value) : value_(value) {}
uint32_t value_ = 0;
};
constexpr const ::llcpp::example::ExampleBits ExampleBits::MEMBER =
::llcpp::example::ExampleBits(1u);
constexpr const ::llcpp::example::ExampleBits ExampleBits::mask =
::llcpp::example::ExampleBits(1u);
constexpr inline ::llcpp::example::ExampleBits ExampleBits::operator~() const {
return ::llcpp::example::ExampleBits(
static_cast<uint32_t>(~this->value_ & mask.value_));
}
constexpr inline ::llcpp::example::ExampleBits ExampleBits::operator|(
const ::llcpp::example::ExampleBits& other) const {
return ::llcpp::example::ExampleBits(
static_cast<uint32_t>(this->value_ | other.value_));
}
constexpr inline ::llcpp::example::ExampleBits ExampleBits::operator&(
const ::llcpp::example::ExampleBits& other) const {
return ::llcpp::example::ExampleBits(
static_cast<uint32_t>(this->value_ & other.value_));
}
constexpr inline ::llcpp::example::ExampleBits ExampleBits::operator^(
const ::llcpp::example::ExampleBits& other) const {
return ::llcpp::example::ExampleBits(
static_cast<uint32_t>(this->value_ ^ other.value_));
}
constexpr inline void ExampleBits::operator|=(
const ::llcpp::example::ExampleBits& other) {
this->value_ |= other.value_;
}
constexpr inline void ExampleBits::operator&=(
const ::llcpp::example::ExampleBits& other) {
this->value_ &= other.value_;
}
constexpr inline void ExampleBits::operator^=(
const ::llcpp::example::ExampleBits& other) {
this->value_ ^= other.value_;
}
extern "C" const fidl_type_t example_ExampleXUnionTable;
class ExampleXUnion {
public:
ExampleXUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
ExampleXUnion(ExampleXUnion&&) = default;
ExampleXUnion& operator=(ExampleXUnion&&) = default;
~ExampleXUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
kUnknown = ::std::numeric_limits<::fidl_union_tag_t>::max(),
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static ExampleXUnion WithVariant(::fidl::tracking_ptr<uint32_t>&& val) {
ExampleXUnion result;
result.set_variant(std::move(val));
return result;
}
void set_variant(::fidl::tracking_ptr<uint32_t>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
uint32_t& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
const uint32_t& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
Tag which() const;
static constexpr const fidl_type_t* Type = &example_ExampleXUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
static constexpr bool IsResource = false;
void _CloseHandles();
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<uint32_t> to_destroy =
static_cast<::fidl::tracking_ptr<uint32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t example_ExampleUnionTable;
class ExampleUnion {
public:
ExampleUnion() : ordinal_(Ordinal::Invalid), envelope_{} {}
ExampleUnion(ExampleUnion&&) = default;
ExampleUnion& operator=(ExampleUnion&&) = default;
~ExampleUnion() { reset_ptr(nullptr); }
enum class Tag : fidl_xunion_tag_t {
kVariant = 1, // 0x1
};
bool has_invalid_tag() const { return ordinal_ == Ordinal::Invalid; }
bool is_variant() const { return ordinal_ == Ordinal::kVariant; }
static ExampleUnion WithVariant(::fidl::tracking_ptr<uint32_t>&& val) {
ExampleUnion result;
result.set_variant(std::move(val));
return result;
}
void set_variant(::fidl::tracking_ptr<uint32_t>&& elem) {
ordinal_ = Ordinal::kVariant;
reset_ptr(static_cast<::fidl::tracking_ptr<void>>(std::move(elem)));
}
uint32_t& mutable_variant() {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
const uint32_t& variant() const {
ZX_ASSERT(ordinal_ == Ordinal::kVariant);
return *static_cast<uint32_t*>(envelope_.data.get());
}
Tag which() const {
ZX_ASSERT(!has_invalid_tag());
return static_cast<Tag>(ordinal_);
}
static constexpr const fidl_type_t* Type = &example_ExampleUnionTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 8;
static constexpr bool HasPointer = true;
static constexpr bool IsResource = false;
void _CloseHandles();
private:
enum class Ordinal : fidl_xunion_tag_t {
Invalid = 0,
kVariant = 1, // 0x1
};
void reset_ptr(::fidl::tracking_ptr<void>&& new_ptr) {
// To clear the existing value, std::move it and let it go out of scope.
switch (static_cast<fidl_xunion_tag_t>(ordinal_)) {
case 1: {
::fidl::tracking_ptr<uint32_t> to_destroy =
static_cast<::fidl::tracking_ptr<uint32_t>>(
std::move(envelope_.data));
break;
}
}
envelope_.data = std::move(new_ptr);
}
static void SizeAndOffsetAssertionHelper();
Ordinal ordinal_;
FIDL_ALIGNDECL
::fidl::Envelope<void> envelope_;
};
extern "C" const fidl_type_t example_ExampleTableTable;
class ExampleTable final {
public:
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
const uint32_t& member() const {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
uint32_t& member() {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
bool has_member() const {
return max_ordinal_ >= 1 && frame_ptr_->member_.data != nullptr;
}
ExampleTable() = default;
~ExampleTable() = default;
ExampleTable(ExampleTable&& other) noexcept = default;
ExampleTable& operator=(ExampleTable&& other) noexcept = default;
static constexpr const fidl_type_t* Type = &example_ExampleTableTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 16;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 24;
static constexpr bool HasPointer = true;
static constexpr bool IsResource = false;
void _CloseHandles();
class Builder;
class UnownedBuilder;
class Frame final {
public:
Frame() = default;
// In its intended usage, Frame will be referenced by a tracking_ptr. If the
// tracking_ptr is assigned before a move or copy, then it will reference
// the old invalid object. Because this is unsafe, copies are disallowed and
// moves are only allowed by friend classes that operate safely.
Frame(const Frame&) = delete;
Frame& operator=(const Frame&) = delete;
private:
Frame(Frame&&) noexcept = default;
Frame& operator=(Frame&&) noexcept = default;
::fidl::Envelope<uint32_t> member_;
friend class ExampleTable;
friend class ExampleTable::Builder;
friend class ExampleTable::UnownedBuilder;
};
private:
ExampleTable(uint64_t max_ordinal, ::fidl::tracking_ptr<Frame>&& frame_ptr)
: max_ordinal_(max_ordinal), frame_ptr_(std::move(frame_ptr)) {}
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<Frame> frame_ptr_;
};
// ExampleTable::Builder builds ExampleTable.
// Usage:
// ExampleTable val =
// ExampleTable::Builder(std::make_unique<ExampleTable::Frame>())
// .set_member(ptr)
// .build();
class ExampleTable::Builder final {
public:
~Builder() = default;
Builder() = delete;
Builder(::fidl::tracking_ptr<ExampleTable::Frame>&& frame_ptr)
: max_ordinal_(0), frame_ptr_(std::move(frame_ptr)) {}
Builder(Builder&& other) noexcept = default;
Builder& operator=(Builder&& other) noexcept = default;
Builder(const Builder& other) = delete;
Builder& operator=(const Builder& other) = delete;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
Builder&& set_member(::fidl::tracking_ptr<uint32_t> elem) {
frame_ptr_->member_.data = std::move(elem);
if (max_ordinal_ < 1) {
// Note: the table size is not currently reduced if nullptr is set.
// This is possible to reconsider in the future.
max_ordinal_ = 1;
}
return std::move(*this);
}
const uint32_t& member() const {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
uint32_t& member() {
ZX_ASSERT(has_member());
return *frame_ptr_->member_.data;
}
bool has_member() const {
return max_ordinal_ >= 1 && frame_ptr_->member_.data != nullptr;
}
ExampleTable build() {
return ExampleTable(max_ordinal_, std::move(frame_ptr_));
}
private:
uint64_t max_ordinal_ = 0;
::fidl::tracking_ptr<ExampleTable::Frame> frame_ptr_;
};
// UnownedBuilder acts like Builder but directly owns its Frame, simplifying
// working with unowned data.
class ExampleTable::UnownedBuilder final {
public:
~UnownedBuilder() = default;
UnownedBuilder() noexcept = default;
UnownedBuilder(UnownedBuilder&& other) noexcept = default;
UnownedBuilder& operator=(UnownedBuilder&& other) noexcept = default;
// Returns whether no field is set.
bool IsEmpty() const { return max_ordinal_ == 0; }
UnownedBuilder&& set_member(::fidl::tracking_ptr<uint32_t> elem) {
ZX_ASSERT(elem);
frame_.member_.data = std::move(elem);
if (max_ordinal_ < 1) {
max_ordinal_ = 1;
}
return std::move(*this);
}
const uint32_t& member() const {
ZX_ASSERT(has_member());
return *frame_.member_.data;
}
uint32_t& member() {
ZX_ASSERT(has_member());
return *frame_.member_.data;
}
bool has_member() const {
return max_ordinal_ >= 1 && frame_.member_.data != nullptr;
}
ExampleTable build() {
return ExampleTable(max_ordinal_, ::fidl::unowned_ptr(&frame_));
}
private:
uint64_t max_ordinal_ = 0;
ExampleTable::Frame frame_;
};
extern "C" const fidl_type_t example_ExampleProtocolMethodRequestTable;
extern "C" const fidl_type_t example_ExampleProtocolMethodResponseTable;
class ExampleProtocol final {
ExampleProtocol() = delete;
public:
struct MethodRequest final {
FIDL_ALIGNDECL
fidl_message_header_t _hdr;
::llcpp::exampleusing::Empty arg;
explicit MethodRequest(zx_txid_t _txid, ::llcpp::exampleusing::Empty& arg)
: arg(std::move(arg)) {
_InitHeader(_txid);
}
explicit MethodRequest(zx_txid_t _txid) { _InitHeader(_txid); }
static constexpr const fidl_type_t* Type =
&example_ExampleProtocolMethodRequestTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 24;
static constexpr uint32_t MaxOutOfLine = 0;
static constexpr uint32_t AltPrimarySize = 24;
static constexpr uint32_t AltMaxOutOfLine = 0;
static constexpr bool HasFlexibleEnvelope = false;
static constexpr bool HasPointer = false;
static constexpr bool IsResource = false;
static constexpr ::fidl::internal::TransactionalMessageKind MessageKind =
::fidl::internal::TransactionalMessageKind::kRequest;
class UnownedOutgoingMessage final {
public:
UnownedOutgoingMessage(uint8_t* _bytes, uint32_t _byte_size,
zx_txid_t _txid, ::llcpp::exampleusing::Empty& arg)
: message_(_bytes, _byte_size, sizeof(MethodRequest), nullptr, 0, 0) {
// Destructors can't be called because it will lead to handle double
// close (here and in fidl::Encode).
FIDL_ALIGNDECL uint8_t _request_buffer[sizeof(MethodRequest)];
auto& _request = *new (_request_buffer) MethodRequest(_txid, arg);
message_.LinearizeAndEncode<MethodRequest>(&_request);
}
zx_status_t status() const { return message_.status(); }
bool ok() const { return message_.status() == ZX_OK; }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() { return message_; }
void Write(zx_handle_t client) { message_.Write(client); }
private:
MethodRequest& Message() {
return *reinterpret_cast<MethodRequest*>(message_.bytes());
}
::fidl::OutgoingMessage message_;
};
class OwnedOutgoingMessage final {
public:
explicit OwnedOutgoingMessage(zx_txid_t _txid,
::llcpp::exampleusing::Empty& arg)
: message_(bytes_, sizeof(bytes_), _txid, arg) {}
zx_status_t status() const { return message_.status(); }
bool ok() const { return message_.ok(); }
const char* error() const { return message_.error(); }
::fidl::OutgoingMessage& GetOutgoingMessage() {
return message_.GetOutgoingMessage();
}
void Write(zx_handle_t client) { message_.Write(client); }
private:
FIDL_ALIGNDECL
uint8_t bytes_[MethodRequest::PrimarySize + MethodRequest::MaxOutOfLine];
UnownedOutgoingMessage message_;
};
private:
void _InitHeader(zx_txid_t _txid);
};
// Collection of return types of FIDL calls in this protocol.
class ResultOf final {
ResultOf() = delete;
public:
class Method final : public ::fidl::Result {
public:
explicit Method(zx_handle_t _client, ::llcpp::exampleusing::Empty& arg);
explicit Method(const ::fidl::Result& result) : ::fidl::Result(result) {}
Method(Method&&) = delete;
Method(const Method&) = delete;
Method* operator=(Method&&) = delete;
Method* operator=(const Method&) = delete;
~Method() = default;
private:
};
};
// Collection of return types of FIDL calls in this protocol,
// when the caller-allocate flavor or in-place call is used.
class UnownedResultOf final {
UnownedResultOf() = delete;
public:
class Method final : public ::fidl::Result {
public:
explicit Method(zx_handle_t _client, uint8_t* _request_bytes,
uint32_t _request_byte_capacity,
::llcpp::exampleusing::Empty& arg);
explicit Method(const ::fidl::Result& result) : ::fidl::Result(result) {}
Method(Method&&) = delete;
Method(const Method&) = delete;
Method* operator=(Method&&) = delete;
Method* operator=(const Method&) = delete;
~Method() = default;
};
};
// Methods to make a sync FIDL call directly on an unowned channel, avoiding
// setting up a client.
class Call final {
Call() = delete;
public:
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
static ResultOf::Method Method(::zx::unowned_channel _client_end,
::llcpp::exampleusing::Empty arg) {
return ResultOf::Method(_client_end->get(), arg);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
static UnownedResultOf::Method Method(::zx::unowned_channel _client_end,
::fidl::BytePart _request_buffer,
::llcpp::exampleusing::Empty arg) {
return UnownedResultOf::Method(_client_end->get(), _request_buffer.data(),
_request_buffer.capacity(), arg);
}
};
class SyncClient final {
public:
SyncClient() = default;
explicit SyncClient(::zx::channel channel) : channel_(std::move(channel)) {}
~SyncClient() = default;
SyncClient(SyncClient&&) = default;
SyncClient& operator=(SyncClient&&) = default;
const ::zx::channel& channel() const { return channel_; }
::zx::channel* mutable_channel() { return &channel_; }
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
ResultOf::Method Method(::llcpp::exampleusing::Empty arg) {
return ResultOf::Method(this->channel().get(), arg);
}
// Caller provides the backing storage for FIDL message via request and
// response buffers.
UnownedResultOf::Method Method(::fidl::BytePart _request_buffer,
::llcpp::exampleusing::Empty arg) {
return UnownedResultOf::Method(this->channel().get(),
_request_buffer.data(),
_request_buffer.capacity(), arg);
}
private:
::zx::channel channel_;
};
struct AsyncEventHandlers;
class ClientImpl;
// Pure-virtual interface to be implemented by a server.
class Interface {
public:
Interface() = default;
virtual ~Interface() = default;
// The marker protocol type within which this |Interface| class is defined.
using _EnclosingProtocol = ExampleProtocol;
using MethodCompleter = ::fidl::Completer<>;
virtual void Method(::llcpp::exampleusing::Empty arg,
MethodCompleter::Sync& _completer) = 0;
};
// Attempts to dispatch the incoming message to a handler function in the
// server implementation. If there is no matching handler, it returns false,
// leaving the message and transaction intact. In all other cases, it consumes
// the message and returns true. It is possible to chain multiple TryDispatch
// functions in this manner.
static ::fidl::DispatchResult TryDispatch(Interface* impl, fidl_msg_t* msg,
::fidl::Transaction* txn);
// Dispatches the incoming message to one of the handlers functions in the
// protocol. If there is no matching handler, it closes all the handles in
// |msg| and closes the channel with a |ZX_ERR_NOT_SUPPORTED| epitaph, before
// returning false. The message should then be discarded.
static ::fidl::DispatchResult Dispatch(Interface* impl, fidl_msg_t* msg,
::fidl::Transaction* txn);
// Same as |Dispatch|, but takes a |void*| instead of |Interface*|.
// Only used with |fidl::BindServer| to reduce template expansion.
// Do not call this method manually. Use |Dispatch| instead.
static ::fidl::DispatchResult TypeErasedDispatch(void* impl, fidl_msg_t* msg,
::fidl::Transaction* txn) {
return Dispatch(static_cast<Interface*>(impl), msg, txn);
}
class EventSender;
};
extern "C" const fidl_type_t example_ExampleStructTable;
struct ExampleStruct {
static constexpr const fidl_type_t* Type = &example_ExampleStructTable;
static constexpr uint32_t MaxNumHandles = 0;
static constexpr uint32_t PrimarySize = 4;
[[maybe_unused]] static constexpr uint32_t MaxOutOfLine = 0;
static constexpr bool HasPointer = false;
static constexpr bool IsResource = false;
uint32_t member = {};
void _CloseHandles();
};
constexpr uint32_t EXAMPLE_CONST = 0u;
} // namespace example
} // namespace llcpp
namespace fidl {
template <>
struct IsFidlType<::llcpp::example::ExampleProtocol::MethodRequest>
: public std::true_type {};
template <>
struct IsFidlMessage<::llcpp::example::ExampleProtocol::MethodRequest>
: public std::true_type {};
static_assert(sizeof(::llcpp::example::ExampleProtocol::MethodRequest) ==
::llcpp::example::ExampleProtocol::MethodRequest::PrimarySize);
static_assert(offsetof(::llcpp::example::ExampleProtocol::MethodRequest, arg) ==
16);
template <>
struct IsFidlType<::llcpp::example::ExampleXUnion> : public std::true_type {};
template <>
struct IsUnion<::llcpp::example::ExampleXUnion> : public std::true_type {};
static_assert(std::is_standard_layout_v<::llcpp::example::ExampleXUnion>);
template <>
struct IsFidlType<::llcpp::example::ExampleUnion> : public std::true_type {};
template <>
struct IsUnion<::llcpp::example::ExampleUnion> : public std::true_type {};
static_assert(std::is_standard_layout_v<::llcpp::example::ExampleUnion>);
template <>
struct IsFidlType<::llcpp::example::ExampleTable> : public std::true_type {};
template <>
struct IsTable<::llcpp::example::ExampleTable> : public std::true_type {};
template <>
struct IsTableBuilder<::llcpp::example::ExampleTable::Builder>
: public std::true_type {};
static_assert(std::is_standard_layout_v<::llcpp::example::ExampleTable>);
template <>
struct IsFidlType<::llcpp::example::ExampleStruct> : public std::true_type {};
template <>
struct IsStruct<::llcpp::example::ExampleStruct> : public std::true_type {};
static_assert(std::is_standard_layout_v<::llcpp::example::ExampleStruct>);
static_assert(offsetof(::llcpp::example::ExampleStruct, member) == 0);
static_assert(sizeof(::llcpp::example::ExampleStruct) ==
::llcpp::example::ExampleStruct::PrimarySize);
template <>
struct IsFidlType<::llcpp::example::ExampleEnum> : public std::true_type {};
template <>
struct IsFidlType<::llcpp::example::ExampleBits> : public std::true_type {};
static_assert(std::is_standard_layout_v<::llcpp::example::ExampleBits>);
static_assert(sizeof(::llcpp::example::ExampleBits) == sizeof(uint32_t));
} // namespace fidl
namespace llcpp {
namespace example {
struct ExampleProtocol::AsyncEventHandlers {};
class ExampleProtocol::ClientImpl final : private ::fidl::internal::ClientBase {
public:
// Allocates 24 bytes of message buffer on the stack. No heap allocation
// necessary.
::fidl::Result Method(::llcpp::exampleusing::Empty arg);
// Caller provides the backing storage for FIDL message via request and
// response buffers.
::fidl::Result Method(::fidl::BytePart _request_buffer,
::llcpp::exampleusing::Empty arg);
private:
friend class ::fidl::Client<ExampleProtocol>;
explicit ClientImpl(AsyncEventHandlers handlers)
: handlers_(std::move(handlers)) {}
std::optional<::fidl::UnbindInfo> DispatchEvent(fidl_msg_t* msg) override;
AsyncEventHandlers handlers_;
};
class ExampleProtocol::EventSender {
public:
private:
friend class ::fidl::ServerBindingRef<ExampleProtocol>;
explicit EventSender(
std::weak_ptr<::fidl::internal::AsyncServerBinding> binding)
: binding_(std::move(binding)) {}
std::weak_ptr<::fidl::internal::AsyncServerBinding> binding_;
};
} // namespace example
} // namespace llcpp